Circular motion. For simplicity let us consider motion in a circle at a constant velocity. Hence the angular velocity w is constant and rotating period is T
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The rotation frequencyis | f = l
T
2rr
Velocity V:TL: ro

Consider an infinitesimally
small sector of the circular path

horizontal
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Note 1 revolutions per minute (RPM) = 2_70[ ~0.105rads™
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To execute a circular motion, the velocity vector must continuously
change in direction. Although its magnitude is not changing, the directional
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In summary, for circular motion of constant angular frequency T
and fixed radius: w=2rf

part is, so therefore a body undergoing circular motion must be accelerating
since acceleration is the rate of change of velocity, and both are vector quantities.

dv
a:_
dt

. ov . .
The change of velocity vector <<—_ points at an angle of £06¢ from the horizontal
Hence the acceleration must point towards the centre of the circle

Now since the velocity vectors either side of the sector form an isosceles triangle
oV =2vsin3 o0

roo

The time taken to traverse the arcis ot =——

v
v 2vsinise

Hence the magnitude of the accelerationis a=—=

ot rod

In the limit when 6@ is small sin3 o6 = 5560

Hence:

a=—

2
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This is known as ‘centripetal acceleration’
VZ
a=— T a1
r 1RPM =— ~0.105rads
a=ro’ 30
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Whirly Bungs experiment The natural variables for the whirly bungs experiment are the mass of
This simple experiment is an example of horizontal circular motion. A rubber the fixed mass M, and the period of rotation P. \
bung, attached to a fixed mass via a light inextensible string threaded through Time ten rotations

an open ended tube, is whirled in a horizontal circle until ‘dynamic equilibrium’ is Predicted quantities are the angle @ and the radius r and then average
obtained. i.e. the radius of circular motion is constant, as is the angle of inclination.

For a typical bung m=14g
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Circular motion. For simplicity we shall initially consider motion described by plane polar coordinates r, 6 rather than general 3D motion described in spherical polars.

unit vectors

<>

Define angular velocity

Hence:

A

T

(x,y)
. or /lor
r=—/|—
or/ |or
gor /or|__
00/ |00

Use I =rCcoSOX+rsin 8y
to work this out

w-0-99
dt
2
@:é:df
dt

V=
a=

It +rad

i— ra)z)f’+(2r'a)+ ra))é

vVi=v.-v=ri2+rie’

~af r=0

<
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Vi, A
a=-——~F+raof

Position vector r can be described in Cartesians or plane polars

Plane polar unit vectors are

=C0SOX +sin gy

r=xX+yy
r=rr

X=rcosd
y=rsind

The conversion is:

r =rCcoséxX +rsin oy

Unlike Cartesian unit vectors, time derivatives of plane polar unit vectors are not constant

singx + cos gy di .~
—=00
dt Hence velocity and acceleration can be written in terms of plane polar
do G¢ coordinate and associated unit vectors
. =ur R - d, . .. df . - A
dt v=rF="rf+ro0 v:a(rr):rr+razrr+r¢9@

azfz('r'—réz)f+(2r9+ré)é

Newton’s Second Law expressed in
plane polar coordinates looks like this:

ma=> F,

(mi —mre® )¢ +(2mio+mrao)d=>"F,

mit = > F + mro’t —(2mfo+mro)e
i

\

Centrifugal Coriolis and

‘force’

tangential ‘forces’

So if a body is in a rotating frame
of reference, i.e. rotates at angular
speed o, it can appear that there
are additional forces acting.

These ‘forces’ are a consequence
that the frame itself is accelerating.

Example: What is the orbital speed of the Earth about the Sun,
assuming a circular orbit? How does orbital radius and period
vary?

If a circular orbit =0 Also since gravity is a central force, there
can be no tangential acceleration so @=0. Newton’s Second Law
is therefore (expressed in plane polar coordinates)

mv:, GMm, ’GM v r
ma=— F=——0—1 JV=,/—
r r r M Fom
2 2 \
v _ ro’ = 4ﬂ2 r Let the Earth be mass m and
r T the Sun mass M
2
Hence: —= GIYI
rz r M = 2 x 1030 kg
an r= GM G =6.67 x 1011 m3 kg1s2
T? r T =365 days = 3.154 x107s
T2 _ Ar? 3 ~ -
GM r = 150 million km
vV =29.8 kms!

This is Kepler's Third Law
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Example: A mass on a light inextensible string or length r is projected with
a velocity u from the horizontal with the string taught. What angle does this
pendulum swing before the string become slack? What is the minimum
velocity such that the string will swing all the way round? Ignore air
resistance.

Using plane polar coordinates, noting £ =0
2

i . V A en
accelerationais a=——r~F+r60
r

Newton’s Second Law is therefore

2

mv< . . LA
- r+mré0 =—Tr + mg cos&r —mg sin 60
r
mv?
Hence: : - =-T +mgcosé
r

By conservation of energy < mu® =<mv? +mgr(1-cosd)
Hence:  mv? =mu®—2mgr(1-cosd)

Substituting into the radial component of Newton II:

2mgr (1-cos ) —mu’
r

=-T +mgcosd

mu?
r

T =mg(3cosf—-2)+

2 2

mu u
The string is taughtfor T >0 ..mg(3c0sd—2)+—>0=cosf>2— o
r ar

The minimum value of cosé is -1.
2

. u
So for the mass to move all the way round the circle 2 — 3— <-1
gr
2
u
<o
3gr

u>./5gr

Alternative derivation of the conservation of energy equation via
direct integration of the tangential component of Newton’s Second law

0: rd= —gsiné Now using the chain rule |6 = d_0 = 9%
dt deo

Hence gd_ez_gsing
déo r

6d6 =—sinodo
r

Now in our situation the velocity of the mass (which is tangential in direction)
v=ro

o=V & do=W
r r
- odg = YA
;
Hence:
vV _ _9sinade
r r

juvvdv =— grjogsin 0do

v -1u?= gr[cose]i

vZ =u® - 2gr(l-cosé)
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Rather than using plane polar coordinates, we can derive a useful expression for velocity and acceleration within a rotating Cartesian frame of reference.

This also will yield extra ‘forces’ of the Centrifugal and Coriolis variety.

N>
Il
N

r=xX+Vyy+zz
y r=x'X'+y'y'+22

Define frame angular velocity vector
o Q=0
X Q=07

<

Assume [Q=0

The time derivatives
of the rotated X and y
basis vectors are not
constant

X'=cosOX +sin gy
y'=—sin@X+cosby

O;_); — _Qsin 0% +Qcos oy = QF’

% =-Qcosfx —Qsin gy = -QX'

What we want is an expression for velocity and acceleration

in terms of rotating frame coordinates x’, y’, z’ so we can use Newton’s
Second law and solve Mechanics problems. Note by our definition

of the rotating frame z’ =z

v:i(x'k'+ y'y'+2'2)
dt

dx',, _,dx' dy'., .dy' dz',
Ve—X'+ X'—+ =Y+ y' ——+—72

ot dt  dt dt  dt
1 IdkI ldyl
V=V X'— Yy ——
dt dt

V=V'+X'Qy' - y' QX

. dx'., dy'., dz',
where V'=—X'+—y'+—72
dt dt dt

Qxr=Qzx (X'f('—i— y'y'+ Zi) Xxy = Cartesian basis vectors
DAy s Kx? :_y form a right-handed set
Qxr=0x"y'-Qy'x <«
yx2=X

Hence | v=Vv'+Qxr

dx' N ay’ N

—=Qy' Y QX'
dt dt

can be used to determine an expression for acceleration.

d(dx',, dy'., dz', . .
a=—| —X+—Y+—2+X'Qy"'—y'QX'
dt(dt a” " dt y =y J

The time derivatives

The algebra can be simplified by defining a ‘rotational frame derivative’

azd—V=[i+ij(v'+er)
dt dt

dzx‘)A(Jr dzy'y,Jr d z'2
dt? dt? dt?

a=a+2Qxv'+QxQxr where a'=

Newton’s Second Law expressed in these coordinates looks like:
ma=>YF

ma'+2mQ><v'+mQ><Q><r=Z:Fi

ma'=Y F —2mQxv'+mQxQxr

So in the rotating frame, we have two additional forces’ to add to the sum
of external forces

fcenri ugal — mQXQX(XI§£I+ y'y'—i- Zi)
trifugal . . i ma'= ZFl _;,_fcorioﬁs +fcemrifu ’
dX S dy A dZ A . [o}
fcoriolis =-2m x| —X'+ ——y+—12Z
dt dt dt
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