Upper and lower bounds

When a measurement of a physical quantity (e.g. the length of an object) is made, the measurement will not be exact. Depending on the precision of the measuring device, there will always be a degree of uncertainty about what the measurement actually is.

If a quantity being measured is quoted as being *precise* to *N* decimal places (or 'nearest') this means the true measurement lies somewhere within a range of values which can be expressed by an *inequality* determined by the measurement rounded up, and down, based on the quoted precision.

Example 1: The mass of a man is M = 72kg correct to the nearest gram. Since 1 gram = 0.001kg, this means

- $72 0.0005 \le M < 72 + 0.0005$
- \therefore 71.9995 $\leq M <$ 72.0005 \leq

- The left and right sides of the **inequality** for M are the *lower and upper bounds* for *M*.

Example 2: 100 planks of length L = 1m (correct to the nearest 5cm) are attached end-to-end. How long is the resulting structure?

 $1 - 0.025 \le L < 1 + 0.025$

 $0.975 \text{m} \le L < 1.025 \text{m}$

:. $97.5m \le 100L < 102.5m$

Example 3: An athlete runs $D = 400m$ (to the nearest metre) in $T = 50$ seconds to the nearest 10^{th} of a second. What is the athletes' average speed (S) in metres per second?	Example 4: The electrical power <i>P</i> (in watts) drawn by a light bulb of resistance <i>R</i> = 2304 ohms (to the nearest 20 ohms) powered by mains with average voltage <i>V</i> = 240 volts (to the nearest 10 volts) is given by the formula $P = \frac{V^2}{R}$	$2304 - 10 \le R < 2304 + 10$ $2294 \le R < 2314$
$399.5m \le D < 400.5m$		$240 - 5 \le V < 240 + 5$
$49.95s \le T < 50.05s$		$235 \le V < 245$
$S = \frac{D}{T}$	Calculate upper and lower bounds for <i>P</i> .	$P = \frac{V^2}{R}$
$\therefore \frac{399.5}{50.05} \mathrm{ms^{-1}} < S < \frac{400.5}{49.95} \mathrm{ms^{-1}}$		$\therefore \frac{235^2}{2314} < P < \frac{245^2}{2294}$
\therefore 7.982ms ⁻¹ < S < 8.018ms ⁻¹	Note in both these examples, a <i>mixture</i> of upper and lower bounds in the fraction means an equality is impossible. i.e. the upper and lower bounds are unreachable limits.	$\therefore 23.9 < P < 26.2$