PHYSICS USEFUL DATA AND FORMULAE

Assembled by Dr Andrew French

Version 2.0. July 2021

Page 1 of 45

The Cosmos is all that is or ever was or ever will be.

In the last few millennia we have made the most astonishing and unexpected discoveries about the Cosmos and our place within it, explorations that are exhilarating to consider. They remind us that humans have evolved to wonder, that understanding is a joy, that knowledge is prerequisite to survival.

I believe our future depends on how well we know this Cosmos in which we float like a mote of dust in the morning sky.

CONTENTS

- 1. Physical quantities and units
- 2. Mechanics
- 3. Electricity & Magnetism
- 4. Waves & Optics
- 5. Thermal Physics
- 6. Nuclear & Quantum Physics
- 7. Relativity, Cosmology
- 8. Mathematics
- 9. Recommended books and resources

1. Physical quantities and units

$\pi \approx 3.142 \quad e \approx 2.718 \quad \sqrt{2} \approx 1.414$

SI means 'Système International d'Unités' (International System of Units)

Quantity	Symbol	Vector	Unit	Unit	Notes
		or scalar?		abbreviation	
Mole	n	scalar	mole	mol	Mol is a base SI unit
SI					Avogadro's constant
					$N_A = 6.022 \times 10^{23}$ molecules per mole
Mass	<i>m</i> , <i>M</i>	scalar	kilogram	kg	kg is a base SI unit
SI			gram	10 kg 10 ⁻³ kg	Electron mass $m_e = 9.109 \times 10^{-51}$ kg
			atomic mass		Proton mass $m_p = 1.673 \times 10^{-27} \text{ kg}$
			unit	u	Neutron mass $m_n = 1.675 \times 10^{-27} \text{kg}$
					$u = 1.660 \times 10^{-27} \text{ kg}$
					Earth mass M_{\oplus} = 5.974 × 10 ²⁴ kg
					Solar mass M_{\odot} =1.989×10 ³⁰ kg
Length	<i>l.L.</i>	scalar	angstrom	Å = 10 ⁻¹⁰ m	m is a base SI unit
SI	ahc		nanometre	nm = 10 ⁻⁹ m	
	<i>u,0,0</i> ,		micron	μm = 10 ^{-o} m	
	<i>x</i> , <i>y</i> , <i>z</i> ,		centimetre	mm = 10 m $cm = 10^{-2}m$	
			metre	m	
			kilometre	km = 10 ³ m	
			Mile	mile	mile = 1,609m
			Unit	AU	$AU = 1.496 \times 10^{11} m$
			parsec	parsec	parsec = 3.086×10^{16} m
			light-year	İyr	$lyr = 9.461 \times 10^{15} m$
Angle	$ heta, \phi$	scalar	degrees	°, deg	π radians = 180°
	a,b,clpha,eta		radians	rad	
			arc-second	(1/60) deg	
				arcsec =	
				(1/3600) deg	2
Area	A	scalar	square mm	mm ²	mm ² = 10 ° m ²
			centimetres	cm ²	$cm^2 = 10^{-4} m^2$
			square metres	m ²	
			square	km ²	$km^2 - 10^6 m^2$
			hectares	ha	$ha = 10^4 m^2$
			acre	acre	acre = $4.047 \text{ x} 10^3 \text{ m}^2$
Volume	V	scalar	cubic	3	36 3
			centimetre	cm ³	$cm^{3} = 10^{-5} m^{3}$
			cubic metre	km ³	$km^3 = 10^9 m^3$
			millilitre	ml	$ml = 1 cm^3$ (pure water at STP)
			litre	I	$I = 10^{3} \text{ cm}^{3} = 10^{-3} \text{ m}^{3}$
			gallon	l dal	$a_{a} = 4.546 \text{ x} 10^{-3} \text{ m}^{-3}$

Quantity	Symbol	Vector	Unit	Unit	Notes
		or		abbreviation	
		scalar?			
Time	t, au	scalar	picosecond	ps	s is a base SI unit
SI			nanosecond	ns	ania con ha comia ocoo
			microsecond	μS	$\min = 60S, \ nr = 60min = 3600S,$
			nillisecond	ms	$yr \approx 365 \times 24 \times 3600s$
			minute	s	$yr \approx 3.154 \times 10^7 s$
			hour	hr	$v = x = x^{10^7} c$
			dav	d = 24hr	$y_1 \approx \pi \times 10$ s
			vear	vr	Age of the Liniverse $12.8 \times 10^{9} \text{ yr}$
Speed	c	acolor	motro por	· ·	Age of the Universe = 13.6 x 10 yr
Speed	5	Scalai	second	me ⁻¹	$c = 2.998 \times 10^8 \text{ ms}^{-1}$
	<i>u</i> , <i>v</i>		300010	1115	$C = 2.000 \times 10^{-11} \text{ ms}^{-1}$
			kilometre per	kmh ⁻¹	Speed of sound in water: 1482 ms^{-1}
			hour		
			mile per hour	mph	$1 \text{ms}^{-1} = 3.6 \text{kmh}^{-1}$
					$1 \text{ms}^{-1} = 2.24 \text{ mph}$
					1 min per mile at 60mph
					3 mins per mile at 20mph
				-1	6 mins per mile at 10mph
Frequency	f	scalar	Hertz	$Hz = s^{-1}$	Voice sound waves 0 - 2kHz
			Kilohertz	$kHz = 10^{\circ} Hz$	Radio waves 3kHz - 300MHz
				$MHZ = 10^{\circ} HZ$	Microwaves 3MHZ - 100GHZ
			Torphortz	GHZ = 10 HZ $TH_7 = 10^{12} H_7$	Visible light $10^{14} - 10^{15}$ Hz
			Teranenz	1112 - 10 112	$\frac{1}{10} = 10^{16} \text{ Hz}$
					X-rays 10^{16} Hz - 10^{20} Hz
					Gamma rays > 10^{20} Hz
Period	T	scalar	Same as time	Same as time	Time to complete a single oscillation.
	-				1
					$T = \frac{1}{f}$ e.g. period of Earth's rotation is
					24 nours, period of Earth's orbit about
Displacement	x	vector	Samo as	Samo as	Magnitude as well as direction. Often
Displacement		Vector	length	length	we describe in terms of a coordinate
	<i>x</i> , <i>y</i> , <i>z</i>		longai	longui	system e.g. x.v.z Cartesians. In this
					case a negative value of <i>x</i> means 'going
					backwards'.
					In one direction, displacement is the
					area under a (time,velocity) graph,
					where area below the time axis is
	\$7		0	0	negative.
Velocity	v	vector	Same as	Same as	Magnitude as well as direction. Often
	и, v		speed	speed	system e.g. x y z Cartosians. In this
					case a negative value of v means 'going
					backwards'
					In one direction, velocity is the <i>gradient</i>
					of a (time, displacement) graph.
					It is also the area under a (time,
					acceleration) graph, where area below
					the time axis is negative.
					<i>u</i> is typically a symbol for initial velocity
				-2	v tor final or 'current' velocity
Acceleration	а	vector	metre per	ms ²	Magnitude as well as direction. Often
	а		second		we describe in terms of a coordinate
			squared		system e.g. x,y,z Cartesians.
					aradient of a (time velocity) graph
					'Free-fall' acceleration under gravity
					$a = 9.81 \text{ ms}^{-2}$
					$\mathcal{S}_{earth} = \mathcal{I}_{o} \mathbf{I}_{IIIS}$
					$g_{moon} = 1.63 \text{ms}^{-2}$

Quantity	Symbol	Vector or	Unit	Unit abbreviation	Notes
Energy	E	scalar	Joules kilojoules megajoules calories kilo-calories kilowatt- hour electron- volts	J $kJ = 10^{3}J$ $MJ = 10^{6}J$ cal = 4.184J $kcal = 10^{3} cal$ kWh eV $keV = 10^{3}eV$ $MeV = 10^{6}eV$	Energy is <i>conserved,</i> i.e. in a closed system has the <i>same numerical value</i> . It can be converted into different forms e.g. <i>kinetic</i> and <i>potential</i> energy. Calories measure energy in food 1kWh is a standard measure of domestic electricity consumption. <i>Total</i> UK energy consumption is about 125 kWh per person per day. eV = kinetic energy of an electron accelerated by a voltage V $eV = 1.602 \times 10^{-19}$ I
Power	P	scalar	Watts kilowatts megawatts gigawatts terawatts horsepower	$W = Js^{-1}$ $kW = 10^{3}W$ $MW = 10^{6}W$ $GW = 10^{9}W$ $TW = 10^{12}W$ hp = 746W	Power is the rate of energy changed from one form into another A light bulb uses about 20W Dr French's computers use about 250W A kettle uses about 2kW A Tour-de-France cyclist expends 250- 500W A wind turbine generates 1-10MW A power station generates up to 5GW About 1.36 kWm ² or solar radiation shine on the Earth.
Force	f <i>f</i> , <i>F</i>	vector	Newtons kilonewtons	N kN	<i>Newton's Second Law:</i> mass x acceleration = vector sum of forces
Weight	W	vector	Newtons kilonewtons	N kN	The gravitational force F acting upon a mass m is $F = mg$.
Tension	Т	vector	Newtons kilonewtons	N kN	Force in a cable or string. Often these are modelled as <i>light</i> and <i>inextensible</i> . i.e. ignore the effect of their mass and assume they don't stretch
Momentum	$\mathbf{p} = m\mathbf{v}$ $p = mv$	vector	kilogram- metres per second	kgms ⁻¹	Note <i>impulse</i> is a change in momentum, e.g. due to a collision or from the action of some external force over a period of time.
Moment	m = Fd	scalar	Newton- metre	Nm	Force x perpendicular distance from a pivot
Torque	$\tau = \mathbf{r} \times \mathbf{F}$	vector	Newton- metre	Nm	Vector quantity whose magnitude is the moment of force \mathbf{F} about pivot. Force \mathbf{F} acts from displacement \mathbf{r} about pivot. Magnitude of torque is $ \mathbf{F} $ multiplied by perpendicular distance of line of action of \mathbf{F} from pivot.
Angular velocity	ω ω	vector	radians per second	rads ⁻¹	Used in circular and oscillatory motion. π radians = 180°
Moment of inertia		scalar (or in general a matrix)	kilogram metre- squared	kgm ²	Sum of masses x square of perpendicular distance <i>r</i> from rotation axis of a rigid body. $I = \int r^2 dm$
Angular momentum	$J = \mathbf{r} \times m\mathbf{v}$ $J = I\boldsymbol{\omega}$ $J = mvr$ $J = I\boldsymbol{\omega}$	vector	kilogram- metres- squared per second	kgm ² s ⁻¹	Angular momentum is conserved in a rigid body, in the absence of any torque. The inertia tensor $\mathbf{I} = \begin{pmatrix} I_x & I_{xy} & I_{xz} \\ I_{yx} & I_y & I_{yz} \\ I_{zx} & I_{zy} & I_z \end{pmatrix}$ is a matrix containing moments of inertia about the body x,y,z axis of a rigid body. If the body has symmetry, the off diagonal elements are typically zero

Quantity	Symbol	Vector or	Unit	Unit abbreviation	Notes
		scalar?			
Elasticity	$k = \frac{\lambda}{l}$	scalar	Newtons per metre	Nm ⁻¹	If an elastic body (such as spring or rubber band) is Hookean, the restoring force following extension by <i>x</i> is $F = \frac{\lambda}{l} x$ where <i>l</i> is the natural length and λ is the elastic modulus.
Stress	σ	scalar	Newtons per square metre	Nm ⁻²	Force per unit area - same as pressure $\sigma = \frac{F}{A}$
Strain	ε	scalar	Just a number		Ratio of extension to natural length $\varepsilon = \frac{x}{l}$ Young's Modulus is $Y = \frac{\sigma}{\varepsilon} = \frac{\lambda x}{lA} \times \frac{l}{x} = \frac{\lambda}{A}$ $\therefore \lambda = AY$ Young's modulus for different materials: (GPa = 10 ⁹ Nm ⁻²) rubber 0.01-0.1 GPa Nylon 2-4 GPa Wood 11 GPa Bone 14 GPa Concrete 30 GPa Glass 50-90 GPa Aluminium 69 Copper 117 GPa Diamond 1.050-1.210 GPa
Viscosity Reynolds number	η Re	scalar	poiseuille just a number	PI =Nm ⁻² s =Pa s =kgm ⁻¹ s ⁻¹	$\eta = \frac{\text{shear stress}}{\text{velocity gradient}}$ Stress is force per unit area. Velocity gradient is change in velocity per metre of fluid. warm blood 3-4 x 10 ⁻³ kgm ⁻¹ s ⁻¹ honey 2-10 kgm ⁻¹ s ⁻¹ molten chocolate 10-25 kgm ⁻¹ s ⁻¹ ketchup 50-100 kgm ⁻¹ s ⁻¹ peanut butter 250 kgm ⁻¹ s ⁻¹ corn syrup 1.4 kgm ⁻¹ s ⁻¹ olive oil 8.1 x 10 ⁻² kgm ⁻¹ s ⁻¹ water 8.9 x 10 ⁻⁴ kgm ⁻¹ s ⁻¹ mantle of Earth 10 ²¹ kgm ⁻¹ s ⁻¹ Re = $\frac{\rho vL}{\eta} = \frac{\text{density} \times \text{velocity} \times \text{length}}{\text{viscosity}}$ Turbulent flow if Re > few thousand Re = $\frac{\text{inertial force}}{\text{viscous force}}$
Mach number	Ma	scalar	just a number	-	$Ma = \frac{v}{\text{speed of sound}}$

Quantity	Symbol	Vector or	Unit	Unit abbreviation	Notes
Density	ρ	scalar	mass per unit volume	kgm ⁻³ gcm ⁻³	Air is about 1.2 kgm ⁻³ Wood is about 0.5 gcm ⁻³ Water is about 1 gcm ⁻³ Aluminium is 2.7 gcm ⁻³ Iron is 7.8 gcm ⁻³ Copper is 8.9 gcm ⁻³ Mercury is 13.5 gcm ⁻³ Gold is 19.3 gcm ⁻³ Uranium is 19.1 gcm ⁻³
Pressure	p	scalar	Pascal kilopascal megapascal millibar Atmosphere	Pa kPa = 10 ³ Pa MPa = 10 ⁶ Pa mbar = 100Pa atm	Force per unit area Pa = 1Nm ⁻² atm = 101,325 Pa is essentially a 'reference' atmospheric pressure at sea level. atm = 1013.25 mbar. Millibars are used in meteorology i.e. climate science and weather forecasting to measure air pressure.
Temperature SI	T	scalar	degrees celcius degrees fahrenheit degrees kelvin	°C °F K	K is a base SI unit $T_{K} = T_{C} + 273.15$ $T_{F} = \frac{9}{5}T_{C} + 32$ Temperature in K is proportional to the mean kinetic energy of molecules. Hence nothing can be colder than 0K "absolute zero"
Solid or liquid specific heat capacity	c	scalar	joules per kilogram per Kelvin	Jkg ⁻¹ K ⁻¹	water 4,200 Jkg ⁻¹ K ⁻¹ alcohol 2,500 Jkg ⁻¹ K ⁻¹ ice 2,100 Jkg ⁻¹ K ⁻¹ aluminium 900 Jkg ⁻¹ K ⁻¹ concrete 800 Jkg ⁻¹ K ⁻¹ glass 700 Jkg ⁻¹ K ⁻¹ steel 500 Jkg ⁻¹ K ⁻¹ copper 400 Jkg ⁻¹ K ⁻¹
Gas specific heat capacity	C _p C _V	scalar	joules per kilogram per Kelvin	Jkg ⁻¹ K ⁻¹	c_p is at constant pressure, c_V is at constant volume. c_p for dry air is about 1,000Jkg ⁻¹ K ⁻¹ . <i>Molar</i> heat capacities are: $c_V = \frac{1}{2}\alpha R$ and $c_p = c_V + R$ (Mayer Relation). Molar gas constant R = 8.314Jmol ⁻¹ K ⁻¹ and for air, molar volume is about 29gmol ⁻¹ .
Specific latent heat of fusion	L ΔH	scalar	joules per kilogram	Jkg⁻¹	water 336,000 Jkg ⁻¹ alcohol 108,000 Jkg ⁻¹
Specific latent heat of vaporisation	L ΔH	scalar	joules per kilogram	Jkg ⁻¹	water 2,260,000 Jkg ⁻¹ alcohol 855,000 Jkg ⁻¹

Quantity	Symbol	Vector	Unit	Unit abbreviation	Notes
		scalar?			
Charge	q,Q	scalar	Coulombs	С	charge on electron
	е				$e = 1.602 \times 10^{-19} \text{ C}$
Voltage	V	scalar	Volts	V	Potential energy per coulomb of charge
			millivolts	$mV = 10^{-3}V$	Energy change per coulomb of charge
			kilovolts	$kV = 10^{\circ}V$	across a resistor.
Current	I	scalar	Amps	Δ	A is a base SI unit
CI	1	Scalai	milliamps	mA	Rate of charge flowing in an electrical circuit
31					(coulombs per second).
Resistance	R	scalar	Ohms	Ω	Ohm's Law: $V = IR$
			kilo-ohms		Voltage drop across a resistor is proportional
Pocietivity	0	coolor	mega-onms	Om	to resistance, and current flowing through it.
Resistivity	P	Scalar	onn-metre	<u>s</u> 2m	Resistance of a cylindrical wire of length i
					$R = \rho \frac{\iota}{\Lambda}$
					A
					Aluminium $\rho = 2.82 \times 10^{-8} \text{ Gm}$
					Gold $\rho = 2.44 \times 10^{-8} \Omega m$
					Iron $\rho = 1.00 \times 10^{-7} \Omega m$
					Sea water $\rho = 2.00 \text{ x} 10^{-1} \Omega \text{m}$
					Glass $\rho = 10^{11} - 10^{15} \Omega m$
					Hard rubber $\rho = 10^{13} \Omega m$
					Dry wood $\rho = 10^{12} - 10^{16} \Omega m$
Canacitance	C	scalar	Farads	F	All $p = 1.3 - 3.3 \times 10^{-5}$ S2III
Capacitance	C	300101	picofarads	pF	components are $< a$ few μ F, pF or nF are
			nanofarads	nF	common.
			microfarads	μF	au = RC is an approximate time period
					associated with a resistor, capacitor circuit.
					$\tau = \sqrt{LC}$ is an approximate time period
					associated with an inductor, capacitor circuit.
					These often exhibit resonance phenomenon,
					so can be used to amplify signals at a
Inductance	L	scalar	Henry	Н	An inductor with an inductance of 1 Henry
					produces an 'electromotive force' (EMF) of 1
					volt when the current through the inductor
					changes at the rate of 1 ampere per second.
Electric field	Е	vector	Volts per	Vm ⁻¹	Force on a charge q coulombs in a electric
strength	E		metre		field of strength E is
					F = qE
					A dielectric will conduct electricity
					('breakdown') when E exceeds a critical
					value. Note: 1MVm ⁻¹ = 10°Vm ⁻¹
					Air $E > 3MVm^2$
					Glass $E > 10 \text{MVm}^{-1}$
					$Oil E > 10 MVm^{-1}$
					Rubber $E > 15 \text{MVm}^{-1}$
					pure water $E > 65 \text{MVm}^{-1}$
					Mica <i>E</i> >118MVm ⁻¹
					Diamond $E > 2,000 \times 10^{6} \mathrm{Vm^{-1}}$

Quantity	Symbol	Vector	Unit	Unit	Notes
		scalar?		appreviation	
Magnetic field	В	vector	Tesla	Т	Force on a wire of length l carrying current
strength	B				<i>I</i> in magnetic field <i>B</i> is $F = BIl$
	D				Note force, current and field are mutually
					perpendicular
					Magnetic field inside a solenoid (a coll of wire carrying current <i>L</i> of <i>n</i> turns per unit
					longth) is $B = \mu n I$
					'Permeability of free space'
					$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm}^{-1}$
					Earth's magnetic field $\approx 25 \mu T - 65 \mu T$
					$(\mu T = 10^{-6}T)$
					Fridge magnet = 5×10^{-3} T
					1.5-31 field strength of a Magnetic
					10^{6} T- 10^{8} T field strength of a <i>neutron star</i>
					10 ⁸ T-10 ¹¹ T field strength of a <i>magnetar</i>
Gravitational field strength	g	vector	metres per second	ms ⁻²	$g_{earth} = 9.81 \text{ms}^{-2}$
	8		squared		$g_{moon} = 1.63 \mathrm{ms}^{-2}$
Radioactive activity	A	scalar	Becquerel Curies	Bq	Bq = radioactive decays per second
				Ci	$Ci = 3.7 \ 10^{10} Bq$
					(activity of one gram of $\frac{^{226}}{^{88}}Ra$)
Half life	$T_{\frac{1}{2}}$	scalar	Seconds,	s, d, yr	Time for half of radioactive isotopes to have
	ź		days, years		
					$\frac{1}{92}$ U 7 x 10° yr
					$^{14}_{12}$ C 5,730 yr
					$^{123}_{53}$ I 13 hrs
Refractive index	п	scalar	just a number	-	$n = \frac{c_{\text{vacuum}}}{c}$ i.e. ratio of speed of light in a
					vacuum (2.998 x 10^8 ms ⁻¹) to speed of light in
					a material
					vacuum 1
					air 1.00
					water 1.33
					human cornea 1.37-1.40
					human lens 1.39-1.41
					plexiglas 1.49 crown glass 1.52
					sapphire 1.76-1.78
					diamond 2.42

2. Mechanics

Name	Equation	Description of variables	Notes / diagram
Kinematics	$v = \frac{dx}{dt} x = \int v dt$ $a = \frac{dv}{dt} v = \int a dt$	x displacement v velocity a acceleration t time	Velocity is the gradient of a (time,displacement) graph. Displacement is the area under a (time, velocity). graph. Note areas below the time axis are negative. Acceleration is the gradient of a (time,velocity) graph velocity is the area under a (time, velocity). graph. Note areas below the time axis are negative.
Constant acceleration motion	$v = u + at$ $x = x_0 + \frac{1}{2}(u + v)t$ $x = x_0 + ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2ax$	u initial velocity /ms ⁻¹ a acceleration /ms ⁻² t time /s v final velocity /ms ⁻¹ x displacement /m x_0 initial displacement /m	Only valid for motion when acceleration <i>a</i> is constant. Easily derived from linear velocity, time graph. <i>a</i> is the gradient $a = \frac{v-u}{t}$ and $x - x_0$ is the area under the graph, which is a trapezium hence $x - x_0 = \frac{1}{2}(u + v)t$
Newton's First Law	$\mathbf{a} = 0$ $\Rightarrow \mathbf{v} = \text{ constant}$	a acceleration v velocity	A object will move at constant velocity if it is not accelerating, and therefore the vector sum of forces is zero. It is in equilibrium.
Newton's Second Law	$m\mathbf{a} = \sum_{i} \mathbf{f}_{i}$	mass x acceleration = vector sum of forces	Most mechanics problems are often solved by firstly writing down Newton II for each direction of a coordinate system (typically Cartesian <i>x</i> , <i>y</i>) appropriate for the problem.
Newton's Third Law	"For every action there is an equal and opposite reaction"		If body A imposes a contact force \mathbf{F} upon body B, body B will in turn impose a contact force $-\mathbf{F}$ upon body A.
Conservation of momentum	$\underbrace{m_1 \mathbf{u}_1 + m_2 \mathbf{u}_2 + \dots}_{\text{BEFORE COLLISION}} = \underbrace{m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2 + \dots}_{\text{AFTER COLLISION}}$	momentum = mass x velocity	The vector sum of momenta is the same before and after a collision
Impulse	"Force x time = change in momentum" $\int_0^t \mathbf{f}(t) dt = m\mathbf{v} - m\mathbf{u}$	f(t) force (as a function of time t), m mass v final velocity u initial velocity 'impulse' means momentum change	In each direction of a coordinate system, the integral of the (time,force) graph is the change in momentum. If force is a constant force x time = change in momentum

Conservation	$\frac{1}{2}mu^2 + \text{GPE}_0 + \text{EPE}_0 + \dots = \frac{1}{2}mv^2 + \text{GPE}_1 + \text{EPE}_1 + \dots$	m mass.	$g_{auth} = 9.81 \text{ms}^{-2}$
of energy	GPF - mah	u, v initial and	$a = -1.63 \text{ms}^{-2}$
	GIL - mgn	final speeds.	$g_{moon} = 1.051118$
	$GPE = -\frac{GMm}{2}$	h change in	$G = 6.67 \times 10^{-11} \mathrm{Nm^2 kg^{-2}}$
	r	<i>a</i> gravitational	
	$EPE - \frac{1}{2}kr^2 - \frac{1}{2}\frac{\lambda}{r^2}$	field strongth	
	$\mathbf{L}\mathbf{L} = \frac{1}{2} \mathbf{k} \mathbf{k} = \frac{1}{2} \mathbf{l}$	M m masses	
		r distance	
		between	
		masses.	
		G gravitational	
		force constant.	
		x spring	
		constant.	
		λ modulus of	
		elasticity.	
		l original length	
Os officient of		of spring.	
restitution	$C = \frac{\text{speed of separation}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$		C = 1 elastic collision
rectitution	speed of approach		conserved).
			C = 0 inelastic collision
			(objects remain
			together, some kinetic
Work dopo		f force	energy is lost) Work dono is "the groe
	$WORR DONE = 10RGE \times DISTANCE$	r loice.	under a (displacement.
	$\mathbf{W} = \int \mathbf{I} \cdot d\mathbf{I} = \frac{1}{2}mv - \frac{1}{2}mu$	displacement.	force) graph", noting
		m mass.	that areas below the x
		u, v initial and	axis are negative.
		final speeds.	
Moments	MOMENT = FORCE x PERPENDICULAR DISTANCE	F force	In equilibrium , the sum
	FROM ROTATION AXIS	<i>d</i> distance	of moments (clockwise
	M = Fd	from axis of	or anticlockwise) is
		rotation	zero, regardless of the
Moment of	x f 2 x	I moment of	thin rod about centre
inertia	$I = \int r^2 dm$	inertia.	$\perp ml^2$
		r distance from	12 mi
		rotation axis.	
		m mass	$\overline{5}$ m
			$\frac{3}{10}mr^{-1}$
Perpendicular axis theorem	$I_z = I_x + I_y$		Only works for laminae defined in the x,y plane.
Parallel axis	$I_{\rm el} = I_{\rm e} + Md^2$	M mass	, , , , , , , , , , , , , , , , , , ,
theorem		d distance of	
		new axis from	
Angular	$\mathbf{I} = \mathbf{r} \times m\mathbf{v}$	2 rotation axis	For a rigid body can
momentum		displacement.	decompose into angular
		m mass.	momenta of centre of
		v velocity.	mass + angular
			momenta about centre
			motion of centre of mass
			plus rotation about
			centre of mass.

Torque	$\tau = \mathbf{r} \times \mathbf{f}$ $d\mathbf{L}$	r displacement f force	If torque is zero this means angular
	$\boldsymbol{\tau} = \frac{\mathbf{d}t}{\mathbf{d}t}$ $\boldsymbol{\tau} = \mathbf{I}\dot{\boldsymbol{\omega}} = \begin{pmatrix} I_x & I_{xy} & I_{xz} \\ I_{yx} & I_y & I_{yz} \\ I_{zx} & I_{zy} & I_z \end{pmatrix} \begin{pmatrix} \dot{\omega}_x \\ \dot{\omega}_y \\ \dot{\omega}_z \end{pmatrix}$	I inertia tensor F force d distance from axis of rotation	constant. Rotational equivalent of Newton's Second Law.
	$Fd = I\ddot{ heta}$	$\ddot{ heta}$ angular acceleration	
			angular acceleration in radians per second ²
Projectile motion	$v_{x} = u \cos \theta v_{y} = u \sin \theta - gt$ $v = \sqrt{v_{x}^{2} + v_{y}^{2}} = \sqrt{u^{2} - 2g(y - y_{0})}$ $x = ut \cos \theta$ $y = y_{0} + x \tan \theta - \frac{g}{2u^{2}} (1 + \tan^{2} \theta) x^{2}$ $t_{a} = \frac{u \sin \theta}{g} y_{a} = y_{0} + \frac{u^{2} \sin^{2} \theta}{2g} x_{a} = \frac{u^{2} \sin \theta \cos \theta}{g}$ $R = \frac{u^{2} \sin 2\theta}{g}$	v_x horizontal velocity v_y vertical velocity v speed u launch speed θ launch elevation g gravitational acceleration t time since launch x horizontal displacement y vertical displacement y_0 initial vertical displacement t_a apogee time x_a, y_a apogee coordinates B horizontal	Projectile motion is essentially constant acceleration motion in both x and y directions. Air resistance is ignored. In the x direction acceleration is zero, hence a <i>constant</i> velocity $v_x = u \cos \theta$. The x,y curve traced out by particle is an inverted parabola. Typically for a given range there are two possible trajectories for a given launch velocity <i>u</i> corresponding to 'steep' and 'shallow' solutions for elevation θ .
Maria		range if $y_0 = 0$	
Motion in a circle	$\omega = \dot{\theta} = \frac{d\theta}{dt} \qquad \dot{\omega} = \ddot{\theta} = \frac{d^2\theta}{dt^2}$ $\mathbf{v} = r\omega\hat{\theta}$ $\mathbf{a} = -\frac{v^2}{r}\hat{\mathbf{r}} + r\ddot{\theta}\hat{\theta} = -r\omega^2\hat{\mathbf{r}} + r\ddot{\theta}\hat{\theta}$	θ anticlockwise angle /radians r circle radius /m ω angular velocity /rads ⁻¹ v, v velocity, speed	Assumes the circle radius r is a constant
	$\frac{d\mathbf{r}}{dt} = \dot{\theta}\hat{\mathbf{\theta}} \qquad \frac{d\mathbf{\theta}}{dt} = -\dot{\theta}\hat{\mathbf{r}}$ $\dot{\mathbf{r}} = \frac{d}{dt}(r\hat{\mathbf{r}}) = \dot{r}\hat{\mathbf{r}} + r\dot{\theta}\hat{\mathbf{\theta}}$ $\ddot{\mathbf{r}} = \frac{d^2}{dt^2}(r\hat{\mathbf{r}}) = (\ddot{r} - r\dot{\theta}^2)\hat{\mathbf{r}} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\mathbf{\theta}}$ $\hat{\mathbf{r}} = \cos\theta\hat{\mathbf{x}} + \sin\theta\hat{\mathbf{y}}$ $\hat{\mathbf{\theta}} = -\sin\theta\hat{\mathbf{x}} + \cos\theta\hat{\mathbf{y}}$ $x = r\cos\theta$ $y = r\sin\theta$	a acceleration $\hat{\mathbf{r}}$ radial unit vector $\hat{\mathbf{\theta}}$ polar angle unit vector $\hat{\mathbf{x}}$ x direction unit vector $\hat{\mathbf{y}}$ y direction unit vector	In general we can incorporate an \dot{r} term into both velocity and acceleration expressions. Note if one chooses a reference frame which rotates at ω then one will experience a 'centrifugal force' of magnitude $F_r = mr\dot{\theta}^2$ away from the axis of rotation.

Lift and drag	$F_{L} = \frac{1}{2}c_{L}\rho Av^{2}$ $F_{D} = \frac{1}{2}c_{D}\rho Av^{2}$ $F = 6\pi a\eta v$	c_L lift coefficient c_D drag coefficient ρ density of air/fluid A area of object in fluid stream v speed a radius of sphere η viscosity	The linear Stokes Drag equation $F = 6\pi a\eta v$ is typically applicable in low Reynolds number scenarios when viscous forces dominate. Air resistance models for bikes, cars, planes, skydivers are typically better served by the v^2 models.
Force of gravity & Kepler's Laws of orbital motion	$\mathbf{W} = m\mathbf{g}$ $\mathbf{F} = -\frac{GMm}{r^2} \hat{\mathbf{r}}$ $r = \frac{a(1-\varepsilon^2)}{1+\varepsilon\cos\theta}$ $\varepsilon = \sqrt{1-\frac{b^2}{a^2}}$ $P^2 = \frac{4\pi^2}{G(M+m)}a^3$ $\frac{dA}{dt} = \frac{1}{2}\sqrt{G(M+m)(1-\varepsilon^2)a}$	W weight g gravitational field strength. M,m masses. r distance between masses. G gravitational force constant. ε eccentricity of elliptical orbit a semi-major axis of the ellipse. b semi-minor axis of the ellipse. M,m star and planet masses θ polar angle (anticlockwise from semi- major axis) P orbital period	$g_{earth} = 9.81 \text{ms}^{-2}$ $g_{moon} = 1.63 \text{ms}^{-2}$ $G = 6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$ Kepler's First Law: Bound gravitational orbits of two masses are ellipses, with foci about the common centre of mass. Kepler's Second Law: The rate of ellipse area swept out (radially from the focus of the ellipse) is a constant Kepler's Third Law: The square of orbital period is proportional to the cube of the ellipse semi-major axis
Elasticity (or elastic strings)	$F = kx = \frac{\lambda}{l}x$ $E = \frac{1}{2}kx^{2}$	<i>F</i> force <i>k</i> elastic constant λ elastic modulus <i>l</i> original length of elastic string <i>x</i> extension <i>E</i> elastic potential energy	Most elasticity models are <i>Hookean</i> and assume a constant modulus of elasticity. In reality for large extensions there will be plastic deformation and ultimately breakage.
Friction	$F \le \mu R$ $F = \mu R$	F frictional force μ coefficient of friction R normal contact force	A system is said to be in 'limiting' equilibrium' if $F = \mu R$ i.e. 'on the point of sliding'. Once an object is sliding along a surface, the friction force 'maxes out' out $F = \mu R$. Note μ may change in this dynamic case. $F \le \mu R$ can be used to determine conditions (e.g. tilt angle of a slope) for sliding to occur.

Power & driving force	$P = Fv$ $P = \mathbf{F} \cdot \mathbf{v}$ $D = \frac{P}{v}$	F , F force P power v , v velocity D driving force	One Horsepower (hp) = 746W. This equation is useful in relating energy conversion rates in engines to resulting motion.
equation for a fluid stream	$\frac{1}{2}\rho v^{2} + p + \rho gz = \text{constant} \qquad \text{incompressible}$ $\frac{1}{2}v^{2} + \frac{\gamma p}{(\gamma - 1)\rho} + gz = \text{constant} \qquad \text{compressible}$ $\gamma = \frac{c_{p}}{c_{v}}$	<i>p</i> pressure <i>z</i> height <i>v</i> velocity c_p, c_v specific heat capacities of fluid and constant pressure, volume	occurs across an aircraft wing. The fluid has to travel further over the upper edge. To preserve continuity of air, it therefore travels faster. Hence pressure is lower above the wind than below. The pressure difference causes a lift force.
Young's modulus	$E = \frac{\sigma}{\varepsilon} = \frac{F/A}{\delta l/l}$	σ stress ε strain F force A area δl extension l original length	Rubber $E = 0.01$ GPa Wood $E = 11$ GPa Concrete $E = 30$ GPa Glass $E = 70$ GPa Steel $E = 200$ GPa Diamond $E = 1,100$ GPa
Bending beam	$EI\frac{d^4y}{dx^4} = w(x)$ $I = \iint y^2 dx dy$	y(x) beam vertical deflection vs horizontal displacement E Young's modulus I moment of <i>area</i> w(x) beam weight per unit length	
Simple Harmonic Motion (SHM)	$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = A_0 \omega_0^2 \sin \omega t$ $x(t) = \frac{A_0 \omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2}} \sin(\omega t - \phi)$	$\omega = 2\pi f = \frac{2\pi}{T}$ <i>f</i> frequency <i>T</i> period Steady-state solution	e.g. a damped, driven mechanical or electrical oscillator. x could be displacement, electrical current, angle For a mass, spring system $\omega_0 = \sqrt{\frac{\lambda}{ml}}$
	$\phi = \tan^{-1} \left(\frac{2\gamma\omega}{\omega_0^2 - \omega^2} \right)$ $\omega_{res} = \sqrt{\omega_0^2 - 2\gamma^2}, \ x_{max} = \frac{A_0 \omega_0^2}{2\gamma \sqrt{\omega_0^2 - \gamma^2}}$	phase /radians Resonance frequency	For a series L,C,R circuit $\omega_0 = \sqrt{\frac{1}{LC}}$
	$Q = \frac{\omega_0}{2\gamma}$	Quality factor	Higher Q values mean sharper peaks in the $\left(f,x\right)$ graph

Name	Equation	Description of variables	Notes / diagram
Charge on a capacitor	Q = CV	Q charge /coulombs	Voltage across two
		C capacitance /Farads	capacitor plates
		V voltage /volts	separated by an
		, Tonago, Tono	insulating <i>dielectric</i> .
Ohm's law	V = IR	V voltage /volts	Voltage or 'potential
		I current /amps	difference' across a
		R resistance /ohms	resistive element.
Electrical power	P = VI	P power /watts	
		V voltage /volts	
		I current /amps	
Resistive power loss	$P = I^2 R$	P power /watts	
		I current /amps	
		R resistance /ohms	
Electric field strength		V voltage /volts	
	$E = -\frac{1}{d}$	d distance between	
	av	charged parallel plates	
	$E_{\rm r} = -\frac{UV}{L}$	x displacement	
	$^{\sim} \partial x$	E electric field	
	$\mathbf{E} = -\nabla V$	$\nabla V \wedge \partial V \wedge \partial V \wedge \partial V$	
		$VV = \mathbf{x} - \mathbf{x} + \mathbf{y} - \mathbf{z} + \mathbf{z} - \mathbf{z}$	
		$\frac{\partial x}{\partial x}$	
(Lorentz) force on a	$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$	E electric field	
charge in an electric		B magnetic field	
and magnetic field		v velocity of charge q	
Force between two	$\mathbf{F} = \begin{pmatrix} 1 & q_1 q_2 \\ \mathbf{\hat{F}} \end{pmatrix}$	q_1, q_2 charges	Coulomb's law of
static charges	$\mathbf{F} = \frac{1}{4\pi\epsilon_{o}} \frac{r^{2}}{r^{2}}$	r charge separation	electrostatics.
		$\hat{\mathbf{r}}$ charge separation unit	
		vector	
		E	
		permittivity of free space	
		$= 8.85 \times 10^{-12} \text{ m}^{-3} \text{ kg}^{-1} \text{ s}^{4} \text{ A}^{2}$	
Resistance of a wire	ol	R resistance	Assume uniform
	$R = \frac{P^{\prime}}{\Lambda}$	l length	resistivity and cross
	A	A cross sectional area	sectional area along
		ρ resistivity	length of wire
			Copper
			$\rho = 1.68 \times 10^{-8} \Omega m$
			, Aluminium
			$\rho = 2.82 \text{ x } 10^{-8} \Omega \text{m}$
			, Air
			$\rho = 1.3 - 3.3 \times 10^{16} \Omega m$
Energy stored in a	$E = \frac{1}{2}CV^2$	C capacitance	
capacitor	2	V voltage between	
		capacitor plates	
		E energy	
Energy stored in an	$E = \frac{1}{2}LI^2$	L inductance	
inductor	2	I current	
		E energy	
Addition of series	$R = R_1 + R_2 + \dots$	R resistance	
resistors			
Addition of parallel		R resistance	
resistors	$\left \begin{array}{c} \overline{R} = \overline{R_1} + \overline{R_2} + \cdots \right \right $		
Addition of series		C capacitance	
canacitore	$\begin{vmatrix} 1 \\ \end{vmatrix} = \frac{1}{} + \frac{1}{} + \dots$		
upacitors	$C C_1 C_2$		
Addition of parallel	$C = C_1 + C_2 + \dots$	C capacitance	
capacitors	-1 -2	· ·	

Addition of series	$L = L_1 + L_2 + \dots$	L inductance	
Addition of parallel	1 1 1		
inductors	$\frac{1}{L} = \frac{1}{L} + \frac{1}{L} + \dots$		
	L L_1 L_2		
Magnetic field inside an	$B = \mu \mu_0 \frac{NI}{M}$	<i>B</i> magnetic field strength	A soft magnetic material
		μ relative permeability	enhance the magnetic
		μ_0 permeability of free	field. For ferrite $\mu > 640$
		space = $4\pi \times 10^{-7} \text{Hm}^{-1}$,
		N turns in length l	
		<i>I</i> current	
characteristic frequency	$f = \frac{1}{1} \int \frac{1}{1}$	f_0 frequency	
'tuned' circuit	$\int J_0 = 2\pi \sqrt{LC}$	C capacitance	
		L inductance	
Voltage vs time curves	$V - \frac{t}{t}$	V voltage at time t	Note RC is a time
for charging and	$\frac{V}{V} = e^{-RC}$ discharging	V _o maximum voltage	constant for a capacitor
discharging of a		<i>R</i> resistance	charging/discharging
capacitor	$\frac{V}{m} = 1 - e^{-\frac{i}{RC}}$ charging	<i>C</i> capacitance	through a resistor.
Capacitance of a	$C = 4\pi\varepsilon_0 a$	\mathcal{E}_0	
spherical conductor	-	permittivity of free space	
		$= 8.85 \times 10^{-12} \text{ m}^{-3} \text{ kg}^{-1} \text{ s}^{4} \text{ A}^{2}$	
		a radius of sphere	
Capacitance of a	$C = \frac{\varepsilon \varepsilon_0 A}{\varepsilon}$	ε relative permittivity (of	
parallel plate capacitor	d	<i>dielectric)</i>	paper 3.9
		<i>d</i> plate separation	silicon 11.7
		C capacitance	calcium copper titanate
		· ·	> 250,000
Voltage induced by an		V voltage induced	- sign due to Lenz's law
inductor	$V = -L \frac{dt}{dt}$	I current	i.e. an inductor will resist
		L inductance	changes in electrical
		t time	it
Energy density of	$B^2 = B^2$	<i>u</i> potential energy per	
electric and magnetic	$u = \frac{1}{2} \varepsilon \varepsilon_0 E^2 + \frac{1}{2} \frac{1}{1111}$	unit volume	
fields	μιμι ₀	<i>E</i> electric field strength	
Inductoria of a call	2	B magnetic field strength	
	$L = \frac{\mu \mu_0 K N^2 A}{M^2}$	IV turns in length l with cross sectional area Λ	
		If $l \gg$ coil radius ("infinite	
		solenoid") then Nagaoka	
		coefficient $K \approx 1$	
Inductance of a toroidal	d^2N^2	d diameter of coil	Semi-empirical formula
COIL	$L \approx 0.007975 - \frac{1}{D}, d < 0.1D$	windings	
		IV number of windings	
Biot-Savart law for	u L di ve	D ulameter of torus B magnetic field	
calculating magnetic	$d\mathbf{B} = \frac{\mu_0 I}{4} \frac{d\mathbf{I} \times \mathbf{\Gamma}}{\frac{3}{2}}$	<i>I</i> current	
fields due to current	4π r ³	<i>d</i> vector line element	
elements		r position vector at which	
		B is calculated	
		$r = \mathbf{r} $	

Maxwell's equations for electric and magnetic fields	$\int_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_{0}} Q$ $\int_{S} \mathbf{B} \cdot d\mathbf{S} = 0$ $\oint \mathbf{E} \cdot d\mathbf{I} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot d\mathbf{S}$ $\oint \mathbf{B} \cdot d\mathbf{I} = \mu_{0} I + \mu_{0} \varepsilon_{0} \frac{\partial}{\partial t} \int_{S} \mathbf{E} \cdot d\mathbf{S}$	S surface enclosing charge Q \oint means integrate around a closed loop, usig lie elements d	#1 is Gauss's Law of electrostatics #2 means 'no magnetic magnetic monopoles' (although dipoles can be though as a 'source' of magnetic fields) #3 is Faraday's/Lenz's law of electromagnetic induction #4 is Coulombs law + Maxwell's 'displacement current' term $\mu_0 \varepsilon_0 \frac{\partial}{\partial t} \int_S \mathbf{E} \cdot d\mathbf{S}$
Generalized Ohm's law for Alternating Current (AC) circuits Impedance of resistors, capacitors and inductors	$V = IZ$ $V = V_0 e^{i\omega t}$ $I = I_0 e^{i(\omega t - \phi)}$ $Z_R = R$ $Z_L = i\omega L$ $Z_C = \frac{1}{i\omega C}$ $Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 376.7\Omega$	V voltage I current Z impedance t time $\omega = 2\pi f$ f frequency of AC input voltage L inductance C capacitance Z ₀ impedance of free space (i.e. vacuum, and to a very good approximation, air)	Complex impedance is a useful rick for finding out voltages across circuit elements e.g. in an LCR series circuit $\frac{V_c}{V_0} = \frac{Z_c}{Z_c + Z_L + Z_R}$ i.e. 'potential divider' concept. $\left \frac{V_c}{V_0}\right $ is the voltage amplitude response and $\phi = \arg\left(\frac{V}{V_0}\right)$ is the phase.
Skin depth i.e. penetration depth of electromagnetic fields within a conductor transmitting AC	$\delta = \sqrt{\frac{\rho}{\mu_0 \pi f}}$	δ field penetration depth ρ resistivity f frequency $μ_0$ permeability of free space = $4π \times 10^{-7}$ Hm ⁻¹	
Transformers	$\frac{V_2}{V_1} = \frac{N_2}{N_1}$ $\frac{I_2}{I_1} \approx \frac{N_1}{N_2}$	V_1, I_1 voltage, current in primary coil. V_2, I_2 voltage, current in secondary coil. N_1, N_2 are number of turns in (respectively) primary and secondary coils.	This assumes no power is lost in the transfer of electrical energy from coil 1 to coil 2 i.e. $I_1V_1 = I_2V_2$.

Name	Equation	Description of variables	Notes / diagram
Wave speed equation	$c = f \lambda$	c wave speed f frequency λ wavelength	Speed of light in a vacuum $c = 2.998 \times 10^8 \text{ ms}^{-1}$ Speed of sound in air (20°C): 344 ms ⁻¹ Speed of sound in water: 1482 ms ⁻¹
Wavenumber	$k = \frac{2\pi}{\lambda}$	λ wavelength	Phase of a wave is $\phi = kx - \omega t$
Frequency and period	$f = \frac{1}{T}$	f frequency T period	
Speed of waves in elastic media	$c = \sqrt{\frac{T}{\mu}}$ string under tension $c = \sqrt{\frac{E}{\rho}}$ elastic solid	c wave speed T string tension μ mass per unit length E Elastic modulus ρ Density	e.g. guitar string low E $\mu = 0.0059 \text{ kgm}^{-1}$ f = 82.41 Hz (fundamental mode, so string length = $\frac{1}{2}\lambda$) T = 67.8 N $\lambda = 1.30 \text{ m}$
Antenna beamwidth / optical resolving power	$\delta\theta \approx \frac{\lambda}{d}$	$\delta\theta$ minimum resolvable angular separation (radians) between objects λ wavelength <i>d</i> diameter of aperture of optical device (e.g. lens, dish antenna etc)	
Spherical adiabatic shock wave	$R \approx \left(\frac{Et^2}{\rho_0}\right)^{\frac{1}{3}}$	<i>R</i> shock radius <i>E</i> energy release <i>t</i> time ρ_0 density of undisturbed medium, e.g. air in front ('upstream') of the shock front	Sedov-Taylor relation. Describes the shock wave resulting from a localized explosion! An adiabatic process is one that occurs without transfer of heat or matter between a system and its surroundings.
Snell's law of refraction	$n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2}$ $n = \frac{\text{speed of light in vaccum}}{\text{speed of light in medium}}$ $\sin \theta_{2} = \frac{n_{1} \sin \theta_{1}}{n_{2}}$ $0 \le \theta \le \frac{1}{2}\pi \therefore \ 0 \le \sin \theta_{2} \le 1 \therefore \ 0 \le \frac{n_{1} \sin \theta_{1}}{n_{2}} \le 1$ $\theta_{1} \le \sin^{-1} \left(\frac{n_{2}}{n_{1}}\right)$	$\begin{array}{c} n_{1} \ \text{refractive index of} \\ \text{medium 1} \\ \theta_{1} \ \text{angle of incidence to} \\ \text{boundary of medium 1} \\ \text{to 2} \\ n_{2} \ \text{refractive index of} \\ \text{medium 2} \\ \theta_{2} \ \text{angle of refraction in} \\ \text{medium 2} \end{array}$	Angles measured from normal to the reflecting surface Total internal reflection at glass : air interface i.e. no refraction if $\theta_i > \sin^{-1}\left(\frac{n_{air}}{n_{glass}}\right)$ $\theta_i > \sin^{-1}\left(\frac{1}{1.52}\right)$ $\theta_i > 41.1^\circ$ This is the critical angle
Law of reflection	$\theta_i = \theta_r$	θ_i angle of incidence	Angles measured from normal to the

		θ_r angle of reflection	reflecting surface.
Fraunhofer diffraction limit	$L \gg \frac{\left(\Delta x\right)^2}{\lambda}$	Δx aperture size λ wavelength L distance of aperture from observer	Beyond this range we can assume waves are planar and not spherical.
Diffraction pattern from a slit of width <i>a</i>	$I(\theta) = \frac{I_0 \sin^2\left(\frac{\pi a \sin \theta}{\lambda}\right)}{\left(\frac{\pi a \sin \theta}{\lambda}\right)^2}$	θ diffraction angle λ wavelength I_0 peak intensity a slit width	Broad '1D' slit Assume uniform illumination normal to slits. Ignore effect of 'height' only width. i.e. assume slit is 'long and thin'. <i>A</i> <i>rectangular slit is a</i> <i>product of these</i> <i>functions.</i>
Diffraction pattern from two thin slits of separation <i>D</i>	$I(\theta) = I_0 \cos^2\left(\frac{\pi D \sin \theta}{\lambda}\right)$	D slit spacing θ diffraction angle λ wavelength I_0 peak intensity	Young's double slits Assume uniform illumination normal to slits.
Diffraction pattern due to a grating of N slits of width $awith separation d$	$I(\theta) = I_0 \left(\frac{\sin\left(\frac{\pi a \sin\theta}{\lambda}\right)}{\frac{\pi a \sin\theta}{\lambda}} \times \frac{\sin\left(\frac{N\pi d \sin\theta}{\lambda}\right)}{N \sin\left(\frac{\pi d \sin\theta}{\lambda}\right)} \right)$	N number of slits θ diffraction angle λ wavelength d slit spacing a slit width I_0 peak intensity	Assume uniform illumination normal to slits.
Gauss' Lens Formula	$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$	<i>u</i> object distance <i>v</i> image distance <i>f</i> focal length of a lens	1/f = Dioptre number. f-number is: $\frac{f}{aperture \text{ diameter}}$ An f-number of 2 would conventionally be written as f/2, which gives the aperture diameter given the lens focal length.
Lensmakers' formula	$\frac{1}{f} = \left(n-1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	f focal length of a lens n refractive index of lens R_1, R_2 radii of curvature of lens surface	
Mach cone shockwave angle	$\sin\theta = \frac{c}{v}$	θ shockwave angle c speed of sound in external medium v velocity of source of wave disturbances	Shock front is only formed when $v > c$. When $v = c$ a broad shockwave is formed, which is the 'sonic boom'.

Kelvin Wedge wave pattern for a vessel moving over deep water	$\theta = \sin^{-1} \frac{1}{3} \approx 19.5^{\circ}$ $\alpha = \tan^{-1} \sqrt{2} \approx 54.7^{\circ}$ $v = \sqrt{\frac{2g\lambda}{4\pi}}$ $\omega^{2} = gk$ $c_{p} = f\lambda = \frac{\omega}{k}$ $c_{g} = \frac{d\omega}{dk} = \frac{1}{2}c_{p}$	θ angle of bow waves α angle of wave-fronts relative to direction of motion v vessel velocity g gravitational field strength λ wavelength f frequency $k = \frac{2\pi}{\lambda}$ wavenumber c phase velocity	$\omega^2 = gk$ is the dispersion relationship for deep water waves Wave packets travel at the group velocity. Information carried by waves can only travel at the group velocity.
		c_{g} group velocity	
Generalized dispersion relationship for interfacial waves between two fluids	$\omega^{2} = \frac{\sigma k^{3} + g(\rho_{1} - \rho_{2})k}{\rho_{2} + \rho_{1} \text{cotanh}(kD)}$ $\omega^{2} = \begin{cases} \frac{\sigma k^{4}D}{\rho_{1}} + gk^{2}D & \tanh(kD) \approx kD \\ \frac{\sigma k^{3}}{\rho_{1}} + gk & \tanh(kD) \approx 1 \end{cases}$ Ripples are when $\tanh(kD) \approx 1$ and $\rho_{1} \gg \rho_{2}$ $c_{p} = \frac{\omega}{k} = \sqrt{\frac{\sigma k}{\rho_{1}} + \frac{g}{k}} = \sqrt{\frac{2\pi\sigma}{\lambda\rho_{1}} + \frac{g\lambda}{2\pi}}$	σ surface tension $ ρ_1 $, $ ρ_2 $ densities D depth of fluid 1 $ k = \frac{2π}{λ} $ wavenumber g gravitational field strength λ wavelength	
	$c_p = \sqrt[4]{\frac{4g\sigma}{\rho_1}}$	Minimum phase velocity of ripples	
Wave transmission and reflection coefficients	$Z_n = \rho_n c_n$ $t = \frac{2Z_1}{Z_1 + Z_2}$ $r = \frac{Z_1 - Z_2}{Z_1 + Z_2}$	Z wave impedance ρ density of medium c wave speed in medium t transmission coefficient r reflection coefficient	If $\psi = \psi_0 e^{i(kx-\omega t)}$ is an incident plane wave $r\psi$ is the reflected wave (moving in the the $-x$ direction) and $t\psi$ is the transmitted wave from the interface of two media of differing wave impedances.
Free-space wave equations for electrical and magnetic fields	$\nabla^{2}\mathbf{E} = \frac{1}{c^{2}} \frac{\partial^{2}\mathbf{E}}{\partial t^{2}}$ $\nabla^{2}\mathbf{B} = \frac{1}{c^{2}} \frac{\partial^{2}\mathbf{B}}{\partial t^{2}}$ $c = \frac{1}{\sqrt{\varepsilon_{0}\mu_{0}}}$	E electrical field B magnetic field c speed of light t time ε_0 permittivity of free space = 8.85 × 10 ⁻¹² m ⁻³ kg ⁻¹ s ⁴ A ² μ_0 permeability of free space = $4\pi \times 10^{-7}$ Hm ⁻¹	c = 2.998×10 ⁸ ms ⁻¹
Wave equation	$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2}$	ψ wave amplitude x displacement t time c wave speed	

Doppler effect	$\Delta f = -\frac{\cos\theta}{\frac{c}{u} + \cos\theta} f$	v velocity away from observer c wave speed f emitted wave frequency Δf frequency shift (from f) of waves arriving at observer.	If $\theta = 0^\circ \Delta f \approx -\frac{u}{c} f$.
	$\lambda_e = \frac{c}{f} \lambda_o = \frac{c}{f + \Delta f}$ $u\cos\theta = \frac{\Delta\lambda}{\lambda_e}$	Wavelength Doppler shift formula.	
Rainbows	$ (n^{2} - 1)^{-2} = \beta + \alpha \left(\frac{f}{10^{15} \text{ Hz}}\right)^{2} $ $ \alpha = -0.3612 $ $ \beta = 1.7587 $ $ \varepsilon = 4 \sin^{-1} \left(\sqrt{\frac{4 - n^{2}}{3n^{2}}}\right) - 2 \sin^{-1} \left(\sqrt{\frac{4 - n^{2}}{3}}\right) $	<i>n</i> refractive index <i>f</i> frequency of light ε elevation of rainbow element of colour corresponding to frequency <i>f</i>	Colour Wavelength in vacuo /nm Red 780-622 Orange 622-597 Yellow 597-577 Green 577-492 Blue 492-455 Violet 455-390 A rainbow is observed at a mean angle of about 41.7° with an angular width of about 1.6°.

5. Thermal physics

Name	Equation	Description of variables	Notes / diagram
Ideal gas laws	pV = nRT	<i>p</i> pressure	$R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1}$
	$V \propto T$ Charles' Law	V volume	
	1	<i>n</i> number of moles of	
	$p \propto \frac{1}{1}$ Boyle's Law	gas	
		<i>R</i> molar gas constant	
		<i>T</i> absolute temperature	
		(in kelvin)	
Equipartition	$U = \sum \frac{1}{2} k_{\rm p} T$	k_{R} Boltzmann's constant	$\frac{1}{2}k_{B}T$ is the energy per
	d.o.f	$= 1.38 \times 10^{-23} \text{ m}^2 \text{kgs}^{-2} \text{K}^{-1}$	'dearee of freedom' of
	. R	T absolute temperature	molecular motion. If a
	$k_B = \frac{1}{N}$	(in Kelvin)	molecule can translate
		R molar gas constant	in three dimensions,
		N_{A} Avogadro's number	vibrate in two modes
		$= 6.02 \times 10^{23}$ molecules	and rotate in two
		per mole	the mean thermal
			energy per molecule is
Moxwell Doltances	3		$2^{N_B I}$
molecular speed	$(m)^{\frac{2}{2}} - \frac{mv^2}{2k_{\rm B}T}$		speed being in the
distribution	$p(v) = 4\pi v^{-} \left(\frac{1}{2\pi k T} \right) e^{-it_{B}^{-}}$	k_B Boltzmann's constant	range v to $v + dv$ is
		$= 1.38 \times 10^{20} \text{ m}^2 \text{kgs}^2 \text{K}^2$	defined as $p(y)dy$
	$n(F) = \frac{2E^{\frac{1}{2}}}{2}e^{-\frac{E}{k_BT}}$	<i>T</i> absolute temperature	
	$\int p(L) = \sqrt{\pi} (k_{0}T)^{\frac{3}{2}} c$		Hence $1 = \int_{0}^{\infty} p(v) dv$
		m molecular mass $n(\cdot)$ probability density	-0
		$p(\dots)$ probability density	
Boltzmann ontrony			
Bolizmann entropy	$S = k_B \ln W$	<i>k</i> Deltzmenn's constant	
	$W = \frac{N!}{N!}$	κ_B BOILZINAINI'S CONSTANT	
	(N-n)!n!	= 1.38×10^{-10} m kgs K	
		arranging N two state	
		systems with <i>n</i> in the	
		'excited' state	
Second Law of	$\Delta S = \Delta S + \Delta S$	ΔS entropy change	For any chemical
Thermodynamics	total system ' Los surroundings	ΔH enthalpy i.e. heat	change, the total
	$\Delta S = \frac{\Delta H}{\Delta H}$	exchanged with	amount of entropy must
	surrounaings T	surroundings	increase
	$\Delta S_{total} > 0$	<i>T</i> absolute temperature	
		(in Kelvin)	
Ratio of specific heat	$\gamma = \frac{C_p}{p}$	c_p constant pressure	$R = 8.314 \text{ Jmol}^{\circ}\text{K}^{\circ}$
Capacilles	c_{v}	specific heat capacity	
	A = RT	c_v constant volume	
	$c_p = c_V + \frac{1}{2}D - \frac{1}{m}$	specific heat capacity	
	int int	D degrees of freedom of	
		molecular motion	
		R molar gas constant	
		<i>m</i> molecular mass	
		<i>i</i> absolute temperature	
Adiabatic changes	nV' - constant		ie no mass or energy is
	pv = constant		exchanged between
	$\Delta W = \frac{1}{(n V_2 - n V_2)}$		system and
	$\gamma - 1^{(r_1 + 2) - r_1 + 1}$		surroundings

Conservation of energy	dU = dQ + dW	U internal energy	
(First Law of Thermodynamics)	dW = -pdV	Q heat energy	
mennodynamics)	$dW = \sigma dA$	W work done by gas	
		<i>p</i> pressure	
		V volume	
		A area	
Constant volume heat	~ ∂O	Q heat energy	Change in gas state
capacity	$C_v = \frac{z}{\partial T}$	T absolute temperature	occurs at constant
	c = C / m	(in Kelvin)	volume
Constant volume heat	$c_v - c_v / m$	<i>m</i> molecular mass	Change in gas state
capacity	$C_{p} = \frac{\partial Q}{\partial r}$	Q neat energy	occurs at constant
	$\partial T _{P}$	<i>I</i> absolute temperature (in Kelvin)	pressure
	$c_P = C_P / m$	m molecular mass	
Clausius-Clapeyron	dp L	p pressure	
equation for the	$\frac{dT}{dT} = \frac{T\Delta V}{T\Delta V}$	ΔV volume change	
boundary in a $p V T$		during phase change	
space		<i>L</i> latent neat absorbed	
opuoo		(in Kelvin)	
Planck radiation	$P(2\pi) = 2hc^2 = 1$	I 'irradiance' (measure	Emmisitivies:
distribution and	$B(\lambda,T) = \frac{1}{\lambda^5} \frac{hc}{\frac{hc}{\lambda+T}}$	of radiation intensity per	$I = \varepsilon \sigma T^4$
body radiation	$e^{\lambda \kappa_B t} - 1$	wavelength)	
body radiation	$I = \int_{0}^{\infty} B(\lambda, T) d\lambda = \sigma T^{4} = \frac{1}{4}uc$	T absolute temperature	$0 \le \varepsilon \le 1$ Block Body $\varepsilon = 1$
	$2\pi^5 k^4$	(in Kelvin)	Albedo $A = 1 - \varepsilon$
	$\sigma = \frac{2\pi \kappa_B}{15 c^2 h^3}$	λ frequency	
	13c n	<i>h</i> Planck's constant	
		$= 6.63 \times 10^{-6} \text{ m}^{-1} \text{kgs}^{-1}$	
		constant	
		$= 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$	
		k_{B} Boltzmann's constant	
		$= 1.38 \times 10^{-23} \text{ m}^2 \text{kgs}^{-2} \text{K}^{-1}$	
		<i>u</i> radiation energy	
Isothermal atmospheric		density.	$P = 9.214 \text{ Imol}^{-1}\text{K}^{-1}$
pressure model	$p = p_0 \exp\left(-\frac{mg}{(h-h_0)}\right)$	p pressure at altitude h	for drv air
	$\begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{R} \mathbf{T}_0 \\ \mathbf{R} \mathbf{T}_0 \end{bmatrix}$	n pressure at	$m = 0.02896 \mathrm{kgmol^{-1}}$
	$T = T_0$	P_0 pressure at	$a = 0.81 \text{ms}^{-2}$
	L = 0	T topporature (Kelvin)	g – 9.011115
		at altitude h	
		T_0 temperature (Kelvin)	
		at altitude h_0	
		R molar gas constant	
		m molar mass of air	
		g gravitational field	
		strength	
Standard Atmospheric	$(L(h-h_{L}))^{\frac{m_{g}}{LR}}$	<i>p</i> pressure at	$n_0 = 0 \text{ km}$ $h_1 = 11 \text{ km}$ $h_2 = 20 \text{ km}$ $h_2 = 32 \text{ km}$
incorporating lapse rate	$p = p_0 \left 1 - \frac{2(r + h_0)}{T} \right $	altitude h	$h_2 = 20 \text{ km} + h_3 = 52 \text{ km}$ $h_4 = 47 \text{ km} + h_5 = 51 \text{ km}$
(i.e. change of		p_0 pressure at	$h_6 = 71 \text{ km} h_7 = 85 \text{ km}$
temperature with	$I = I_0 - L(h - h_0)$	altitude h_0	
aititude)	$L \neq 0$	T_0 temperature (Kelvin)	$L_0 = 0.5 / \text{KM}$
	n -1012 25mbor	at altitude h_0	$L_1 = 0.7 \text{ km}$ $L_2 = -1^{\circ}/\text{km}$
	$p_0 = 1015.25$ mbar	L lapse rate	$L_3 = -2.8^{\circ}/km$
	$T_0 = 288.15^{\circ} \text{ K}$		$L_4 = 0^{\circ}/km$
			$L_5 = 2.0 / \text{KIII}$ $L_6 = 2^{\circ}/\text{K}$

Vapour pressure	$p_{vap} = UE_s$	p_{vap} vapour pressure	$m_d = 0.02896 \text{kgmol}^{-1}$
	$\int (T) (T)$	U relative humidity	$m_{\rm m} = 0.01802 \rm kgmol^{-1}$
	$E_s = a \exp \left\{ \left\ b - \frac{1}{234.5} \right\ \frac{1}{T + 257.14} \right\}$	E_s Saturation vapour	$a = 0.81 \text{ms}^{-2}$
	a = 6 1121	pressure	g = 9.01118 0 < U < 1
	h = 18.678	<i>T</i> temperature (kelvin)	02021
	$\rho = \frac{m_d}{m_d} \left[p - U \left(1 - \frac{m_{vap}}{m_{vap}} \right) E_s(T) \right]$	$m_{_{vap}}$ molar mass of	
	$RT(1 (m_d)^{3})$	Vapour R molar das constant	
	$dp = -\rho g dh$	ρ overall vapour plus	
		dry air density	
		g gravitational field	
		<i>p</i> pressure	
		<i>h</i> altitude	
Dew point	$h\left(1 n U + aT\right)$	U relative humidity	i.e. temperature at which
	$T = \frac{b\left(\frac{110}{10} + \frac{1}{b+T}\right)}{2}$	T temperature in degrees Celcius	and condensation
	$a - \ln U - \frac{aT}{a}$		occurs
	b+T		
	a = 17.625		
Boiling point	b = 243.04	T boiling point at	-1
	$T = \left(\frac{1}{2} - \frac{R}{2} \ln\left(\frac{p}{2}\right)\right)$	pressure p given known	$\Delta H_{o} = 40.7 \text{ kJ mol}$ at
	$\begin{pmatrix} T_* & \Delta H & \langle p_* angle \end{pmatrix}$	boiling point T_* at	100 C and 1013.25
		pressure p_*	pressure.
		R molar gas constant	
		ΔH latent heat of	
Heat capacity and	$\Delta E = mc\Delta T$	ΔE energy required to	
energy change		raise the temperature of	
		a mass m by ΔT	
		c is the specific heat	
		capacity	
Kelvin, Celsius and	$T_{\rm rr} = T_{\rm c} + 273.15$		
Fahrenheit temperature	$T = \frac{9}{2}T + 32$		
scales Fluid pressure	n =		
	p - pgn	ρ fluid density	
		g gravitational field	
		strength	
		h height of fluid column	
Fourier's law of heat	$a = -k \frac{\partial T}{\partial t}$	q_x heat flux (Wm ⁻²) in x	$\frac{\partial T}{\partial T}$ temperature
transier via conduction	\mathbf{Y}_{x} ∂x	direction, k thermal	∂x

		conductivity	gradient
Heat diffusion equation	$\frac{\partial^2 T}{\partial x^2} = \frac{1}{D} \frac{\partial T}{\partial t}$ $l = \frac{1}{\sqrt{2\pi} d^2 n}$ $D \approx \frac{2}{3} l \langle c \rangle$ $\eta \approx \frac{1}{2} \rho l \langle c \rangle$	$\begin{array}{c} T \ \text{temperature} \\ x \ \text{direction} \\ t \ \text{time} \\ D \ \text{diffusion coefficient} \\ l \ \text{mean free molecular} \\ path \\ d \ \text{molecular diameter} \\ \left< c \right> \ \text{mean molecular} \\ \text{speed} \\ \rho \ \text{density} \\ \eta \ \text{viscosity} \end{array}$	These transport properties assume the kinetic theory i.e. matter is comprised of molecules in constant, largely random, motion. Heat, temperature is a measure of the energy of these random movements.
Newton's law of cooling	$\frac{dQ}{dt} = hA(T - T_a)$	Q thermal energy /J h heat transfer coefficient, A surface area, T temperature of body, T_a ambient temperature of environment	If $dQ = -mcdT$ m = thermal mass, $c =specific heat capacity\frac{dT}{dt} = -\frac{hA}{mc}(T - T_a)T = T_a + (T_0 - T_a)e^{-\frac{hAt}{mc}}$

Name	Equation	Description of variables	Notes / diagram
Photon energy	E = hf	<i>h</i> Planck's constant = $6.63 \times 10^{-34} \text{ m}^2 \text{kgs}^{-1}$ <i>f</i> frequency	
Mass-energy relation	$\Delta E = \Delta m c^2$	ΔE energy change Δm mass change c speed of light	Mass change in a nuclear reaction equates to an energy change - essentially due to the changes in nucleon binding energies $c = 2.998 \times 10^8 {\rm ms}^{-1}$
Photon momentum	$p = \frac{h}{\lambda}$ $p = \hbar k$ $k = \frac{2\pi}{\lambda}$	<i>p</i> momentum <i>h</i> Planck's constant = 6.63 x 10 ⁻³⁴ m ² kgs ⁻¹ $\hbar = \frac{h}{2\pi}$ <i>k</i> wavenumber	Note although photons have momentum, they don't have mass!
Heisenberg's uncertainly principle	$\Delta p \Delta x \ge \frac{1}{2} \hbar$ $\Delta E \Delta t \ge \frac{1}{2} \hbar$	$\Delta p \text{ momentum uncertainty} \Delta x \text{ positional uncertainty} \Delta E \text{ energy uncertainty} \Delta t \text{ time uncertainty} h Planck's constant} = 6.63 x 10-34 m2kgs-1 \hbar = \frac{h}{2\pi}$	
Schrödinger's wave equation	$-\frac{\hbar}{2m}\frac{\partial^2\psi}{\partial t^2} + V\psi = E\psi \text{time independent}$ $-\frac{\hbar}{2m}\frac{\partial^2\psi}{\partial t^2} + V\psi = i\hbar\frac{\partial\psi}{\partial t} \text{time dependent}$	$ \psi ^{2} dx \text{ is the probability of a particle 'existing'}$ within x position x to $x + dx$ h Planck's constant = 6.63 x 10 ⁻³⁴ m ² kgs ⁻¹ $\hbar = \frac{h}{2\pi}$ t time, V potential energy E total energy, m mass 'Classic' (!) textbook solutions are - Free particle - Particle in a box - Particle in a potential well - Particle in a potential well - Particle 'tunnelling' through a barrier - Harmonic oscillator	
Particle in a box	$\psi(x, y, z) = \left(\frac{8}{abc}\right)^{\frac{1}{2}} \sin \frac{l\pi x}{a} \sin \frac{m\pi y}{b} \sin \frac{n\pi z}{c}$ $E_{nlm} = \frac{h^2}{8m} \left(\frac{l^2}{a^2} + \frac{m^2}{b^2} + \frac{n^2}{c^2}\right)$	Solutions to time indep equation for a particle dimensions $a \times b \times c$ n,l,m are integers ≥ 1 E_{nlm} are particle energy energy state n,l,m	pendent Schrödinger of mass m in a box of ies characterized by

Bohr model of a	$L_n = \mu r_n v_n = n\hbar$	L_n orbital angular momentum of electron,
Hydrogenic atom	$\mu = \frac{m_e m_{nuc}}{m_e m_{nuc}} \approx m$	nucleus two-body system
'Orbital angular	$m_e + m_{nuc}$	m electron mass 9.11 x 10 ⁻³¹ kg
auantized'	$\alpha \approx \frac{1}{2} = \frac{e^2}{1}$	m_{e} nucleus mass = Au.
	$\alpha \sim \frac{1}{137} = 4\pi\varepsilon_0\hbar c$	$u = 1.66 \times 10^{-27} \text{kg},$
Model is a quasi-	$a = \frac{\alpha}{\alpha}$	A is the atomic mass number
Electrons follow	$a_0 = \frac{1}{4\pi R_{\infty}}$	μ reduced mass
circular orbits, but at	$n^2 m_e$	r_n radius of nth electron 'orbit'
fixed (quantized)	$r_n = \frac{1}{Z\mu} a_0$	v_n velocity of electron in n ⁽¹⁾ 'circular orbit'
angular momentum.	$R hc \mu Z^2$	c speed of light 2.998 x 10°ms $^{\circ}$
This must be an	$E_n = -\frac{\omega}{m n^2}$	h Planck's constant = 6.63 x 10 ⁻³⁴ m ² kgs ⁻¹
analogy, since an accelerating point-like	me^4	_t h
electron would	$R_{\infty} = \frac{m_e^2}{8h^3\varepsilon^2c}$	$n = \frac{1}{2\pi}$
radiate, and hence	$1 D (T^2 (1 1))$	α Fine structure constant
rapidly lose energy.	$\frac{1}{2} = \frac{R_{\infty} \mu Z}{m} \left(\frac{1}{r^2} - \frac{1}{r^2} \right)$	R_{∞} Rydberg constant
	$\lambda_{mn} = m_e (n = m)$	Z Atomic number (number of protons in nucleus)
		ε_0 permittivity of free space
		$= 8.85 \times 10^{-12} \text{ m}^{-3} \text{ kg}^{-1} \text{ s}^{4} \text{ A}^{2}$
		$\lambda_{_{mn}}$ wavelength of photon produced/absorbed
		resulting from an electron energy state
		change between 'orbits' m to n
'Liquid drop' nuclear	$Z = Z^2 = (N-Z)^2$	B nuclear binding energy
binding energy model	$B = a_{v}A - a_{s}A^{\frac{2}{3}} - a_{c}\frac{2}{A^{\frac{2}{3}}} - a_{a}\frac{(1+2)}{A} + \delta A^{-\frac{2}{4}}$	A Atomic mass number
	$\begin{bmatrix} a & 7 & \text{N} & \text{oth even} \end{bmatrix}$	Z Atomic number (number of protons)
	$\delta = -a$ Z N both odd	M Number of neutrons $M(Z, A)$ atomic mass
	$\begin{bmatrix} 0 \\ - \end{bmatrix} \begin{bmatrix} -a_p \\ 0 \end{bmatrix}$ otherwise	c speed of light 2.998 x 10^8ms^{-1}
		$m_{\rm H} = 1.673 \times 10^{-27} \rm kg$
	$m = Zm_H + Nm_n - B$	$m_n = 1.675 \times 10^{-27} \text{ kg}$
		$a_V \approx 15.8 \text{MeV}$, $a_S \approx 17.8 \text{MeV}$,
		$a_c \approx 0.71 \text{MeV}$, $a_A \approx 23.7 \text{MeV}$, $a_P \approx 34 \text{MeV}$
		$1 \text{eV} = 1.60 \times 10^{-19} \text{J}$
Dedicactive decay		1 MeV = 1.60×10^{-13} J
Radioactive decay	$\frac{dN}{dN} = -\lambda N$	IV Number of radioactive atoms at time t that have not yet decayed
	dt	N_0 Number of radioactive atoms at $t = 0$
	$\lambda = \frac{\mathrm{III}\lambda}{T}$	λ decay constant
		$T_{rac{1}{2}}$ half life. The time taken for $N=rac{1}{2}N_0$
	$N = N_{\text{out}} \left(\frac{t}{1} + 2 \right)$	t time
	$IV = IV_0 \exp\left(-\frac{1}{T_{\perp}} \ln 2\right)$	
Geiger-Nuttall rule	$\log \lambda = A + B \log x$	λ decay constant
		A, B empirical parameters or radioactive
		sample, and medium in which they are
		decaying into (e.g. air, paper, metal, lead)
Alpha decay	$Z^{+N}_{Z}X \rightarrow Z^{+N-4}_{Z-2}Y + \alpha$	Alpha decay. Atomic number (Z) reduces by
	$^{229}_{00}$ Th $\rightarrow ^{225}_{39}$ Ra + α	2. Mass number <i>reduces</i> by 4 Kinetic energy of alpha particle approximately
	50 55 C	5MeV. (100,000 x ionization energy for an air
		molecule)

Beta decay	${}^{Z+N}_{Z}X \rightarrow {}^{Z+N}_{Z+1}Y + \beta$ ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + \beta$	Beta decay. Atomic number (Z) increases by 1 Mass number stays the same Kinetic energy of beta particles 0.01 to 10MeV i.e. a spectrum of energies $[1MeV = 1.60 \times 10^{-13} J]$
Nuclear fission	${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} \rightarrow {}^{141}_{56}\text{Ba} + {}^{92}_{36}\text{Kr} + 3{}^{1}_{0}\text{n}$	174 MeV per reaction 71.5 million MJ /kg of fuel coal 24 MJ per kg gas 46 MJ per kg sandwich 10 MJ per kg $1 \text{MeV} = 1.60 \times 10^{-13} \text{ J}$
Nuclear fusion	$^{2}_{1}D + ^{3}_{0}T \rightarrow ^{4}_{2}\text{He} + ^{1}_{0}n$	17.6 MeV per reaction 338 million MJ /kg of fuel $[1MeV = 1.60 \times 10^{-13} J]$

	87 Fr Francium	55 CS Cesium 132.90545198(6)	37 Rb Rubidium 85.4678(3)	19 K Potassium 39.0983(1)	11 Na Sodium 22.98976928(2)	3 Li Lithium [6.933.6.997]	1 1 Hydrogen
Lantha Seri Actin Seri	88 Ra Radium	56 Ba Barium 137.327(7)	38 Sr Strontium 87.62(1)	20 Ca Calcium 40.078(4)	12 Mg Magnesium [24.304.24.307]	4 Be Beryllium	2A
es Lanth es Acti	89-103	57-71	39 Y Yttrium 88.90584(2)	21 Sc Scandium 44.955908(5)	3 3 3 3 B	Atomic massv Masses expres depending on	
anum 140. 58 547(7) 140. 590 140. 77 140. 77 140. 77 140. 711 140. 71 140. 140. 140. 140. 140. 140. 140. 140	104 Rf Rutherfordium	72 Hf Hafnium 178.49(2)	40 Zr Zirconium 91.224(2)	22 Titanium 47.867(1)	lived isotope for eleme 4 4B	alues reflect the IUPAC sed in [a,b]format show the physical and chemi sed in < > format are th	
59 59 59 7asec 7ase	105 Db Dubnium	73 Ta Tantalum 180.94788(2)	41 Nb Niobium 92.90637(2)	23 V Vanadium 50.9415(1)	5 5 5 5 8	ccepted values as of 09 the lower and upper lin al history of the elemer	
dymiur dymiur oree a 92 92 92 92 92 92 92 92 92 92 92 92 92	106 Sg Seaborgium	74 W Tungsten 183.84(1)	42 Molybdenum	24 Chromium 51.2961(6)	6B 6B	/2013. hit of atomic mass It.	
A Prom 2423) Neprom	107 Bh Bohrium	75 Re Rhenium 186.207(1)	43 Tc Technetium	25 Mn Manganese 54.938045(5)	7 VIIB 7B		Peri
All Point Same Same Same Same Same Same Same Same	108 HS Hassium	76 OS 05mium 190.22(3)	44 Ruthenium 101.07(2)	26 Fe Iron 55.845(2)	* _ ∞		odic 1
Ante Ante Ante Ante Ante Ante Ante Ante	109 Mt Meitnerium	77 Ir Iridium 192.217(3)	45 Rh Rhodium 102.90550(2)	27 Co Cobalt 58.933194(4)	8 VIII - 8	Sy	
64 96 96 242-	110 DS Damstadtiur	78 Pt Platinum 195.084(9)	46 Palladium 106.42(1)	28 Nickel 58.8934(4)	10	mbol	of the
Ad 65 Jinium Te 128(3) 158 178 178 178 178 178 178	111 Rg Roentgenium	79 Au Gold 196.966569(5)	47 Ag Silver 107.8882(2)	29 Cu Copper 63.546(3)	18 8 11) Eler
Fb 66 1 rbium Dyst 2017 98 98 2017 Calit	112 Cn Copernicium	80 Hg Mercury 200.592(3)	48 Cd Cadmium 112.414(4)	30 Zn ^{Zinc} ^{85.38(2)}	12 21B		nents
67 2500(1) 164 2500(1) 164 164 164 164 164 164 164 164	113 Uut Ununtrium	81 Thallium [204.382,204.385	49 In Indium 114.818(1)	31 Ga Gallium ®.723(1)	13 Aluminum 28.9815398(8)	5 B Boron [10.806:10.821]	13 A
	114 Flerovium	82 Pb Lead 1 2072(1)	50 Sn ^{Tin}	32 Germanium 72.630(8)	14 Silicon 128.084;28.086	6 Carbon [12.0096;12.0116	4 4 4
5 bium 16 7 22503 101 101 101 101 102 102 102 102 102 102	115 Ununpentiun ^{Ununpentiun}	83 Bi Bismuth 208.98040(1)	51 Sb Antimony 121.760(1)	33 As Arsenic 74.921595(6)	15 Phosphorus	7 Nitrogen	5A 15
70 36422(2) 102 102 102 102 102 102 255b ⁻	116 LV Livermorium	84 Polonium	52 Tellurium	34 Selenium 78.971(8)	16 S Sulfur [32.059;32.076]	8 Oxygen 115.99903;15.9997	16 6A
71 76 103 103 280- 103 103 103 103 103 103 103 103	Ununseptium	85 At Astatine	53 Iodine	35 Br Bromine	17 Chlorine	9 Fluorine	17 VIIA 7A
etium 9968(1) 907	118 Uuo Ununoctium	Radon Radon	54 Xenon ^{Xenon} ¹³¹ 293(6)	36 Kr Krypton 83.798(2)	18 Argon ^{Argon}	10 Neon 20.1797(6)	18 VIIIA 8A Heium 4002002(2)

© 2013 Todd Helmenstine chemistry,about.com sciencenotes.org

7. Relativity, cosmology

Name	Equation	Description of variables	Notes / diagram
Bode's law for the	$-4+3\times 2^n$	D_{AU} planetary orbital	1AU (Astronomical unit) = mean
solar system	$D_{AU} =$	radius /AU	Earth-Sun separation = 1.496
	10	n=0 Venus	x10''m
		n = 1 Earth	
		n = 2 Mars	
		n = 3 Ceres	
		n = 4 Jupiter	
		n = 5 Saturn	
		n = 6 Uranus	
		n = 7 Neptune	
Cepheid variable	Ī	\overline{L} mean Conhoid	$L \sim 2.85 \times 10^{26} W$
luminosity	$\log_{10} \frac{L}{L} \approx 1.15 \log_{10} T_d + 2.47$	luminosity	$L_{\odot} \approx 3.83 \times 10$ W
relationship	L_{\odot}	I Solar luminosity	
		T_d pulsation period /days	T I
HUDDIE'S IAW	$v = H_0 d$		I ne entire universe is expanding,
			so <i>a</i> call be measured from any
			$1Mpc = 3.09 \times 10^{22} m$
		= 67.8 kms /Mpc	10 mpc = 3.03 x 10 m.
		d distance of galaxy	
Gravitational lensing	$d_{O2} = 4GM \left(d_{OS} - d_{OL} \right)$	$G = 6.67 \times 10^{-11} \mathrm{Nm^2 kg^{-2}}$	Light is bent by the presence of
(Einstein rings)	$\theta = \frac{1}{c^2} \left[\frac{d}{d} \frac{d}{d} \right]$	M lens mass	holos Objects such as black
		c speed of light 2.998 x	hebind the 'lens mass' will
		10 ⁸ ms ⁻¹	appear to be distorted into a ring
		d_{os} distance from	formation.
		observer to source of	
		a_{OL} distance from	
		observer to lensing mass	
Sehwarzschild radius			
of a Black Hole	$R_s = \frac{2GM}{2} \approx 3\frac{M}{M}$ km	$G = 6.67 \times 10^{-11} \mathrm{Nm^2 kg^{-2}}$	M_{\odot} solar mass = 1.99 x 10 ⁻⁵ kg.
	c M_{\odot}	M black hole mass	I ne Schwarzschild radius is the
		c^{-1} speed of light 2.996 x	aravitational escape velocity
		10 1115	equals the speed of light.
Escape velocity	$-$, $_{2}$ GMm	$G = 6.67 \times 10^{-11} \mathrm{Nm^2 kg^{-2}}$	For Earth, the escape velocity is
	$E = \frac{1}{2}mu^2 - \frac{1}{r}$	M mass of (spherical)	$2 \times 6.67 \times 10^{-11} \times 5.97 \times 10^{24}$
	CMm	object	$u > \frac{2 \times 0.07 \times 10^{-0.07 \times 10^{-0.01$
	$E_{R} = \frac{1}{2}mu^{2} - \frac{GMm}{2}$	<i>R</i> radius of object	V 0.38×10
		<i>u</i> launch velocity	$u > 11.2 \mathrm{kms}^{-1}$
	$E_{\infty} = \frac{1}{2}mv^2$	r radius from object	
	$v > 0 \Longrightarrow E_n > 0$	centre	
		m mass of object	
	$\therefore \mu > \sqrt{\frac{2GM}{2}}$	escaping	
	R	E total energy of	
		escaping object	

Equations of static	$\frac{dM}{dM} = 4\pi \alpha r^2$	<i>M</i> mass within radius <i>r</i>	
(i.e. time independent)	dr dr	ρ density	
structure of stars	$dp _ G\rho M$	$G = 6.67 \times 10^{-11} \mathrm{Nm^2 kg^{-2}}$	
	$\frac{1}{dr} = \frac{1}{r^2}$	L luminosity	
	dL $4\pi cr^2 c$	ε power generated per	
	$\frac{dr}{dr} = 4\pi p r \varepsilon$	T temperature /K	
	$dT - 3\kappa\rho L$	κ mean opacity	
	$\frac{1}{dr} = \frac{1}{16\sigma T^3} \frac{1}{4\pi r^2}$	<i>p</i> pressure	
	$dT = \gamma - 1 T dp$	σ Stefan-Boltzmann	
	$\frac{dr}{dr} = \frac{r}{\gamma} \frac{r}{p} \frac{dr}{dr}$	constant	
	ur y pur	$= 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$	
		$\gamma = \frac{c_p}{c_v}$ ratio of constant	
		pressure and constant	
		volume heat capacities	
Ones itetienel Dedekitt			
Gravitational Redshift	$\frac{f_{\infty}}{f_{\infty}} = \sqrt{1 - \frac{2GM}{1 - \frac{2GM}{$	f_{∞} frequency at range	
	$f_r \sqrt{r} rc^2$	$r = \infty$ from mass centre	
		f_r frequency at range r	
		$G = 6.67 \times 10^{-11} \mathrm{Nm^2 kg^{-2}}$	
		M mass	
		c speed of light 2.998 X	
Redshift	$\lambda - \lambda$	λ observed wavelength	
	$z = \frac{n_o - n_e}{\lambda}$	λ_{o} emitted wavelength	
Black hole	λ_e	λ_e ennited wavelength h Planck's constant –	1.00 1.0301
temperature	$T = \frac{hc^3}{10^{-7}} \approx 10^{-7} \frac{M_{\odot}}{10^{-7}}$	$n = 10^{-34} \text{ m}^2 \text{kgs}^{-1}$	$M_{\odot} = 1.99 \times 10^{-5}$ kg
	$8\pi GMk_B M$. h	
		$\hbar = \frac{1}{2\pi}$	
		k_p Boltzmann's constant	
		$= 1.38 \times 10^{-23} \text{ m}^2 \text{kgs}^{-2} \text{K}^{-1}$	
		$G = 6.67 \times 10^{-11} \mathrm{Nm^2 kg^{-2}}$	
		M black hole mass	
		M_{\odot} solar mass	
		c speed of light 2.998 x	
		10 ⁸ ms ⁻¹	
		T temperature /Kelvin	

Lorentz space-time	$(1)^{2}$	v velocity of frame S'	S,S' are Cartesian x, y, z frames
transformations	$\gamma = \left 1 - \frac{V}{2} \right $	relative to x direction of	of reference.
	$\begin{pmatrix} c^2 \end{pmatrix}$	frame S	
	$x = \gamma (x' + vt')$ $y = y'$ $z = z'$	$c = 2.998 \times 10^8 \mathrm{ms}^{-1}$	Relatively speaking, S is the
		x, y, z coordinates in	'stationary frame' and S' is the
	$t = \gamma \left(t' + \frac{v}{v} r' \right)$	frame S	'moving frame'. (But obviously
	$\left(\begin{array}{c} r \\ r $	r' v' z' coordinates in	the converse is true from the
		from S	perspective of S').
		t time in frame S	Assume C and Clara sainsident
		t' time in frame S'	Assume 5 and 5 are coincident $at \neq 0$
			(which may not hat t'=0)
Relativistic velocity	1.	w volocity of frame S'	S' = Cartesian r y g frames
transformations	$u_x = \frac{u_x + v}{v_x + v}$	v velocity of frame S	3,3 are cartesian x, y, z marines
transformations	$1+u'_xv/c^2$	frame S	of reference.
	<i>u</i> ′		$\left(1 v^2\right)^{-\frac{1}{2}}$
	$u_{y} = \frac{y}{x(1 + x/x/x^{2})}$	$c = 2.998 \times 10 \text{ ms}$	$\gamma = \left(1 - \frac{1}{c^2}\right)$
	$\gamma(1+u_xv/c)$	u_x, u_y, u_z velocities in S	
	u'_{z}	frame	
	$u_z = \frac{1}{\gamma(1 + u' v/c^2)}$	u'_{x}, u'_{y}, u'_{z} velocities in S'	
	$\gamma(1+\alpha_x)/c$	frame	
Relativistic	$\mathbf{p} = \gamma m \mathbf{u}$	p . $p = \mathbf{p} $ momentum in	
momentum & energy	$E = \chi mc^2$	S frame	
transformations	\mathbf{T}^{2}	n' momentum in S'	
	$E^2 - p^2 c^2 = \text{constant}$	$p_{x,y,z}$ momentum in S	
	(n' + vE')	frame	
	$p_x = \gamma \left(p_x + \frac{1}{c^2} \right)$	<i>m</i> mass	
	n = n' $n = n'$	u velocity	
	$p_y - p_y p_z - p_z$	v velocity of frame S	
	$E = \gamma (E' + v p'_x)$	$\left(\begin{array}{c} v - \left(1 v^2 \right) \right)^2 \right)$	
		$\gamma = \left(1 - \frac{1}{c^2}\right)$	
		$a = 2.008 \times 10^8 \mathrm{ms}^{-1}$	
		$\mathcal{L} = 2.998 \times 10$ IIIS	
Polativistic Dopplor			
shift	$\frac{f}{1+v} = \gamma \left(1+\frac{v}{\cos\theta}\right)$	anticlockwice from	
onne	f''(c''')	horizontal) in S frame	
		v velocity of S'	
		$c = 2.008 \times 10^8 \text{ ms}^{-1}$	
		$t = 2.990 \times 10$ IIIS f' frequency emitted in	
		S' fromo	
		f froquency received in	
Polativistic observation		S Irame	
	$\cos\theta = \frac{\cos\theta + v/c}{c}$		
	$1+(v/c)\cos\theta'$	A' emission angle of light	
		in S'	
		v velocity of S' relative to	
		S	
		$c = 2.998 \times 10^8 \mathrm{ms}^{-1}$	
1		$c = 2.770 \times 10 \text{ mb}$	1

The Solar System has the following parameters. (Woan, 2000 pp176). All orbits are assumed to be elliptical about the sun. Note

and

In SI units:

 $\frac{M_\odot}{M_\oplus} \approx 332,948$ $R_\oplus \approx \frac{\rm AU}{23,455}$

M_{\odot}	=	$1.9891 \times 10^{30} \text{ kg}$
R_{\odot}	=	$6.960 \times 10^8 \mathrm{m}$
M_\oplus	=	$5.9742 \times 10^{24} \text{ kg}$
R_\oplus	=	$6.37814\times10^6~{\rm m}$
1AU	=	$1.495979 \times 10^{11} \ {\rm m}$

Object	M/M_{\oplus}	a /AU	ε^4	θ_0	β	α	R/R_{\oplus}	T_{rot} / days	P/Yr
Sun	$332,\!837$	-	-	-	-	-	109.123		-
Mercury	0.055	0.387	0.21	*	7.00	0	0.383	58.646	0.241
Venus [†]	0.815	0.723	0.01	*	3.39	0	0.949	243.018	0.615
Earth	1.000	1.000	0.02	*	0.00	0	1.000	0.997	1.000
Mars	0.107	1.523	0.09	*	1.85	0	0.533	1.026	1.881
Jupiter	317.85	5.202	0.05	*	1.31	0	11.209	0.413	11.861
Saturn	95.159	9.576	0.06	*	2.49	0	9.449	0.444	29.628
$Uranus^{\dagger}$	14.500	19.293	0.05	*	0.77	0	4.007	0.718	84.747
Neptune	17.204	30.246	0.01	*	1.77	0	3.883	0.671	166.344
Pluto [†]	0.003	39.509	0.25	*	17.5	0	0.187	6.387	248.348

where β is the orbital inclination /degrees. In all cases the semi-major axis pointing direction is

$$\mathbf{d} = d_x \hat{\mathbf{x}} + d_y \hat{\mathbf{y}} + d_y \hat{\mathbf{z}} = \cos \beta \hat{\mathbf{x}} + \sin \beta \hat{\mathbf{z}}$$

* For the current orbital polar angle θ_0 (and indeed more accurate values for solar system parameters) see the website of the Jet Propulsion Laboratory (JPL) http://ssd.jpl.nasa.gov/

[†]These planets rotate clockwise about their own internal polar axis. ("Retrograde"). All the other planets rotate anti-clockwise about their own internal axis. All the planets orbit the sun in an anticlockwise direction.

⁴http://nineplanets.org/data.html

8. Mathematics

Name	Equation	Notes / diagram
Trigonometry &	$x = r \cos \theta$	$\cos\theta$ is the x coordinate of the unit
Pythagoras'	$x = r \cos \theta$	circle
theorem	$y = r \sin \theta$	
	$r = \sqrt{x^2 + y^2}$	$\sin \theta$ is the <i>y</i> coordinate.
	$\sin^2\theta + \cos^2\theta = 1$	θ is measured anticlockwise from the x
	$\tan\theta = \frac{\sin\theta}{2}$	axis.
	$\cos \theta$	
	$\sin(A\pm B) = \sin A \cos B \pm \cos A \sin B$	
	$\cos(A\pm B) = \cos A \cos B \mp \sin A \sin B$	
	$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$	
Special triangles	$\sin 30^\circ = \frac{1}{2}$ $\sin 60^\circ = \frac{\sqrt{3}}{2}$	
	$\cos 60^{\circ} = \frac{1}{2} \cos 30^{\circ} = \frac{\sqrt{3}}{2}$	
	$\tan 30^{\circ} = \frac{1}{\sqrt{3}} \tan 60^{\circ} = \sqrt{3}$	
	$\sin 45^\circ = \frac{1}{\sqrt{2}} \cos 45^\circ = \frac{1}{\sqrt{2}} \tan 45^\circ = 1$	
Laws of indices	$x^a x^b = x^{ab}$	
	$\left(x^{a} ight)^{b}=x^{ab}$	
	$x^{-a} = \frac{1}{x^a}$	
	$\sqrt[n]{x} = x^{\frac{1}{n}}$	
Laws of	$y = \log x \rightarrow x = h^y$	Base $b > 0$
logarithms	$\log_{b} x + \log_{b} y = \log_{b} xy$	
	$\log_b x + \log_b y = \log_b xy$ $\log_b x - \log_b y = \log_b \frac{x}{2}$	
	$\log_b x = \log_b y = \log_b y$	
	$\log_b x = n \log_b x$	
	$x = b^{\log_b x}$	
	$\log_{10} x = \frac{\log_{10} x}{\log_{10} x} = \frac{\log_{c} x}{\log_{c} x}$	
	$\log_b x = \log_{10} b = \log_c b$	
De-Moivre's	$e^{i\theta} = \cos\theta + i\sin\theta$	
Taylor &	23	
Maclaurin	$f(x) = f(0) + f'(0)x + f''(0)\frac{x}{2!} + f^{(3)}(0)\frac{x}{3!} + \dots$	
	$f(x+h) = f(h) + f'(h)x + f''(h)\frac{x^2}{2!} + \dots$	
Binomial	(n) (n) (n) (n)	Binomial expansion
expansion	$ (a+b)^{n} = \binom{n}{0} a^{0} b^{n} + \binom{n}{1} a^{1} b^{n-1} + \binom{n}{2} a^{2} b^{n-2} + \dots + \binom{n}{n} $	<i>n</i> integer, >0
	$\binom{n}{n} = \frac{n!}{n!}$	
	$\left(r \right) (n-r)!r!$	Generalized binomial expansion
	$(1+x)^n = 1 + nx + n(n-1)x + n(n-1)(n-2)\frac{x^2}{2!} + \dots$	x < 1
	$+n(n-1)(n-2)(n-3)\frac{x^3}{2}+$	
	3!	

Arithmetic	$u_n = a + (n-1)d$	
progression	$u_1 = a$	
	$u_{n+1} - u_n = d$	
	$S_{n} = \sum_{i=1}^{n} u_{i} = \frac{1}{2}n(u_{1} + u_{n})$	
Geometric	$u_n = ar^{n-1}$	If $ r < 1$
progression	$u_1 = a$	$S \rightarrow a$
	$\frac{u_{n+1}}{r} = r$	$\int_{\infty}^{\infty} (1-r)$
	u_n	
	$S_n = a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(1 - r^n)}{1 - r}$	
Summation formulae	$\sum_{n=1}^{N} n = \frac{1}{2}n(n+1)$	
	$\sum_{n=1}^{N} n^2 = \frac{1}{6}n(n+1)(2n+1)$	
	$\sum_{n=1}^{N} n^{3} = \frac{1}{4} n^{2} (n+1)^{2}$	
Triangle	$A = \frac{1}{2}bh = \frac{1}{2}ab\sin C$ Area of a triangle	<i>b</i> is base of triangle
	$\frac{a}{b} = \frac{b}{c}$	h perpendicular height
	$\sin A \sin B \sin C$ Sine and Cosine rules	A, B, C opposite angles to sides
Circle	$a^{2} = b^{2} + c^{2} - 2bc\cos A$	Circle centre (a, b) and radius r
Oncie	$(x-a) + (x-b) = r^2$	Circumference C and area A
	$C = 2\pi r$	Arc angle (radians) θ and area a
	$A = \pi r^2$	
	$s = r\theta$	
Filippo	$a = \frac{1}{2}r^2\theta$	
Ellipse	$\frac{(x-x_0)^2}{x_0} + \frac{(y-y_0)^2}{x_0} = 1$	Geometric centre (x_0, y_0)
	$a^2 b^2$	Area A
Cylinder	$A = \pi ab$ $A - 2\pi rh + 2\pi r^{2}$	Area A and volume V
	$V = \pi r^2 h$	h height or length of cylinder
Cone	$A = \pi r l$	<i>l</i> slant height
	$V = \frac{1}{3}\pi r^2 h$	r radius of base
Frustum	$V = \frac{1}{2} b \left(A + \sqrt{aA} + a \right)$	Top and base areas $a_{\cdot}A$
	$V = \frac{1}{3}n(A + \sqrt{u}A + u)$	Perpendicular height <i>h</i>
Stirling's Formula	$n! \approx n^{n+\frac{1}{2}} e^{-n} \sqrt{2\pi}$	
	$\ln(n!) \approx n \ln n - n$	
Combinatorics	$P = \frac{n!}{n!}$	n objects, p repeats of type A, q
	<i>p</i> ! <i>q</i> ! <i>r</i> !	repeats of type B etc.
	$^{n}C_{r} = \frac{n!}{(n-1)!}$	${}^{n}C_{r}$ is umber of <i>combinations</i> of <i>r</i> distinct
	(n-r)!r!	objects from a population of n distinct
	$^{n}P_{r} = \frac{n!}{(n-r)!}$	objects i.e. order of subset doesn't matter.
	(" ').	objects from a population of n distinct
		objects i.e. order of subset does matter.

Quadratic	$y = ax^2 + bx + c$	Quadratic formula
equations	$L + \sqrt{L^2 - 4\pi^2}$	
	$y = 0 \Rightarrow x = \frac{-b \pm \sqrt{b} - 4dc}{2}$	Discriminant $\Delta = b^2 - 4ac$
Voctor coalar		Projection (shadow) of one vector on
(dot) product	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta$	another is
($\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{x}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = 0$	a · b
	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	
	(a_{n})	
	$\mathbf{a} = a \hat{\mathbf{x}} + a \hat{\mathbf{y}} + a \hat{\mathbf{z}} = \begin{bmatrix} \mathbf{x} \\ a \end{bmatrix}$	
	$a = a_x^2 + a_y^2 + a_z^2 = a_y^2$	
	(u_z)	
	$\begin{bmatrix} b_x \end{bmatrix}$	
	$\mathbf{b} = b_x \hat{\mathbf{x}} + b_y \hat{\mathbf{y}} + b_z \hat{\mathbf{z}} = \begin{bmatrix} b_y \end{bmatrix}$	
	(b_z)	
	$\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z$	
Vector (cross)	$ \mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta$	Evaluate using 'right hand screw rule'
product	$\mathbf{b} \times \mathbf{a} = -\mathbf{a} \times \mathbf{b}$	
	$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$	
	$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{x}}$	
	$\begin{array}{c} \mathbf{y} \wedge \mathbf{L} = \mathbf{A} \\ \mathbf{\hat{a}} \vee \mathbf{\hat{y}} = \mathbf{\hat{y}} \end{array}$	
	$\mathbf{z} \wedge \mathbf{x} - \mathbf{y}$	
	$\mathbf{a} \times \mathbf{b} = \mathbf{x} (a_y b_z - a_z b_y) + \mathbf{y} (a_z b_x - a_x b_z) + \mathbf{z} (a_x b_y - a_y b_x)$	
	$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$	
	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a}$	
	$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$	
Vector equations	$\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$	Vector equation of a straight line through
and planes, and		point \mathbf{a} and with direction vector \mathbf{b}
between lines	$(())^2$	'Foot of the perpendicular'
and planes.	$d = \left\ \mathbf{b} - \mathbf{a} \right\ ^{2} - \frac{\left((\mathbf{b} - \mathbf{a}) \cdot \mathbf{c} \right)}{\left(\mathbf{b} - \mathbf{a} \right)^{2} + \mathbf{c}^{2}} = \frac{\left\ (\mathbf{b} - \mathbf{a}) \times \mathbf{c} \right\ }{\left(\mathbf{b} - \mathbf{a} \right)^{2} + \mathbf{c}^{2}}$	i.e. closest distance from \mathbf{b} to line
	$ \mathbf{c} ^2$	passing through ${f a}$ with direction vector ${f c}$
	,	Normal unit vector $\hat{\mathbf{n}}$ to plane containing
	$(\mathbf{b}-\mathbf{a})\times(\mathbf{c}-\mathbf{a})$	non-parallel position vectors a.b.c
	$\mathbf{n} = \frac{1}{ (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}) }$	
		Vector equation of a plane
	$(\mathbf{r} - \mathbf{a}) \cdot \hat{\mathbf{n}} = 0$	
	$\mathbf{r} = \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a}) + \mu (\mathbf{c} - \mathbf{a})$	Distance from a point ${f p}$ to plane
	Γ $u + \pi(v - u) + \mu(v - u)$	characterized by point \mathbf{a} on the plane and
		unit normal $\hat{\mathbf{n}}$
	$d = (\mathbf{a} - \mathbf{p}) \cdot \hat{\mathbf{n}} $	Distance between line through a with
		direction vector \mathbf{c} and a line through \mathbf{b}
		with direction vector d
	$\Delta = \frac{ (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} \times \mathbf{d}) }{ \mathbf{a} }$	If a line where the is percent of the a minimum
	$ $ $ $ $\mathbf{c} \times \mathbf{d} $	in a line $\mathbf{r} = \mathbf{a} + \lambda \mathbf{D}$ is parallel to a plane, $\hat{\mathbf{n}} \cdot \mathbf{b} = 0$. Distance between the and
		$\mathbf{n} \cdot \mathbf{v} = 0$. Distance between line and
	$d = (\mathbf{c} - \mathbf{a}) \cdot \hat{\mathbf{n}} $	plane is $a = (\mathbf{c} - \mathbf{a}) \cdot \mathbf{n} $
		Volume of a parallelepiped formed from
		vectors a,b,c

	$V = [\mathbf{a}, \mathbf{b}, \mathbf{c}] = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$	
Matrices	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{pmatrix} $	
	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} $	Inverse matrix
	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	Identity matrix
Basic differentiation	$f'(x) = \frac{d}{dx}f(x)$	For trigonometric functions, variables must be in radians
	$\frac{d}{dx}x^n = nx^{n-1}$	π radians = 180°
	$\frac{d}{dx}e^{ax} = ae^{ax}$	Note: if $\theta \ll 1$
	$\frac{dx}{dt} \ln x = \frac{1}{x}$	$\theta \approx \sin \theta \approx \tan \theta$
	$\frac{dx}{dt} \ln f(x) = \frac{f'(x)}{f(x)}$	
	$\frac{d}{dx}\sin ax = a\cos ax$	
	$\frac{d}{dx}\cos ax = -a\sin ax$	
	$\frac{d}{dx}\tan ax = a\sec^2 ax$	
	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	Product Rule
	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	Quotient Rule
	$\frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx}$	Chain Rule
Basic integration	$\int f'(x)dx = f(x) + c$	$\int g(x)dx$ is the area between the curve
	$\int_{a}^{b} f'(x) dx = \left[f(x) \right]_{a}^{b} = \left(f(b) \right) - \left(f(a) \right)$	g(x) and the x axis, with the caveat that the area beneath the axis counts a
	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	negative.
	$\int \frac{f'(x)}{f(x)} dx = \ln \left f(x) \right + c$	$\int g(x)dx$ is also the <i>inverse</i> of
	$\int \sin ax dx = -\frac{1}{a} \cos ax$	differentiating $y = g(x)$.
	$\int \cos ax dx = \frac{1}{a} \sin ax$	i.e. $\int \frac{dy}{dx} dx = y + c$ (which is true up to a
	$\int \tan ax dx = -\frac{1}{a} \ln \left \cos ax \right + c$	constant of integration c , which must be specified.
	$\int (uv)dx = u \int vdx - \int \left(\frac{du}{dx} \times \int vdx\right) dx$	Integration by parts

Volumes of revolution	$V_x = \int_{x=a}^{b} \pi y^2 dx$	About <i>x</i> axis.
	$V_{y} = \int_{y=a}^{b} \pi x^{2} dy$	About <i>y</i> axis.
	$A_x = 2\pi \int_a^b y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	Surface area
	$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$	Length of a curve
	$R = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} \left(\frac{d^2 y}{dx^2}\right)^{-1}$	Radius of curvatire

Linear regression	$\overline{x} = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \overline{y} = \frac{1}{N} \sum_{n=1}^{N} y_n$	Formulae for calculating the line of best fit to a set of data
5	$ \begin{array}{cccc} N \overline{n=1} & N \overline{n=1} \\ - 1 N & - 1 N \end{array} $	$\{x_n, y_n\}$
	$x^{2} = \frac{1}{N} \sum_{n=1}^{N} x_{n}^{2} y^{2} = \frac{1}{N} \sum_{n=1}^{N} y_{n}^{2}$	cov[x, y] is the covariance
	$\overline{xy} = \frac{1}{N} \sum_{n=1}^{N} x_n y_n$	$p = \frac{\text{cov}[x, y]}{\sqrt{V[x]V[y]}}$ is the product
	$\operatorname{cov}[x, y] = \overline{xy} - \overline{x} \times \overline{y}$	moment correlation coefficient.
	$V[x] = \overline{x^2} - \overline{x}^2 V[y] = \overline{y^2} - \overline{y}^2$	n - 1 perfect pegative
	$p = \frac{\operatorname{cov}[x, y]}{\overline{}}$	p = -1 perfect negative correlation between x and y
	$\sqrt{V[x]V[y]}$	p = +1 perfect positive
	y = mx + c	correlation between x and y $n = 0$ no correlation between x
	$m = \frac{\operatorname{cov}[x, y]}{V[x]}$ $c = \overline{y} - m\overline{x}$ vertical fit	and y
	$m = \frac{V[y]}{\cos[x, y]}$ $c = \overline{y} - m\overline{x}$ horizontal fit	
Statistical		\overline{x} mean, or expectation
analysis	$\overline{x} = E[x] = \frac{1}{N} \sum_{n=1}^{N} x_n$	σ^2 variance
	$\sigma^2 = V[x] = \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2$	For continuous variables and probability distribution $p(x)$
	$V = V[x] = N - 1 \sum_{n=1}^{\infty} (x_n - x)$	$F[r] = \int rn(r) dr$
	skew[x] = $\frac{N}{(N-1)(N-2)} \sum_{i=1}^{N} \left(\frac{x_{i}-\overline{x}}{\sigma}\right)^{3}$	$V[x] = E[x^{2}] - (E[x])^{2}$
	$(1, 1)(1, 2)_{n=1}$ (0)	$\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^{2}$
Numeric		$v[x] = \int x \ p(x) dx - \left(\int x p(x) dx\right)$
Numeric integration:	$\int_{x_0}^{x_n} f(x) dx \approx \frac{1}{2} \Delta x \Big(f(x_0) + 2 \Big(f(x_1) + f(x_2) + \dots + f(x_{n-1}) \Big) + f(x_n) \Big)$	Estimate integral by summing trapezia fitted to the curve. Each trapezia has a fixed base width
Rule	$\Delta x = \frac{x_n - x_0}{N}$	Δx
Solving	dy dy	Errors of the order of Δx
Ordinary	$\frac{dy}{dx} = f(x, y)$	
Equations -	$x_{n+1} = x_n + \Delta x$	
Euler's Method	$y_{n+1} = y_n + f(x_n, y_n)\Delta x$	
Solving Ordinary	$\frac{dy}{dx} = f(x, y)$	Errors of the order of Δx^4
Equations -	$x_{n+1} = x_n + \Delta x$	
Runge-Kutta	$k_1 = f(x_n, y_n) \Delta x$	
Method	$k_2 = f\left(x_n + \frac{1}{2}\Delta x, y_n + \frac{1}{2}k_1\right)\Delta x$	
	$k_3 = f(x_n + \frac{1}{2}\Delta x, y_n + \frac{1}{2}k_2)\Delta x$	
	$k_4 = f\left(x_n + \frac{1}{2}\Delta x, y_n + k_3\right)\Delta x$	
	$y_{n+1} = y_n + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4$	
Solving vector dynamics	$\mathbf{a}_{n}=f\left(t_{n},\mathbf{r}_{n}\right)$	Errors of the order of Δx^2
problems via	$\mathbf{v}_{n+1} = \mathbf{v}_n + \frac{1}{2} \left(\mathbf{a}_n + \mathbf{a}_{n+1} \right) \Delta t$	
Verlet Method	$\mathbf{r}_{n+1} = \mathbf{r}_n + \mathbf{v}_n \Delta t + \frac{1}{2} \mathbf{a}_n \Delta t^2$	
Newton's	•	
Deelerer	$\mathbf{x} = \mathbf{x} - \frac{f(\mathbf{x}_n)}{\mathbf{x}_n}$	Requires initial guess of root x_0
Raphson method for	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	Requires initial guess of root x_0 Fails near to a stationary point

Normal distribution Exponential distribution	$p(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\overline{x} = \mu$ $M(x,t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$ $p(x \mid \lambda) = \lambda e^{-\lambda x}$ $\overline{x} = \frac{1}{\lambda}$ $\sigma^2 = \frac{1}{\tau^2}$	Gaussian distribution or 'bell curve'. Central limit theorem: "The distribution of the mean values of a set of independent random values tends towards a Gaussian distribution if the number of samples is large enough."
Rayleigh distribution	λ^{2} $p(x \mid \sigma) = \frac{x}{\sigma^{2}} e^{-\frac{x^{2}}{2\sigma^{2}}}$ $\overline{x} = \sigma \sqrt{\pi/2}$ $V[x] = 2\sigma^{2}(1 - \frac{1}{4}\pi)$	
Chi-squared distribution	$p(x \mid r) = \frac{e^{-x/2} x^{(r/2)-1}}{2^{r/2} \Gamma(r/2)}$ $\overline{x} = r$ $\sigma^2 = 2r$ $\Gamma(x) = \int_0^\infty t^{z-1} e^{-t} dt$	$\Gamma(x)$ is the Gamma function.
Binomial distribution	$p(x \mid n, p) = {\binom{n}{x}} p^{x} (1-p)^{n-x}$ $p(x \mid n, p) \approx \frac{1}{\sqrt{2\pi n p(1-p)}} \exp\left[-\frac{1}{2} \frac{(x-np)^{2}}{n p(1-p)}\right]$ $\overline{x} = np$ $\sigma^{2} = n p (1-p)$ $M(x,t) = (pe^{t} + 1 - p)^{n}$	Probability of x successes out of n independent trials, each with probability of success p
Geometric distribution	$p(x \mid p) = (1 - p)^{x - 1} p$ $\overline{x} = \frac{1}{p}$ $\sigma^{2} = \frac{1 - p}{p^{2}}$	Probability of success in the x^{tn} independent trial, following <i>x</i> -1 failures. Each trial has probability of success <i>p</i> .
Poisson distribution	$p(x \mid \lambda) = \frac{\lambda^{x} e^{-\lambda}}{x!} \approx \frac{1}{\sqrt{2\pi\lambda}} e^{-\frac{(x-\lambda)^{2}}{2\lambda}}$ $\overline{x} = \lambda$ $\sigma^{2} = \lambda$ $M(x,t) = e^{\lambda(e^{t}-1)}$	Probability of success rate x , given mean success rate λ . For example, goals per football game, decays per second etc
Moment generating functions	$M(x,t) = E\left[e^{tx}\right]$ $e^{tx} = 1 + tx + \frac{1}{2!}(tx)^{2} + \frac{1}{3!}(tx)^{3} + \dots$ $M(x,t) = 1 + tE[x] + \frac{1}{2!}t^{2}E[x^{2}] + \dots$ $E[x^{n}] = \frac{\partial^{n}M(x,t)}{\partial t^{n}}\Big _{t=0}$ $V[x] = E[x^{2}] - \left(E[x]\right)^{2}$	<i>E</i> [<i>x</i>] expectation <i>V</i> [<i>x</i>] variance

Bayes'	P(H T)P(T) = P(T H)P(H)	H hypothesis true
Theorem &	$P(T \mid H) P(H)$	H' hypothesis false
statistical	$P(H T) = \frac{T(T T)T(T)}{T(T T)}$	T test for hypothesis pass
inference	$P(T \mid H)P(H) + P(T \mid H')P(H')$	T' test for hypothesis fail
	P(T' H)P(H)	
	$P(H T') = \frac{P(T' H) P(H)}{P(T' H) P(H)}$	P(H T) is probability of
	$P(I \mid H)P(H) + P(I \mid H)P(H)$	hypothesis being true given a
		test has been passed. This is
		often what a patient wants to
		know following a test for a
		disease. Note in medical
		applications a pharmaceutical
		company will instead measure
		$P(T \mid H)$ e.g. probability that a
		the disease. If a disease is rere
		the disease. If a disease is fare, $D(U) \ll 1$ which may make a
		$P(H) \ll 1$ which may mean
		P(H T) is low even if $P(T H)$
		is close to 100%.
		P(H T') is called a <i>false</i>
		positive
		positivo.

Online portal to Physics, Mathematics references (including this document)

www.eclecticon.info

* Don't start a Physics University course without these! ** Standard texts

General Physics

French, A., Science by Simulation* Woan, G., The Cambridge Handbook of Physics Formulas* Cullerne, J.P., Machacek, A., The Language of Physics* Rees, W.G., Physics by Example* Kirk, T., IB Study Guide: Physics 2nd Edition* Chadha, G et al., A Level Physics for OCR A* Feynman Lectures on Physics**

Mechanics

Kleppner, D., & Kolenkow, R., An Introduction to Mechanics*
Morin, D., Introduction to Classical mechanics: With problems and solutions*
Pain, H.J., The Physics of Vibrations and Waves
Hand, L.N., Finch, J.D. Analytical Mechanics
Strogatz, S.H., Nonlinear Dynamics & Chaos**
Faber, T.E., Fluid Dynamics for Physicists*
Goldstein, H., Poole, C.P., Safko, J.L. Classical Mechanics**

Waves & Optics

Hecht, E., Optics**

Thermal Physics

Mandl, F., Statistical Physics**

Electricity & Magnetism

Bleaney, B., Bleaney, B., Electricity & Magnetism (volumes 1 and 2)*

Jackson, J,D., Classical Electrodynamics**

Quantum Physics / Solid State Physics / Nuclear Physics/ Particle Physics etc

McEvoy, J.P., Zarate, O., Introducing Quantum Theory* Martin, B., Nuclear & Particle Physics: An Introduction** McCaw, C.S., Orbitals With Applications in Atomic Spectra Kittel, C., Introduction to Solid State Physics** Haken, H., Wolf, C. H., The Physics of Atoms and Quanta** Warner, M., Cheung, A., A Cavendish Quantum Mechanics Primer*

Cosmology

Basset, B., Edney, R., Relativity: A Graphic Guide

d'Inverno, R., Introducing Einstein's Relativity**

Earth Sciences & Remote Sensing

Fowler, C.M.R., *The Solid Earth: An Introduction to Global Geophysics*** Shearer, P.M., *Introduction to Seismology*** Rees, W.G., *Physical Principles of Remote Sensing***

Mathematics

Riley, K.F., Hobson, M.P., Bence, S.J., Mathematical Methods for Physics and Engineering*

Rayner, D., Extended Mathematics for Cambridge IGCSE*

Quadling et al, OCR (Cambridge Advanced Level Mathematics) Core1&2,Core3&4,Further Pure1,Further Pure 2&3,Statistics1,Statistics2&3, Mechanics1,Mechanics2,Mechanics3&4,Decision1,Decision2&3 **

Misc

- Gleick, J., Chaos: Making a New Science
- MacKay, D.J.C., Sustainable Energy Without the Hot Air
- MacKay, D.J.C., Information Theory, Inference and Learning Algorithms
- Feynman, R.P., Leighton, R., Hutchings, E., Surely You're Joking Mr Feynman

Bellos, A., Alex's Adventures in Numberland

Computer Programming & document processing

Hanselman, D.C., Littlefield, B.L., Mastering MATLAB

Press, W.H., Teukolsky, S.A., Vetterling, T., Flannery, B.P., Numerical Recipes: The Art of Scientific Computing**

www.mathworks.co.uk	(MATLAB)	www.python.org
https://thonny.org/		www.irfanview.com/
http://www.lyx.org/	(LaTeX)	www.pcspecialist.co.uk