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Hookean springs 
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If a spring or elastic cord obeys Hooke’s Law, then the 

restoring force experienced is in direct proportion to the amount 

it is stretched x beyond its natural length l 
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is the spring constant 

is the elastic modulus 
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When a spring is stretched, the work done 

to achieve this is 
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The potential energy in a stretched spring is therefore 
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i.e. the area of the 

green triangle! 

The total energy of the mass-spring system above is: 
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If the spring hangs in equilibrium 

 

The equilibrium displacement from the hanging point of the mass is therefore 
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Assume system is lossless 
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Define a new 

displacement, from 

the equilibrium 

position 
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Compare to 

Simple Harmonic 

Motion (SHM) 

Hence spring oscillations  

will have period 
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Note in this case, Newton’s Second Law 

can also be used to derive the equation of motion in 

a fairly straightforward fashion. In this case it is the 

most efficient method! 
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z is the displacement from 
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differentiate 

with respect 

to time 
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For small strains we often have a 

linear, elastic region. i.e. force is 

proportional to extension or 

stress/strain is a constant. The 

constant is called the Young’s 

Modulus 
A slip in a material can be described by the movement of a dislocation in the atomic structure. 

Material properties 

are often described 

by a curve of  

stress vs strain 
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Stress and strain 
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Elastic strain energy per unit volume 

Y 

The energy U stored by a 

system undergoing deformation, 

per unit volume. When the load 

is removed, strain energy is 

released as the system returns 

to its original shape. 
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Poisson’s ratio 

Shear modulus Speed of sound in elastic solids 

Typical elastic moduli for materials 
(assumed to be isotropic) 

Material Young’s 
modulus Y 

/GPa 

Poisson 
ratio n 

Shear 
modulus G 

/GPa 

Bulk 
modulus K 

/GPa 

Density  r 
/kgm-3 

Speed* of 
sound cP  
/ms-1 

Rubber 0.01 0.5 0.0006 1 801 1,120 

Steel 200 0.3 79.3 160 7800 5,840 

Copper 117 0.33 44.7 123 8960 4,510 

Plastic 0.5-3 0.3-0.5 0.1 2.9 930 1,810 

Concrete 30 0.1-0.2 21 14.3 2400 4,200 

Diamond 1050-1210 0.07 478 443 3510 17,540 

Wood 11 0.2-0.7 13 36.7 600-900 8,490 

Glass 50-90 0.18-0.3 26.2 35-55 2500 5,560 
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*Assume pressure (P) waves 
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Bulk modulus 

This is the compressibility of 

a material i.e. the ratio of a change in 

pressure P applied to the consequential 

fractional change in volume V 

Note fluids and gases flow rather than shear. 

So a fluid or gas will have a shear modulus of zero. 

i.e. most materials will shrink 

transversely as they are stretched.  

This is a positive Poisson ratio. 

For isotropic materials (i.e. movement in any direction 

is the same, there is no particular direction where 

the material is weaker or stronger or more stretchy..) 

For isotropic materials 

Pressure (P) waves 

Shear (S) waves 

used where data unavailable 

Note speed of 

sound in air is 

about 330ms-1 and 

1480ms-1 in water 
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