Lagrangian & Hamiltonian mechanics Proof of the Beltrami Identity Newton’s Second Law for a single particle

Rather than starting from the traditional beginnings dL oL o . oL . L=sm (Xz +y°+ Z.2) -V(X,Y,2)
X i z X; + % | Chain Rule
of Conservation of Energy, Conservation of momentum dt ot 0X; axi r=xX+yy+z2
or Newton’s Second Law, the Lagrangian (and related d GL ﬁ Euler-Lagrange Equation
Hamiltonian) formulations of dynamics offer a more dfoL)_oL d L(x%t)= oLdc oLdk oldt | gt X
systematic solution mechanism for mechanical dtl ax | ox e ox dt oxdt otdt R
systems, especially those with multiple variables. ' ' . E( X) Nz mx = _v y
dt X ox
In Classical Mechanics, the Lagrangian L is defined as: L. -t Z X ‘ 6L +67I-_Xi I X X=y=z=1
' ' dt ot dt O%; . E(m)'/)——gj my'__ﬂ
L=T-V dL 8L+Zi 3 O oL N dt %, oy
. \ R e ox —> Product rule . g(mz):_ﬂ mfz—ﬂ
Kinetic Potential ] o A dt 0z, oz
energy energy R I O ) R Jmi=—wv
dt T OX ot
di(%] B S_L T'h?dEutlﬁr-Lagr?nge eiuaﬁ?n & =0=1L- ZX a = constant i.e. using F=xk+yy+22
t X. yields the equations of motion ot = oX; Cartesian \/ \ \/
I basis vectors VV = X(Zx"'y(;y Z% Leonhard Eul
eonnar uler
X Position or angular coordinate 1707-1783

1
i.e. we associate a force with a gradient

of potential energy, which is entirely
consistent with any conservative field
such as gravity or electromagnetism.

B d)(i Rate of change of position or Conservation of Energy for a single particle

X dt angle with time t L= %mv2 -V(x,v,2)

_1 .2 o) .2 _
The idea is that the Euer-Lagrange equation L=zm (X ty +2 ) V(xy.2)

extremizes* a quantity called the Action L Z . % _k  Belramildentiy Hamiltonians & total energy

From the penultimate line of the proof

)
S=| L(X,X,,..Xy, %, %,,...X,t)dt : -
L ( 11 A2 NERSERS! N ) kel X@ y%Jrz% of the Beltrami Identity: Joseph-Louis
0 ay o7 d oL oL Lagrange 1736-1813
In many problems the Lagrangian is independent ) —| L- Z:)'(i — |=—
of time, so the Euler-Lagrange equation reduces k=im(x*+y?+2%) =V —(Xmx+ ymy + zmz dt O ot
, grange eq 2 y ymy
to the Beltrami Identity. This is often the best starting ) ) ) )
point for problem solving in Lagrangian mechanics. k=—1im ()‘(2 +y2+ 22) -V Define the Hamiltonian - I
‘Canonica
H= X — L tum’
oL . ~E= lm(x +Vi+12 ) +V  (E=-Kk) Zp. ' monentum
If Z= =0 thismeans 2 ! oL
ot . . . . oL . OoH Pi=—
oL i.e. we can associate energy with the (negative) pp=— - X=—" X
L- in — = constant of the constant in the Beltrami Identity OX; op,
i 6Xi \$ dH a|_ So we can associate the
S = Hamiltonian with the total .
dt at energy. H is constant if L is Sir William Rowan
Hamilton 1805-1865

time invariant.
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Example #1: dynamics of a Hookean spring

L=1mx*-1kx®
d(aL) oL
dt(axJ_ax

This is perhaps a bit contrived to start with the
quadratic Elastic Potential Energy expression!
.. But at least this shows consistency with the
Newtonian method.

X is the spring extension
k is the spring constant

i.e. Hooke’s Law, SHM...

Example #2: Kepler’s Laws for a
planet orbiting a massive star (i.e.

no movement of star due to gravitational
attraction to planet, only vice versa)

V=Fr+rf0 ..v2=r2+r?¢? Plane polar
GM coordinates
. : m
L=%m(r2+r2€2)+— Note sign!
r GPE is negative
d (oL oL so -V becomes
a E = 5 positive
" -, GMm
Lmi=mré? ——;
r
A 52 GM Confirm Newton II, with
P10 =— r2 correct formula for
centripetal acceleration
d(aL) oL
dt\o6) o060
-d

" (mrze) =0 cConservation of angular momentum

smr2g =1

The last result is the first glimpse of the utility of
the Lagrangian method. The conservation of
angular momentum comes straight from the fact
that the Lagrangian has no explicit dependence
on angle, since KE doesn’t, and Newton’s Law of
Gravitation acts purely radially.

From above:

- : J : J?
m mr mTr
-, GM
o 2
iF=ro° — =
~J* GM ¢is the eccentricity
mr? r2 of the ellipse

b2
&= "1—?

If orbits are elliptical (Kepler’s First Law)

a(l—gz) a(l—gz)

r= secosf=1-
1-&cos@ r
__a(l—gz)gsine . erfsing
- (1-&cos6)’ 3(1_52)
___gdsing
ma(l—gz)
po_ €dcost 5 1_3(1_52) L
Bl G e
JZ GM B 1 3(1—52) Jz
e | mza(l_gz)rz
32 GM _ J? J’

< R R mza(l—gz)r2
—=|J :JGMmZa(l—gz)

So elliptical orbits satisfy the laws of
motion, and yield an expression for total
angular momentum J, which is constant.

An ellipse defined in plane
polar coordinates 0

Semi- P
minor

axis L/ '
2b| |

29— Semi-major axis
A .
_f;t :%ﬂe:%%:g G(1-¢*)a

So equal areas are swept out in equal times, which is
Kepler’s Second Law.

Since equal areas are swept out in equal times, the
orbital period is the area of the ellipse divided by the rate
of area sweep. This proves Kepler’s Third Law.

P ab raiyl-g?

= _=P= Ellipse area is
ZA 3,/GM (1-5%)a zab
t
P? = (A;ICI a’

Kepler's Third Law: The square of the orbital
period of a planet is directly proportional to the
cube of the semi-major axis of its orbit.
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Example #3: Moving plane*

Consider a rectangular block of mass m
sliding frictionlessly from the top

of a planar wedge of mass M. This also
slides frictionlessly on a horizontal surface.

Assuming the block has not reached the
horizontal surface, after t seconds the horizontal
separation is:

AX =X +X,

~h=(x+x,)tan@  vertical drop of block

The Lagrangian for the system is:
L=T-V

T =1 Mx? +imx? + imh?

Kinetic energy
V= —mgh

Gravitational potential energy

. . . . \2
SL=3MX] +EmX; +4m (% +X%,) tan” @ +mg (X, + X, )tan &

g ﬁ _ ﬁ Applying the Euler-Lagrange equation
dtiox, ) ox for mass M

.'.%(Mxﬁm()‘(ﬁ X,)tan’ 6) = mg tan 0

2 MK +m(%, + X, )tan” @ =mg tan &

Applying the Euler-Lagrange equation

dfoL) oL
dt 87)(2 _87)(2 for mass m

.‘.%(mx2 +m (%, +X%,)tan’ @) =mg tan 6

<{m%, +m(% +%,)tan” 0 =mgtan o |

Hence: MK, -mX,=0 5 _-,S(M)’(l_m)‘(z)zo
PR t
2 T m 1

- MK, +mX, (1+M]tan2 0 =mgtan@
m
- MX, +m¥, tan? @ + MX, tan® @ = mg tan &
Xl(M (1+tan26?)+mtan20) =mgtan 6
S M sin® @ sin@
*cos’@  cos?@

cosé

- % (M +msin® 6) = mgsin cos

g mgsin&cosd _ gsindcosé

P M +msin®d M 4sin?é

© Mgsiné&cosd _ gsindcosé
2 M+msin’0  1+8sin’6

i.e. constant acceleration motion for both
block and wedge. If system starts from rest:

, gsianos@t _gsingcosd
' Msin?g 2 1+msin’e
_,gsinfdcosd , _,gsingcosé ,
X =y a2 L X = a2y
M- 4+sin“ @ 1+3sin®@

=mMg—— <&———— l+tan’é=

Which is a statement of conservation
of linear momentum in the horizontal
direction i.e. where there is no

net external force (there is gravity,

but this acts downwards)

1 sing
>—, tanfd=——
cos‘ 0 cosé

Limiting case when M >m

X, >0 X, = gtsingcos

X, —>0 X, =1 gt*sindcosd

.. which is consistent with no horizontal movement when the angle tends to 90°.

i.e. in this case the block simply falls vertically!

* Morin, Classical Mechanics problem 6.1
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Example #4: Hoop & Pulley*

h ¥

Mass M is fixed to a circular hoop

of negligible mass, which can freely rotate
about fixed origin O. Between M and m

is a light inextensible string, which runs over
a light and frictionless pulley. When the
system is disturbed by a small amount from
equilibrium it undergoes small oscillations
of frequency f.

The speed of mass M (which is
tangential to the hoop) is:

v=RéO

Since the string is inextensible,
this must also be the speed of
the vertically hanging mass m.

The total kinetic energy is therefore:

T =1 MR%@* + 1 mR*¢?

The total (gravitational) potential energy
of the system is:

V =Mg(R—Rcos&)+mgh

Now since the string is inextensible:
h=-R6 ..h=h,—Ré
..V = MgR — MgRcos & + mgh, —mgRé&

The Lagrangian for the system is therefore:

L
L

—T -V
= (m+M)R?0” + MgRcos 0 — MgR —mgh, + mgR®

Applying the Euler-Lagrange equation:

I

dt\06) o6

1(M +m)R*0* + MgR cos @ + mgR& — MgR + mgh,
d . .

a((M +m)R?0) =-MgRsin 6+ mgR

(M +m)R?d = -MgRsin 8 + mgR
é_g(m—Msinej
R m+M

Equilibrium occurs when:

9=0 So as M becomes much larger
m-Msing=0 than m, mass M will tend to
. the bottom of the hoop
o — -1(m
-~ =sin (V) i.e. =0 which makes sense!

Let us consider small angle deviations
from this point:

0=0,+0, 66, 6<l1

eq’

sin,, =4

.'.é.:z—g"M _m5
M +m

~.sin@ =sin(6,, +5)
-.sin@ =sing,, cos S + oS G, Sin o

~.sin@ ~ 4+ +€0s 6,0

2 cos’ @ +sin* @ =1

. m
~sinf={+0 1_W < cosf@=+1-sin*6

Positive root

SN~ +5-LM? —m? in range of & germane
SinG ~ 2+ 54 (M +m)(M —m) to this system
Hence
g_g(m—Msinaj
R m+M

Lsog[m-M {i+6 & J(M = m)(M —m)}

R m+M
59 m-m—35J(M +m)(M —m)

R m+M

Py

This is the equation of simple harmonic motion S~-a’S

where frequency: o

o

f

Hence frequency of small oscillations is:

A g(M—mj“
ZNR(M+m

* Morin, Classical Mechanics problem 6.10
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Example #5: Pendulum with free support*

M
X s

|
o\
|
|

—>1
X 1

A mass m swings from the central
underside X of rectangular block of mass
M. The mass m is connected to X via a
light inextensible string of length I.

Block M is free to slide horizontally without
friction.

It is assumed oscillations of the system are
small and the amplitude is such that M
does not collide with the side walls.

Let x be the displacement of block M
from the centre point between the side
walls. The horizontal position of the
pendulum is therefore:

X, =X+1sin@
S X, =X+Icos6f
The vertical displacement of the
pendulum is:
y,, =lcosé
oY, =—lsingo

The total kinetic energy of the system is therefore:
T =4M&+1m (% +y2)
T =4 MX* +3m(%* + 2XI cos 00 +1” cos” 06° + I sin’ 00

T =1 MX? %m(x +2x|cos€9+|2<92)

The potential energy of the system (taking zero to be
at the block height) is:

V =-mgl cosd

Hence the Lagrangian for the system is:
L=T-V

L=4Mi® +4m(x* +2xl cos 06 +1°6° )+ mgl cos 0

Applying the Euler-Lagrange equation:

d aLj_at
dt\ ox OX

d MX +mx +ml cos08) =0
l )

|(M +m)X—ml§”sin@+mlfcosd =0

d (6Lj aL
dt 00

%(mfd cosé + mlzé) = —mxl@sin & —mglsin &

mxl cos @ — mxI sin 89 + m1?6 = —mx1@sin @ —mgl sin &

16+ %cos@+gsing=0

Now consider small angle approximations:

sin@~6, cosd~1-16

(M +m)x—mlg*sin@+mldcosd =0

(M +m)R-mlg*0+mlf(1-16%) ~

~(M +m)5<+mlé+0(—mléz)+92(—%mlé)z
~(M+m)x+mlé ~0

160+ %cos@+gsing=0  Hence:

10 +%+g0~0 (M +m)(—g€—|é>+mléz0
S X~-g0-10 210(-M -m+m)=gfo(M +m)
.'.é:—%(lJrﬁ)H
SHM: 0 ~-w’0 f:2g 0 = 6, cos (ot —g)
T

=2 B

w=J?a+mf

~—Qg0 - |0
X=-00+g(l+2)0
=96, cos(wt —¢)

General solution is CF+ PI
CF is solution to:

X=0 ..X;=At+B

Plisofthe x, =C COS(a)t — ¢)
f :
o —COZC COS((Ut — ¢) = ﬁ Og COS(a)t _ ¢)
w %9 I 4 mlg
SC=—M0T __m —(1+n - _ 0
o’ v %09 g L+ ) m+M
T Sens_il_ale initial
X(t) =At+B-— hCOS(a)t _ ¢) conditions
2.0(t) = 6,cos(at - ¢) ~%(0) = A

* Morin, Classical Mechanics problem 6.14
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Example #6: Two masses, one swinging*

e

m

Two masses are connected via
light and inextensible string which
run over light and frictionless pulleys.

Since in general the left mass may move,
we must assume the most general
expression (in polar coordinates r, 6)
for the speed of the right mass.

Since the string is inextensible, the
rate of increase of r is also the upward
velocity of the left mass.

~h=-r
~h(ty=h,-r
Hence total kinetic energy is:

T =4mi® +im(r* +r°¢?)

Total potential energy is (taking
zero to be at the level of the pulley)
V =—mgh —mgrcosé

V =-mg(h, —r+rcos®)

Hence the Lagrangian for the system is:
L=T-V

L=4m(2r*+r’6?)+mg(h, —r+rcoso)

Applying the Euler-Lagrange equation:

¢
dt\ or or

%(Zmr) =mré* —mg +mg cos &

off=3r0° +1g(cos0-1)|

o (d).4
dt\o9) o6

.'.%(mrzé):—mgrsine

-16=-Zsine
r

Let us assume a small angle
approximation ** :

éz—gﬁ
r

Let us also assume r changes slowly
compared to the pendulum speed.

The angular equation is therefore SHM

(i.e. r is essentially time invariant compared
to 4).

_ ¢is the angular
0= 8cos(a)t_¢) amplitudeg

g of the SHM
w=,—
r

**sin@~6, cosf~1-16°

Hence:

0 =ecos(wt—g¢)
0 = —cwsin (ot —¢)

F~1rf® —1g6?

S Frirele’sin® (ot — ¢) -1 g’ cos’ (wt — ¢)
LFaire %sinz (at—¢)—1ge? cos (at—¢)
w. P2 3ge {sin’ (ot —¢) -4 cos’ (wt - ¢)|

- P~ 1ge” {1-cos’ (wt - ¢) - Scos” (et — )}
~Fr3ge’ {1-cos’ (et - ¢))

The average value of the harmonic term is:  €0s” (wt — ) =4

Hence: |F~1ge?{l-$i}~1ge

So we might expect the amplitude of the pendulum swing to slowly increase
and therefore the left mass to slowly rise.

rvstimet 0 vs time t
2 6
‘ 0 \ ‘ &
\ f\ i M | I
18 4l A HI A [
p T O O Y R O
16 / T £ T R A Y R Y
4 | |
/ L I Y A B
| | |
E14 v Soi vy
[ L O A A A
. [ [ - {
1.2 7)Y A A N
| | | | ‘I‘I | I
R
,_ [ ] ||
i i/ BRI RV
\ /
0% 5 10 15 6 5 10 15

tis t/s
rL=1m, g=9.81ms?, §,=5°, 0(0)=0, At=0.01s Verlet solver
i.e. constant acceleration
motion between fixed time steps

* Morin, Classical Mechanics problem 6.4
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Example #7: Bead on arotating hoop* Applying the Euler-Lagrange equation: Let us also consider small oscillations about: |6, = cos‘l( g ]

Ra?

s o dfaL)_at 0=0,+5, §<1, cosf,=—I
%Q dt\ad) o6 @

d

a(mRzé?) = mR?w’ sin @ cos & — mgRsin &

sin@ =sin(6, +5) =sin g, 085 +c0s6,Sin § ~sin G, + 5 cos b,
1g = _(9_ P cos@jsin 0 cos@ =cos(6, +5) =c0s,cos S —sin G, sin § ~ cos g, — 5sin b,
m
! =.sin@cosd = (sin G, + 5¢os b, ) (cos G, — 5sin 6,)
So equilibrium when: ) ) ) - -
) _ ..sin@cosd =sin g, cos g, + o cos” g, —Jsin” g, — 5°sin g, cos 4,
A bead of mass mis free to slide g 20050, =0 ] ] .
frictionlessly on a circular hoop R @ COS6, = ~.sin@cosd ~ sin G, cos G, + 5(1— 2sin 00)
of radius R. The hoop itself
rotates at constant angular speed =16, = cosl( 9 5 j
o about a vertical axis. - b= _ g w2 cosd lsing
sing, =0 R
The kinetic energy of the bead is: :>-9 =0,7 w g,. 9 . 2 .
(noting motion is constrained to the circle : Lo _(R (sin g, +Cos6p5) — " sin G, cos 6, — w 5(1_ 2sin ‘90)

in the plane, and also circular into the plane) The ‘bead at the top of the hoop’

N2 ) is clearly an unstable equilibrium. S~ 9 sing. + g S |l=a?sing 9 _ 25(1=2sin%@
T:%m(RH) +%m(a)Rsm<9)2 R ° " Rw? @ "Rt © ( 0)
L 2 [ 2 . - o Using a small angle perturbation from 25
T=imR (9 + " sIn 9) the bottom of the hoop: S~ F?Z . %S + 025 sin? 0, + w’Ssin? 90}
w
Taking zero GPE to be the lowest point on the d~—9_u2lo ) 25
hoop, the potential energy of the bead is: R O~ gz - @°S+ 0’6 — 0°5cos’ O, + w5 sin’ goj
Rw
|V — ng(l—c039)| which is SHM of frequency . g% 2o O° e
LOR—| 5 00— @ 0sIN" 6,
Hence the Lagrangian for the system is: g R°w R°w
f :i = - . gz gz
L=T-V R .'.5z—wzésin290:—wz(1— = Jé:—(wz—w)a
. - w w
L=1mR? (92 + '’ sin’ 9) +mgRcos 6 —mgR
which is SHM of frequency:
,_ 9’
f =50 - R0 < 5(t) =6, cos(2x ft— )

* Morin, Classical Mechanics problem 6.11 Mathematics topic handout — Mechanics — Lagrangian and Hamiltonian dynamics Dr Andrew French. www.eclecticon.info PAGE 7
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Example #8: Small oscillations of whirly
bungs on atable*

', m g
1 G‘d.'\- .

Mass m can slide without friction

on a horizontal table. It is connected

via a light an inextensible string of length

| to mass M through a hole in the table.

It is assumed that M only moves vertically.

The kinetic energy of the system is:

T :%m(r'2+r29'2)+%MF2

Note since the string is inextensible, the
downward velocity of M is —f

Taking zero GPE to be the level of the table

Hence the Lagrangian for the system is:
L=T-V
L=4m(i*+r°0°)+ 5 M + Mgl — Mgr

L=21(m+M)i* +3mr’d° + Mgl — Mgr

Applying the Euler-Lagrange equation:

¢ (2.2
dt\og) o0
Sd oy
..a(mr 9)—0

d(a'-j:fa'-

dt\ or or

L(m+M)r®+imr?6® + Mgl — Mgr
d , 2

S M =mré - -M
dt((m+ )E)=mr g

~(m+M)i=mré® - Mg

i.e. conservation of
angular momentum J

o)
O=—"
mr?
2
(M+M)F=mr 2r4—Mg
JZ
(m+M)r:$— g

Equilibrium when:

2
LS_MQZO
mr

JZ %
=] =
0 [mMgJ

i.e. circular motion
of mass m

Consider small perturbation in r about this value:

s J°
y=——

mMg
r=rn+o, oxl

3M 95
m+M 1

~

which is SHM of frequency:

fol Mg
7\ m+ M r,

* Morin, Classical Mechanics pp 240-241
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