

If a spring or elastic cord obeys Hooke's Law, then the restoring force experienced is in direct proportion to the amount it is stretched x beyond its natural length l

k is the spring constant λ is the elastic modulus $F = kx = \lambda \frac{x}{l}$ $\lambda = kl$ When a spring is stretched, the work done to achieve this is $W = \int_0^x F dx = \int_0^x kx dx = \frac{1}{2}kx^2$ i.e. the area of the green triangle! The **potential energy** in a stretched spring is therefore $\frac{1}{2}kx^2$

If the spring hangs in equilibrium $mg = kx_0 \Longrightarrow x_0 = \frac{mg}{k}$ The equilibrium displacement from the hanging point of the mass is therefore $l + \frac{mg}{m}$ The total energy of the mass-spring system above is:

$$E = \frac{1}{2}m\dot{x}^{2} + mg\left(l + \frac{mg}{k} - l - x\right) + \frac{1}{2}kx^{2} = \frac{1}{2}m\dot{x}^{2} + mg\left(\frac{mg}{k} - x\right) + \frac{1}{2}kx^{2}$$
(mg)

$$E = \frac{1}{2}m\dot{x}^{2} + mg\left(\frac{mg}{k} - x\right) + \frac{1}{2}kx^{2}$$

$$\dot{E} = m\ddot{x}\ddot{x} - mg\dot{x} + kx\dot{x} \qquad \text{differentiate}$$

$$\dot{E} = m\dot{x}\left(\ddot{x} - g + \frac{kx}{m}\right) \qquad \text{with respect}$$

to time

Assume system is lossless

$$\therefore \dot{E} = 0$$
$$\Rightarrow \ddot{x} - g + \frac{kx}{m} = 0$$

 $x = z + \frac{mg}{k}$ $\ddot{x} = \ddot{z}$ Define a new displacement, from the equilibrium position $\ddot{x} - g + \frac{kx}{m} = 0$ $\Rightarrow \ddot{z} - g + \frac{k}{m} \left(z + \frac{mg}{k} \right) = 0$ $\ddot{z} = -\frac{k}{z}$ m $\ddot{\theta} = -\left(\frac{2\pi}{T}\right)^2 \theta$ Compare to Simple Harmonic Motion (SHM)

Series springs - each stretches the same

Parallel springs - load is shared

Hence spring oscillations

will have period

 $\left(\frac{2\pi}{T}\right)^2 = \frac{k}{m}$

 $\therefore T = 2\pi \sqrt{\frac{m}{k}}$

Note in this case, Newton's Second Law can also be used to derive the equation of motion in a fairly straightforward fashion. In this case it is the most efficient method!

$$m\ddot{x} = mg - kx$$

$$x = z + \frac{mg}{k}$$
 z is the displacement from
equilibrium
$$\therefore m\ddot{z} = mg - k\left(z + \frac{mg}{k}\right)$$
$$\ddot{z} = -\frac{k}{m}z$$

Mathematics topic handout – Mechanics. Hookean springs & elasticity Dr Andrew French. www.eclecticon.info PAGE 1

Stress and strain

Elastic strain energy per unit volume

Note fluids and gases flow rather than shear. So a fluid or gas will have a shear modulus of zero.

Bulk modulus

This is the compressibility of a material i.e. the ratio of a change in pressure *P* applied to the consequential fractional change in volume V

For isotropic materials (i.e. movement in any direction is the same, there is no particular direction where the material is weaker or stronger or more stretchy..)

(assumed to be isotropic)

Material	Young's modulus Y /GPa	Poisson ratio ν	Shear modulus <i>G</i> /GPa	Bulk modulus <i>K</i> /GPa	Density $ ho$ /kgm- ³	Speed* of sound c_P /ms ⁻¹
Rubber	0.01	0.5	0.0006	1	801	1,120
Steel	200	0.3	79.3	160	7800	5,840
Copper	117	0.33	44.7	123	8960	4,510
Plastic	0.5-3	0.3-0.5	0.1	2.9	930	1,810
Concrete	30	0.1-0.2	21	14.3	2400	4,200
Diamond	1050-1210	0.07	478	443	3510	17,540
Wood	11	0.2-0.7	13	36.7	600-900	8,490
Glass	50-90	0.18-0.3	26.2	35-55	2500	5,560

Shear (S) waves

 $K = \frac{Y}{3(1-2\nu)}$

used	where	data	unavailable