Arithmetic tricks using 'semi-algebra'

A royal road to mastery and appreciation of algebraic techniques is to start with small positive integers and their powers. The idea is to use algebraic ideas (factorizing, expanding brackets, difference of two squares...) to simplify otherwise laborious *sans calculator* arithmetic.

Difference of two squares

 $a^{2}-b^{2}=(a+b)(a-b)$

Why sans calculator? Well the point is to force you to learn these techniques! Think of it as an intellectual puzzle or a game.

Unless you have memorized the squares, a difference between two squares can sometimes be easier to calculate in factorized form, especially when a + b or a - b is a power of ten.

 $17^{2} - 7^{2} = (17 + 7)(17 - 7) = 24 \times 10 = 240$ $943^{2} - 57^{2} = (943 + 57)(943 - 57) = 1,000 \times 886 = 886,000$ $38.4^{2} - 11.6^{2} = (\frac{384}{10})^{2} - (\frac{116}{10})^{2} = \frac{1}{100}(384^{2} - 116^{2})$ $= \frac{1}{100}(384 + 116)(384 - 116) = \frac{1}{100} \times 500 \times 268 = \frac{2680}{2} = 1,340$

How to set problems like this:

 $a + b = 10^n$ $\therefore b = 10^n - a$ $\therefore a - b = 2a - 10^n$ $\therefore a^2 - b^2 = (a + b)(a - b) = 10^n (2a - 10^n)$

a = 83, *n* = 2, *b* = 10² − 83 = 17 ∴ 83² − 17² = 100(2×83−100) = 6,600 ∴ 83² − 17² = (83+17)(83−17) = 100×66 = 6,600

a = 666, *n* = 3, *b* = 10³ − 666 = 334 $\therefore 666^2 - 334^2 = (1000)(332) = 332,000$

X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	X
20	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400	20
19	<u>19</u>	38	<u>57</u>	76	<u>95</u>	114	<u>133</u>	152	<u>171</u>	190	<u>209</u>	228	<u>247</u>	266	<u>285</u>	304	<u>323</u>	342	<u>361</u>	380	19
18	18	36	54	72	90	108	126	144	162	180	198	216	234	252	270	288	306	324	342	360	18
17	<u>17</u>	34	<u>51</u>	68	<u>85</u>	102	<u>119</u>	136	<u>153</u>	170	<u>187</u>	204	<u>221</u>	238	<u>255</u>	272	<u>289</u>	306	<u>323</u>	340	17
16	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	256	272	288	304	320	16
15	<u>15</u>	30	<u>45</u>	60	<u>75</u>	90	<u>105</u>	120	<u>135</u>	150	<u>165</u>	180	<u>195</u>	210	<u>225</u>	240	<u>255</u>	270	<u>285</u>	300	15
14	14	28	42	56	70	84	98	112	126	140	154	168	182	196	210	224	238	252	266	280	14
13	<u>13</u>	26	<u>39</u>	52	<u>65</u>	78	<u>91</u>	104	<u>117</u>	130	<u>143</u>	156	<u>169</u>	182	<u>195</u>	208	<u>221</u>	234	<u>247</u>	260	13
12	12	24	36	48	60	72	84	96	108	120	132	144	156	168	180	192	204	216	228	240	12
11	<u>11</u>	22	<u>33</u>	44	<u>55</u>	66	<u>77</u>	88	<u>99</u>	110	<u>121</u>	132	<u>143</u>	154	<u>165</u>	176	<u>187</u>	198	<u>209</u>	220	11
10	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	10
9	<u>9</u>	18	<u>27</u>	36	<u>45</u>	54	<u>63</u>	72	<u>81</u>	90	<u>99</u>	108	<u>117</u>	126	<u>135</u>	144	<u>153</u>	162	<u>171</u>	180	9
8	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144	152	160	8
7	Z	14	<u>21</u>	28	<u>35</u>	42	<u>49</u>	56	<u>63</u>	70	<u>77</u>	84	<u>91</u>	98	<u>105</u>	112	<u>119</u>	126	<u>133</u>	140	7
6	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	6
5	<u>5</u>	10	<u>15</u>	20	<u>25</u>	30	<u>35</u>	40	<u>45</u>	50	<u>55</u>	60	<u>65</u>	70	<u>75</u>	80	<u>85</u>	90	<u>95</u>	100	5
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	4
3	<u>3</u>	6	<u>9</u>	12	<u>15</u>	18	<u>21</u>	24	<u>27</u>	30	<u>33</u>	36	<u>39</u>	42	<u>45</u>	48	<u>51</u>	54	<u>57</u>	60	3
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	2
1	<u>1</u>	2	<u>3</u>	4	<u>5</u>	6	Z	8	<u>9</u>	10	<u>11</u>	12	<u>13</u>	14	<u>15</u>	16	<u>17</u>	18	<u>19</u>	20	1
x	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	x

Perfect squares

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$\therefore (a-b)^{3} + 3a^{2}b - 3ab^{2} = a^{3} - b^{3}$$

$$\therefore (a-b)^{3} + 3ab(a-b) = a^{3} - b^{3}$$

$$\therefore (a-b)((a-b)^{2} + 3ab) = a^{3} - b^{3}$$

$$\therefore (a-b)(a^{2} + ab + b^{2}) = a^{3} - b^{3}$$

This is to reme

This is a useful *identity* to remember

$$\frac{123^3 - 23^3}{123^2 + 123 \times 23 + 23^2} = 123 - 23 = 100$$

$$123^{2} = (120+3)^{2} = 120^{2} + 2 \times 120 \times 3 + 9 = 14,400 + 720 + 9 = 15,129$$

$$567^{2} = (600 - 33)^{2} = 600^{2} - 2 \times 600 \times 33 + 33^{2}$$

Think what sum or difference of two numbers
makes our next steps easier!
$$33^{2} = (30 + 3)^{2} = 30^{2} + 2 \times 30 \times 3 + 3^{2} = 900 + 180 + 9 = 1,089$$

$$\therefore 567^{2} = 360,000 - 39,600 + 1,089 = 321,489$$

Note knowledge of the perfect square formula shortcuts the 'grid multiplication' idea, increasing fluency. Being able to perform calculations faster also can make the exercise more fun, and builds confidence.

