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Circular motion. For simplicity let us consider motion in a circle at a constant velocity. Hence the angular velocity w is constant and rotating period is T 
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To execute a circular motion, the velocity vector must continuously 

change in direction. Although its magnitude is not changing, the directional 

part is, so therefore a body undergoing circular motion must be accelerating 

since acceleration is the rate of change of velocity, and both are vector quantities. 
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Consider an infinitesimally 

small sector of the circular path 

drawn downwards from the 

horizontal 

 

0

0 1

2

0

0 01

2

1

2

180 2

90

90

90 90

 

 

 

  

  

  

 

 

 

 

 

 

   



The change of velocity vector              points at an angle of           from the horizontal 

Hence the acceleration must point towards the centre of the circle 

 

 

Now since the velocity vectors either side of the sector form an isosceles triangle 
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Hence the magnitude of the acceleration is 
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In the limit when        is small  1 1

2 2
sin  

Hence: 

2v
a

r


In summary, for circular motion of constant angular frequency 

and fixed radius: 
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This is known as ‘centripetal acceleration’ 
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Whirly Bungs experiment 

This simple experiment is an example of horizontal circular motion. A rubber 

bung, attached to a fixed mass via a light inextensible string threaded through 

an open ended tube, is whirled in a horizontal circle until ‘dynamic equilibrium’ is 

obtained. i.e. the radius of circular motion is constant, as is the angle of inclination. 
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Time for one 

rotation 

i.e. ‘period’ 

To measure r, mark string 

in cm spacings and hence 

measure bung to tube 

length  
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Use video capture to 

measure h, calibrated by 

direct measurement of l 

The natural variables for the whirly bungs experiment are the mass of 

the fixed mass M, and the period of rotation P.  

 

Predicted quantities are the angle   and the radius r 
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Time ten rotations 

and then average 

For analysis plot: 
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Both should be straight lines 

http://www.eclecticon.info/


Circular motion. For simplicity we shall initially consider motion described by plane polar coordinates r, rather than general 3D motion described in spherical polars. 
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Position vector r can be described in Cartesians or plane polars 

Plane polar unit vectors are 
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The conversion is: 

Use  

to work this out 

ˆ ˆcos sinr r  r x y

Unlike Cartesian unit vectors, time derivatives of plane polar unit vectors are not constant 

Hence velocity and acceleration can be written in terms of plane polar 

coordinate and associated unit vectors 
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Example: What is the orbital speed of the Earth about the Sun, 

assuming a circular orbit? How does orbital radius and period 

vary? 

 

If a circular orbit               Also since gravity is a central force, there 

can be no tangential acceleration so            .   Newton’s Second Law 

is therefore (expressed in plane polar coordinates) 

0r 
0w 

Newton’s Second Law expressed in  

plane polar coordinates looks like this: 
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Centrifugal 

‘force’ 
Coriolis and 

tangential ‘forces’ 

So if a body is in a rotating frame 

of reference, i.e. rotates at angular 

speed w,  it can appear that there 

are additional forces acting. 

 

These ‘forces’ are a consequence 

that the frame itself is accelerating. 
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Let the Earth be mass m and 

the Sun mass M 

This is Kepler’s Third Law 

M = 2 x 1030 kg 

G = 6.67 x 10-11 m3 kg-1s-2 

T = 365 days = 3.154 x107s 

 

r = 150 million km 

v = 29.8 kms-1 
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Example:  A mass on a light inextensible string or length r is projected with 

a velocity u from the horizontal with the string taught. What angle does this 

pendulum swing before the string become slack? What is the minimum 

velocity such that the string will swing all the way round? Ignore air 

resistance. 
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Using plane polar coordinates, noting  : 0r 

Newton’s Second Law is therefore 
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Substituting into the radial component of Newton II: 

So for the mass to move all the way round the circle 

Alternative derivation of the conservation of energy equation via 

direct integration of the tangential component of Newton’s Second law 
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Now in our situation the velocity of the mass (which is tangential in direction) 
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Rather than using plane polar coordinates, we can derive a useful expression for velocity and acceleration within a rotating Cartesian frame of reference. 

This also will yield extra ‘forces’ of the Centrifugal and Coriolis variety. 
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Define frame angular velocity vector 

What we want is an expression for velocity and acceleration 

in terms of rotating frame coordinates x’, y’, z’ so we can use Newton’s 

Second law and solve Mechanics problems. Note by our definition 

of the rotating frame z’ = z 
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The algebra can be simplified by defining a ‘rotational frame derivative’ 
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Newton’s Second Law expressed in these coordinates looks like: 
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So in the rotating frame, we have two additional ‘forces’ to add to the sum 

of external forces 
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