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Consider a system of masses with position vectors      and velocities  
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Now write the position vectors and velocities in terms 

of a vector       and relative position vector  
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Now let us suggest a useful form for R, that is the mass-weighted average position vector 
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since it is implied here that the 

masses do not vary with time 

Therefore the total angular momentum is: i i i

i
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Angular momentum of a single mass M at position R 

Sum of angular 

momenta of 

masses about 

R 

We can therefore decompose a 

system of masses into bulk 

motion of the centre of mass 

plus internal motion (e.g. 

rotation etc) about the centre 

of mass 
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We can analyse the dynamics 

of a irregular, but rigid, mass in 

terms of: 
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(i) Acceleration of the    

        centre of mass 
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(ii)    Rotation about 

the centre of mass 
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Inertia tensor x rate of 

change of angular 
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A simple 1D example of centre of mass 

R 1
r

2
r

3
r

In order for the above system to be in equilibrium, the total 

moments about the pivot must be zero. 
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If M is the sum of all the masses, then 

we can think of the three-mass system 

being equivalent to a single mass M a 

distance R from the fulcrum. 

Note forces passing 

through the centre of mass 

only effect the motion of 

the mass centre. They 

cannot cause any rotation 

of the rigid body. 

For a continuous distribution 

of mass of density r(r) 
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i.e. rate of change of angular momentum equals net torque, since 

Newton’s Second Law equates mass x acceleration with net force. 

torque i.e. the ‘moment’ of a force  τ r f
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I x xIn this case, the angular momentum L is relative 

to the centre of mass being stationary. 
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Solid Centre of 

mass 

From 

Solid hemisphere, radius r sphere centre 

Hemispherical shell, radius r sphere centre 

Sector of disk, radius r, angle 

2q 

disk centre 

Arc of circle, radius r, angle 2q circle centre 

Arbitrary triangular lamina, height 

h (perpendicular distance 

between base and apex) 

perpendicular from base 

Solid cone or pyramid, height h perpendicular from base 

 

Solid spherical cap, height h, 

sphere radius r 

sphere centre 

 

Spherical cap shell, height h, 

sphere radius r 

 

sphere centre 

 

Semi-elliptical lamina, height h from base 
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Example: Finding the centre of mass of a solid cone 
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By symmetry, centre of mass 

must be along the x axis 

r

Solid cone 

of height h 

and radius r 

Density 

r
y x

h


Require centre of mass distance from 

base, rather than apex of cone 

Another common notation for centre of 

mass i.e. an ‘average’ x position 
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Example: Finding the centre of mass of a solid hemisphere 
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Disc shape volume element 
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By symmetry, centre of mass 

must be along the x axis 

Example: Finding the centre of mass of a solid paraboloid 

Disc shape volume element 
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must be along the x axis 
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Therefore centre of mass (from apex, or ‘nose’ of paraboloid) is: 

Density:  
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Centre of mass of a sector of a circular lamina Centre of mass of a triangular lamina 

The centre of mass of a uniform triangular lamina must be on the 

intersection of median lines. (i.e. angle bisectors of a given vertex). 
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centre of 

mass 

This is because we could construct the triangle from thin strips, parallel 

to one of the sides. The centre of mass of each strip must line on the  

median line, so therefore the overall centre of mass must also be on this line 
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By symmetry, the centre of mass must lie 

on the x axis 

 

If we treat the ‘sectorettes’ as triangles, the 

x coordinate of their centre of mass will be at 
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The same idea can be used to find the centre of mass of a wire arc of mass 

per unit length r 
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General properties of many-body systems with ‘reciprocal’ internal forces. 

Consider a system of masses with position vectors      relative to an arbitrary fixed coordinate system origin. 

Assume they interact with a force which acts along the radial separation between the masses.  e.g. like gravitational and electric forces (but not magnetism). 

Assume there are no external forces i.e. the forces acting on one mass are sourced from the other masses. 
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Force on mass i due to 

mass j is therefore: 

Assume the forces are reciprocal or 

“equal and opposite”, as for contact forces 

described by Newton’s Third Law 
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i ij

j i

 F F and therefore the total force on the system is: tot i ij
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So there is no net force on a system with reciprocal internal forces like this. 

Let us apply Newton’s second law to this system: 
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So the velocity of the centre 

of mass of the system must 

move at constant velocity 

i.e. zero acceleration. 

 

If an external force acts on 

the system we can model 

the system as a particle of 

mass M and apply Newton II 

to the centre of mass to 

determine overall 

translational motion. 

What about rotation and 

angular momentum? 

If all internal forces are of the form 

then there is no net torque t. 

 

 

Torque is the rate of change of angular momentum 
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Hence the total angular momentum (and indeed the angular momentum of each 

mass) must be a constant. 

 

To change the angular momentum of this system there must be an external torque applied 

to the system, or a non radial form force law. 

 

This explains why orbiting planets interacting gravitationally (i.e. a ‘Kepler problem’) have 

angular momentum as a constant of the motion. 
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d d
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L
τ r r

Proof is obvious really, since ‘radial’ forces have no 

turning moment. Mathematically, this fact is revealed via 

the cross product of a vector with itself being zero. 

Note L and 

J are both  

typical symbols 

for angular 

momentum. J is 

usually the total 

angular 

momentum. 

ij ji
 F F

See page 1 
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