Special Relativity is a theory of dynamics proposed by Albert Einstein in 1905. The key mathematical element is the use of the Lorentz Transform. This extends the equations of
Galilean Relativity, which relate the Cartesian x,y,z coordinates of an object to coordinates of the same object as viewed in a frame of reference moving at velocity V in the positive x
direction relative to the x,y,z system. Let S denote the x,y,z coordinate system and S’ denote the x’,y’,z’ coordinates of the moving frame.

The Lorentz transform incorporates the strange (but seeming true!) fact that the speed of light is the same for both S and S’ frames. In other words, if a torch is shone from frame S, the
speed of the light observed by S’ would be the same speed as in S, and not the speed of light minus V.

The consequence of this effect is profound. It results in length contraction, time dilation and time synchronisation changes between the S and S’ frames.

Galilean relativity Galilean relativity appears to work just fine in normal scenarios on Earth, i.e. when V < ¢ where the speed of light C = 2.998x10°ms™
= X VI The effects of Special relativity are only significant when V is close to c.
VA ]
X'=x-Vt z v
y=y' y —— Now consider a spherical light pulse emitted when x’ = x. Since it radiates out at speed ¢
y in both S and S’ from their (respective) origins, we can compare the radii r,r’ of the pulse as observed from S and S’
z2=1'
t=t' X X' rlZ :Cztrz :XIZ +y/2+272
. gt o . 2412 12 242 2
B . Since Y=Y, Z=Z thismeans C1°—-X"=C1"—X
r'=ct =x"+ y - +z
Consider the following candidates for
the Lorentz transform of the spatial ,
coordinates between the S and S’ Nowwhen X'=0, X=Vi
frames: X 1 V?
(U Hence ct"2 =c’t?-V#? Nowusing t=y|t+—|1-— when X' =0 =t 1——
x=7y(x+Vt') y is a function of V. In crt=ct -V J ARARY 7’ =t=n c?
X'= 7()( —Vt) order to be consistent with , V32 -
. Galilean relativity, it must =>t=tl-— ve Yt Y
y=y be unity when V <« C c . y:(l__zj s+
z=1' c
1 V? o V?
Hence: 1——2=1—1—C—2=C—2 4 v2Y?
v
1 1 i = 1__
X=y(X+Vt') X'=y(x=Vt) 1( 1} Vv 1 ( CZJ
X ' Vi N ) 30
—=x+Vt' i:x—Vt v Y ¢
v Y
X X' X X' The Lorentz Transform is now revealed! 7 has the desired properties
t'= SVARYA =-_ = 2+ for consistency with Galilean
Y vV N X=7(X+Vt') X' = y(x-Vt) Relativity i.e.
,X 7(X—Vt) ;/(X'+Vt') X' o o So lengths r=1LV <c
t N v t="—— - y=y y=y contractand time | |
4 v N z=1' 7=1' dilates and shifts
X 1 ' . Vx when V becomes
Yt=ylt——|1-— = t'+£ 1_i t=y t'+VX t'=y|t—— closetoc Vv
2 Y 2 2 )
\Y V4 V }/2 C c : : : - s —
0 0.2 0.4 0.6 0.8 1 C

Mathematics topic handout: Mechanics — Special Relativity Dr Andrew French. www.eclecticon.info PAGE 1


http://www.eclecticon.info/

The Lorentz Transform can be applied to relate other dynamical parameters between the S and S’ frames

Velocity .
and by an equivalent argument
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Doppler shift

Consider a receding wave source of frequency ' in the S’
frame. It crosses the x axis of the S frame at angle 6. and
speed u. The velocity of waves emitted is w, in S.

The period T of waves received by an observer (in the x
direction) at the origin O of the S frame is:

The Lorentz Transform
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Hence frequency of radiation received at O is f =1/T where:
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Now since the source is stationary in the S’ frame Ar'=0
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We can generalize to an S’ velocity
which is not parallel to the x axis
of the S frame

r=(x,y,z), r'=(x,y.z)

r:r'+(</_21(v-r')+7t'jv

t:y(turv'zr)
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Relativistic Doppler shift cont ....
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The classical formula can easily be recovered by
setting y=1
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Unlike the classical formula, we get a transverse Doppler
effect when 6=90° in the relativistic version
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The Doppler shift is also related to the ‘redshift’ z of a
moving, radiating source
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Momentum

We might expect ‘force = rate of change of momentum’ to be true

in a relativistic sense as well as in the classical. However, the

speed limit of ¢ would imply an upper limit on the amount of momentum
a given mass could have, if we use the classical momentum formula

p=mu

This would be counter to reality — we could easily devise a theoretical
system which does a finite amount of work, indefinitely, upon fixed mass
system. e.g. a ball rolling down a infinitely long slope!

To get around this problem, let us redefine momentum such that it can
become infinite as velocity tends towards c. i.e. multiply by y....

p=ymu
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‘Relativistic Newton’s Second Law’
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Work done
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So the total energy of a mass m is

E = ymc?

and when the mass is at rest

y=1
E, = mc?

Hence kinetic energy is

E.=(y-1)mc’

Now in classical limit

u<u
2
u
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Energy, momentum invariant

Consider the following quantity:
k=E? —|p|2 c?

k =(ymc2)2 —(ymu)-(ymu)c’
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This is clearly an invariant, regardless

of the frame of reference.

E? —|p|2 c? =m’c’

Application: “A particle with rest mass 2m
strikes a stationary particle with rest mass 3m.
The 2m particle had kinetic energy mc?,

Using conservation of energy, we
can also find the velocity of the resulting
particle

and the result was an inelastic collision. Find the rest

mass M of the resulting particle in terms of m”
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