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A Mathematical Anatomy of Waves 

A wave is essentially a disturbance that propagates at a fixed velocity 

through space. The disturbance could be in gas pressure, movement of a 

string under tension, ground or water movement, or indeed fluctuations in 

electromagnetic fields which constitute light, radio waves, X-rays etc. 

Waves are a very general phenomena in Physics, and this handout 

describes characteristics which are germane to all waves. 

Consider a disturbance of amplitude               

moving at speed c in the x direction  
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The key feature of a wave is that is a spatial translation of 

a disturbance f(x) as time progresses. There may also be 

a decay (or growth) of amplitude with time, but this 

process shall be modelled separately. 

( , ) ( )x t f x ct  

We can differentiate this to form the Wave Equation 
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i.e. using 

the Chain 

Rule 

All periodic disturbances can be constructed from a summation (or 

‘superposition’) of sine or cosine functions or different amplitude, phase 

shift and frequency. This is called a Fourier series. 
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Note argument , or phase, 

of cosine function is in 

radians 
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Phase of waveform 

Phase when x and t = 0 
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Period of the wave is the time 

taken for the wave to move one 

wavelength 

Frequency is the number of periods 

(or oscillations) per second 

The wave moves one wavelength per 

period which gives this formula for 

wave speed 

To simplify we can remove the 2 x  

factors by defining an ‘angular 

speed’ (this is the same formula for 

angular speed in circular motion, 

which has similar mathematics) 
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Alternative wave speed equation 
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A superposition of two cosine functions 

of different amplitude, frequency and 

initial phase shift can be used to create 

any periodic (i.e. time repeating) signal 

It is often convenient to use complex 

numbers to represent wave phenomena. 

Using De-Moivre’s Theorem: 
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A wave might be therefore written as: 

( )( , ) i kx tx t ae   The constant a might also be complex to 

incorporate the initial phase shift 
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Satisfies the wave equation 
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Waves on a string 
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Consider an infinitesimally small section 

of a string of mass per unit length      

under constant tension 
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By Newton’s Second Law: 
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Comparing with the 

Wave Equation: 
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Speed of waves 

on a string 

Guitar strings 

The fundamental frequencies associated with musical notes can be modelled using the following equation: 

http://www.daddario.com/DAstringtensionguide.Page 

Note n 
 

Frequency  
/Hz 

Diameter 
(inches) 

String 
length /m 

String 
density 
/kgm-3 

Tension 
/N 

E 19 329.63 0.010 plain 0.75 7690 95.3 

B 14 246.94 0.013 plain 0.73 7950 88.5 

G 10 196 0.017 plain 0.71 8220 93.2 

D 5 146.83 0.026 wound 0.69 6930 97.5 

A 0 110 0.036 wound 0.67 6610 94.3 

E -5 82.41 0.046 wound 0.66 6540 83.0 

1
12( ) 110 2

n
f n  

where f is the frequency in Hz and n is the number of semitones above the A note, set to be 110Hz. 

A A# or 
Bb 

B C C# or Db D D# or 
Eb 

E F F# or 
Gb 

G G# or 
Ab 

A (next 
 octave) 

0 1 2 3 4 5 6 7 8 9 10 11 12 

110 116.5 123.5 130.8 138.6 146.8 155.6 164.8 174.6 185.0 196 207.7 220 

n

Hz 

1 inch = 0.0254m 
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String tensions can be calculated if one knows the geometry of each string, the material density  

and the desired note frequency. The following results correspond to D’Addario EXL110 electric guitar strings.  

(Density data from https://courses.physics.illinois.edu/phys406/Student_Projects/Fall00/DAchilles/Guitar_String_Tension_Experiment.pdf) 

L

Assume fundamental mode of string 

vibration i.e. two nodes 

at either end of the string 

1

2
L 

This is a good approximation of the Pythagorean ‘harmonious proportions’ e.g. a perfect 5th 

interval like A to E, is a frequency ratio of 3/2.  2^(7/2) = 1.4983.  

A wave which has fixed nodes, i.e. does not 

propagate in the x direction, is called a standing wave. 

Standing waves can be written as  ( ) ( ) ( )x x t  i.e. the time dependent part is separated. 

For the guitar string fundamental mode:    ( , ) sin / sin 2x t x L ft  

Plucking a real 

guitar string 

activates many 

more harmonics, 

which gives it its 

distinctive sound. 

i.e. sin tan 

http://www.eclecticon.info/
http://www.daddario.com/DAstringtensionguide.Page
https://courses.physics.illinois.edu/phys406/Student_Projects/Fall00/DAchilles/Guitar_String_Tension_Experiment.pdf
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Wave energy and power 
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If a wave on a string under constant tension T 

propagates from x to x + dx 

 

Work done is: 
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Hence potential energy per unit length of string is: 

Assume a small  

amplitude 

disturbance 
1

x
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First term Binomial expansion 

i.e. force x extension 

Kinetic energy per unit length is: 
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 mass per unit length of string 

Total energy per unit length is therefore 
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Now from the Wave Equation 
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Hence: 

If we consider a harmonic wave 
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After time dt an extra cdt is oscillating. 

Hence average input power to wave is: 
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Wave impedance can be defined as 
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For the wave on a string 
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Hence wave power is: 
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i.e. assume small 

oscillations 

This is a general result 

for wave phenomena 

Z T

Impedance of 

a wave on a 

string 
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Reflection and transmission of waves on 

boundaries 
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Note the number of wave per second 

must be the same on either side of the boundary 
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However, the wave speed (and hence wave 

impedance) changes, which will modify the wavelength 

and hence the wavenumber. 
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Impedance of a wave on a string 
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Let us assume the wave amplitude, and its gradient         are continuous across the boundary 
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Expect tension to be continuous 

across the boundary (i.e. same on both sides) 

Wave speed of string under tension T with 

mass per unit length  

Since wave power is proportional to the square of 

wave amplitude 

Reflected power / incident power 

Transmitted power / incident power 
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Writing the ratios in this way enables 

the formulae to be extensible to complex 

impedances, which result in oscillating 

electrical circuits 
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Limiting cases 
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i.e. the reflected wave is 

inverted 

i.e. we don’t expect any reflections unless we have an impedance 

change! This explains why electrical connectors are ideally 

impedance matched. 
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Note: This analysis has 

been done for a wave on a 

tensioned string, but the 

end results are quite 

general 

Transmission 

coefficient 
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General result 

relating wave speed 

and impedance 
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