PHYSICS USEFUL DATA AND

Assembled by Dr Andrew French
Version 2.0. July 2021

The Cosmos is all that is or ever was or ever will be.

In the last few millennia we have made the most astonishing and unexpected discoveries about the Cosmos and our place within it, explorations that are exhilarating to consider. They remind us that humans have evolved to wonder, that understanding is a joy, that knowledge is prerequisite to survival.

I believe our future depends on how well we know this Cosmos in which we float like a mote of dust in the morning sky.

Carl Sagan (1934-1996)
Cosmos pp20

CONTENTS

1. Physical quantities and units

2. Mechanics

3. Electricity \& Magnetism
4. Waves \& Optics
5. Thermal Physics
6. Nuclear \& Quantum Physics
7. Relativity, Cosmology
8. Mathematics
9. Recommended books and resources

1. Physical quantities and units

$\pi \approx 3.142 \quad e \approx 2.718 \quad \sqrt{2} \approx 1.414 \quad$ Sl means 'Système International d'Unités' (International System of Units)

Quantity	Symbol	Vector or scalar?	Unit	Unit abbreviation	Notes
Mole SI	n	scalar	mole	mol	Mol is a base SI unit Avogadro's constant $N_{A}=6.022 \times 10^{23}$ molecules per mole
Mass SI	m, M	scalar	kilogram tonne gram atomic mass unit	$\begin{aligned} & \mathrm{kg} \\ & 10^{3} \mathrm{~kg} \\ & 10^{-3} \mathrm{~kg} \\ & \mathrm{u} \end{aligned}$	$\mathbf{k g}$ is a base $\mathbf{S I}$ unit Electron mass $m_{e}=9.109 \times 10^{-31} \mathrm{~kg}$ Proton mass $m_{p}=1.673 \times 10^{-27} \mathrm{~kg}$ Neutron mass $m_{n}=1.675 \times 10^{-27} \mathrm{~kg}$ $u=1.660 \times 10^{-27} \mathrm{~kg}$ Earth mass $M_{\oplus}=5.974 \times 10^{24} \mathrm{~kg}$ Solar mass $M_{\odot}=1.989 \times 10^{30} \mathrm{~kg}$
Length SI	$\begin{aligned} & l, L, \\ & a, b, c, . . \\ & \ldots x, y, z \end{aligned}$	scalar	angstrom nanometre micron millimetre centimetre metre kilometre mile Astronomical Unit parsec light-year	$\begin{aligned} & \dot{A}=10^{-10} \mathrm{~m} \\ & \mathrm{~nm}=10^{-9} \mathrm{~m} \\ & \mu \mathrm{~m}=10^{-6} \mathrm{~m} \\ & \mathrm{~mm}=10^{-3} \mathrm{~m} \\ & \mathrm{~cm}=10^{-2} \mathrm{~m} \\ & \mathrm{~m} \\ & \mathrm{~km}=10^{3} \mathrm{~m} \\ & \text { mile } \end{aligned}$ AU parsec lyr	m is a base SI unit $\begin{aligned} & \text { mile }=1,609 \mathrm{~m} \\ & \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m} \\ & \text { parsec }=3.086 \times 10^{16} \mathrm{~m} \\ & \text { lyr }=9.461 \times 10^{15} \mathrm{~m} \end{aligned}$
Angle	$\begin{aligned} & \theta, \phi \\ & a, b, c \ldots \alpha, \beta \end{aligned}$	scalar	degrees radians arc-minute arc-second	$\begin{aligned} & 0, \text { deg } \\ & \text { rad } \\ & \text { arcmin = } \\ & (1 / 60) \text { deg } \\ & \text { arcsec = } \\ & (1 / 3600) \text { deg } \\ & \hline \end{aligned}$	π radians $=180^{\circ}$
Area	A	scalar	square mm square centimetres square metres square kilometre hectares acre	mm^{2} $\mathrm{~cm}^{2}$ $\mathrm{~m}^{2}$ $\mathrm{~km}^{2}$ ha acre	$\begin{aligned} & \mathrm{mm}^{2}=10^{-6} \mathrm{~m}^{2} \\ & \mathrm{~cm}^{2}=10^{-4} \mathrm{~m}^{2} \end{aligned}$ $\begin{aligned} & \mathrm{km}^{2}=10^{6} \mathrm{~m}^{2} \\ & \mathrm{ha}=10^{4} \mathrm{~m}^{2} \\ & \text { acre }=4.047 \times 10^{3} \mathrm{~m}^{2} \end{aligned}$
Volume	V	scalar	cubic centimetre cubic metre cubic kilometre millilitre litre gallon	$\begin{aligned} & \mathrm{cm}^{3} \\ & \mathrm{~m}^{3} \\ & \mathrm{~km}^{3} \\ & \mathrm{ml} \\ & \mathrm{l} \\ & \mathrm{gal} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{cm}^{3}=10^{-6} \mathrm{~m}^{3} \\ & \mathrm{~km}^{3}=10^{9} \mathrm{~m}^{3} \\ & \mathrm{ml}=1 \mathrm{~cm}^{3} \text { (pure water at STP) } \\ & \mathrm{I}=10^{3} \mathrm{~cm}^{3}=10^{-3} \mathrm{~m}^{3} \\ & \mathrm{gal}=4.546 \times 10^{-3} \mathrm{~m}^{3} \end{aligned}$

Quantity	Symbol	Vector or scalar?	Unit	Unit abbreviation	Notes
Time SI	t, τ	scalar	picosecond nanosecond microsecond millisecond second minute hour day year	```ps ns \muS ms S min hr d=24hr yr```	$\begin{aligned} & \text { s is a base SI unit } \\ & \mathrm{min}=60 \mathrm{~s}, \mathrm{hr}=60 \mathrm{~min}=3600 \mathrm{~s}, \\ & \mathrm{yr} \approx 365 \times 24 \times 3600 \mathrm{~s} \\ & \mathrm{yr} \approx 3.154 \times 10^{7} \mathrm{~s} \\ & \mathrm{yr} \approx \pi \times 10^{7} \mathrm{~s} \\ & \text { Age of the Earth }=4.5 \times 10^{9} \mathrm{yr} \\ & \text { Age of the Universe }=13.8 \times 10^{9} \mathrm{yr} \\ & \hline \end{aligned}$
Speed	$\begin{aligned} & s \\ & u, v \end{aligned}$	scalar	metre per second kilometre per hour mile per hour	ms^{-1} kmh^{-1} mph	Speed of light in a vacuum $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$ Speed of sound in air $\left(20^{\circ} \mathrm{C}\right): 344 \mathrm{~ms}^{-1}$ Speed of sound in water: $1482 \mathrm{~ms}^{-1}$ $\begin{aligned} & 1 \mathrm{~ms}^{-1}=3.6 \mathrm{kmh}^{-1} \\ & 1 \mathrm{~ms}^{-1}=2.24 \mathrm{mph}^{2} \end{aligned}$ 1 min per mile at 60 mph 3 mins per mile at 20 mph 6 mins per mile at 10 mph
Frequency	f	scalar	Hertz Kilohertz Megahertz Gigahertz Terahertz	$\begin{aligned} & \mathrm{Hz}=\mathrm{s}^{-1} \\ & \mathrm{kHz}=10^{3} \mathrm{~Hz} \\ & \mathrm{MHz}=10^{6} \mathrm{~Hz} \\ & \mathrm{GHz}=10^{9} \mathrm{~Hz} \\ & \mathrm{THz}=10^{12} \mathrm{~Hz} \end{aligned}$	Voice sound waves $0-2 \mathrm{kHz}$ Radio waves $3 \mathrm{kHz}-300 \mathrm{MHz}$ Microwaves $3 \mathrm{MHz}-100 \mathrm{GHz}$ Infrared $100 \mathrm{GHz}-300 \mathrm{THz}$ Visible light $10^{14}-10^{15} \mathrm{~Hz}$ Ultraviolet $10^{15} \mathrm{~Hz}-10^{16} \mathrm{~Hz}$ X-rays $10^{16} \mathrm{~Hz}-10^{20} \mathrm{~Hz}$ Gamma rays $>10^{20} \mathrm{~Hz}$
Period	T	scalar	Same as time	Same as time	Time to complete a single oscillation. $T=\frac{1}{f}$ e.g. period of Earth's rotation is 24 hours, period of Earth's orbit about the sun is 1 year.
Displacement	x, y, z	vector	Same as length	Same as length	Magnitude as well as direction. Often we describe in terms of a coordinate system e.g. x, y, z Cartesians. In this case a negative value of x means 'going backwards'. In one direction, displacement is the area under a (time, velocity) graph, where area below the time axis is negative.
Velocity	$\begin{aligned} & \mathbf{v} \\ & u, v \end{aligned}$	vector	Same as speed	Same as speed	Magnitude as well as direction. Often we describe in terms of a coordinate system e.g. x, y, z Cartesians. In this case a negative value of v means 'going backwards'. In one direction, velocity is the gradient of a (time,displacement) graph. It is also the area under a (time, acceleration) graph, where area below the time axis is negative. u is typically a symbol for initial velocity v for final or 'current' velocity
Acceleration	$\begin{aligned} & \mathbf{a} \\ & a \end{aligned}$	vector	metre per second squared	ms^{-2}	Magnitude as well as direction. Often we describe in terms of a coordinate system e.g. x, y, z Cartesians. In one direction, acceleration is the gradient of a (time, velocity) graph. 'Free-fall' acceleration under gravity: $\begin{aligned} & g_{\text {earrh }}=9.81 \mathrm{~ms}^{-2} \\ & g_{\text {moon }}=1.63 \mathrm{~ms}^{-2} \end{aligned}$

Quantity	Symbol	Vector or scalar?	Unit	Unit abbreviation	Notes
Energy	E	scalar	Joules kilojoules megajoules calories kilo-calories kilowatthour electronvolts	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~kJ}=10^{3} \mathrm{~J} \\ & \mathrm{MJ}=10^{6} \mathrm{~J} \\ & \mathrm{cal}=4.184 \mathrm{~J} \\ & \mathrm{kcal}=10^{3} \mathrm{cal} \\ & \mathrm{kWh} \\ & \\ & \\ & \mathrm{eV} \\ & \mathrm{keV}=10^{3} \mathrm{eV} \\ & \mathrm{MeV}=10^{6} \mathrm{eV} \end{aligned}$	Energy is conserved, i.e. in a closed system has the same numerical value. It can be converted into different forms e.g. kinetic and potential energy. Calories measure energy in food 1 kWh is a standard measure of domestic electricity consumption. Total UK energy consumption is about 125 kWh per person per day. $\mathrm{eV}=$ kinetic energy of an electron accelerated by a voltage V $e V=1.602 \times 10^{-19} \mathrm{~J}$
Power	P	scalar	Watts kilowatts megawatts gigawatts terawatts horsepower	$\begin{aligned} & \mathrm{W}=\mathrm{Js}^{-1} \\ & \mathrm{~kW}=10^{3} \mathrm{~W} \\ & \mathrm{MW}=10^{6} \mathrm{~W} \\ & \mathrm{GW}=10^{9} \mathrm{~W} \\ & \mathrm{TW}=10^{12} \mathrm{~W} \\ & \mathrm{hp}=746 \mathrm{~W} \end{aligned}$	Power is the rate of energy changed from one form into another A light bulb uses about 20W Dr French's computers use about 250W A kettle uses about 2 kW A Tour-de-France cyclist expends 250500W A wind turbine generates $1-10 \mathrm{MW}$ A power station generates up to 5GW About $1.36 \mathrm{kWm}^{-2}$ or solar radiation shine on the Earth.
Force	$\begin{aligned} & \mathbf{f} \\ & f, F \end{aligned}$	vector	Newtons kilonewtons	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{kN} \end{aligned}$	Newton's Second Law: mass x acceleration $=$ vector sum of forces
Weight	W	vector	Newtons kilonewtons	$\begin{aligned} & \mathrm{N} \\ & \mathrm{kN} \end{aligned}$	The gravitational force F acting upon a mass m is $F=m g$.
Tension	T	vector	Newtons kilonewtons	$\begin{aligned} & \mathrm{N} \\ & \mathrm{kN} \end{aligned}$	Force in a cable or string. Often these are modelled as light and inextensible. i.e. ignore the effect of their mass and assume they don't stretch.
Momentum	$\begin{aligned} & \mathbf{p}=m \mathbf{v} \\ & p=m v \end{aligned}$	vector	kilogrammetres per second	kgms^{-1}	Note impulse is a change in momentum, e.g. due to a collision or from the action of some external force over a period of time.
Moment	$m=F d$	scalar	Newtonmetre	Nm	Force x perpendicular distance from a pivot
Torque	$\boldsymbol{\tau}=\mathbf{r} \times \mathbf{F}$	vector	Newtonmetre	Nm	Vector quantity whose magnitude is the moment of force \mathbf{F} about pivot. Force \mathbf{F} acts from displacement \mathbf{r} about pivot. Magnitude of torque is $\|\mathbf{F}\|$ multiplied by perpendicular distance of line of action of F from pivot.
Angular velocity	$\begin{aligned} & \boldsymbol{\omega} \\ & \omega \end{aligned}$	vector	radians per second	rads $^{-1}$	Used in circular and oscillatory motion. π radians $=180^{\circ}$
Moment of inertia		scalar (or in general a matrix)	kilogram metresquared	kgm^{2}	Sum of masses x square of perpendicular distance r from rotation axis of a rigid body. $I=\int r^{2} d m$
Angular momentum	$\begin{aligned} & \mathbf{J}=\mathbf{r} \times m \mathbf{v} \\ & \mathbf{J}=\mathbf{I} \boldsymbol{\omega} \\ & J=m v r \\ & J=I \omega \end{aligned}$	vector	kilogram-metressquared per second	$\mathrm{kgm}^{2} \mathrm{~s}^{-1}$	Angular momentum is conserved in a rigid body, in the absence of any torque. The inertia tensor $\mathbf{I}=\left(\begin{array}{ccc}I_{x} & I_{x y} & I_{x z} \\ I_{y x} & I_{y} & I_{y z} \\ I_{z x} & I_{z y} & I_{z}\end{array}\right)$ is a matrix containing moments of inertia about the body x, y, z axis of a rigid body. If the body has symmetry, the off diagonal elements are typically zero

Quantity	Symbol	Vector or scalar?	Unit	Unit abbreviation	Notes
Elasticity	$k=\frac{\lambda}{l}$	scalar	Newtons per metre	Nm^{-1}	If an elastic body (such as spring or rubber band) is Hookean, the restoring force following extension by x is $F=\frac{\lambda}{l} x$ where l is the natural length and λ is the elastic modulus.
Stress	σ	scalar	Newtons per square metre	Nm^{-2}	Force per unit area - same as pressure $\sigma=\frac{F}{A}$
Strain	ε	scalar	Just a number		Ratio of extension to natural length $\varepsilon=\frac{x}{l}$ Young's Modulus is $\begin{aligned} & Y=\frac{\sigma}{\varepsilon}=\frac{\lambda x}{l A} \times \frac{l}{x}=\frac{\lambda}{A} \\ & \therefore \lambda=A Y \end{aligned}$ Young's modulus for different materials: $\left(\mathrm{GPa}=10^{9} \mathrm{Nm}^{-2}\right)$ rubber $0.01-0.1 \mathrm{GPa}$ Nylon 2-4 GPa Wood 11 GPa Bone 14 GPa Concrete 30 GPa Glass $50-90 \mathrm{GPa}$ Aluminium 69 Copper 117 GPa Diamond 1,050-1,210 GPa
Viscosity	η	scalar	poiseuille	$\begin{aligned} & \mathrm{Pl} \\ & =\mathrm{Nm}^{-2} \mathrm{~s} \\ & =\mathrm{Pas}^{-1} \\ & =\mathrm{kgm}^{-1} \mathrm{~s}^{-1} \end{aligned}$	$\eta=\frac{\text { shear stress }}{\text { velocity gradient }}$ Stress is force per unit area. Velocity gradient is change in velocity per metre of fluid. warm blood $3-4 \times 10^{-3} \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ honey $2-10 \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ molten chocolate $10-25 \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ ketchup $50-100 \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ peanut butter $250 \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ corn syrup $1.4 \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ olive oil $8.1 \times 10^{-2} \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ water $8.9 \times 10^{-4} \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ mantle of Earth $10^{21} \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$
Reynolds number	Re	scalar	just a number	-	$\operatorname{Re}=\frac{\rho v L}{\eta}=\frac{\text { density } \times \text { velocity } \times \text { length }}{\text { viscosity }}$ Turbulent flow if Re $>$ few thousand $R \mathrm{R}=\frac{\text { inertial force }}{\text { viscous force }}$
Mach number	Ma	scalar	just a number	-	$\mathrm{Ma}=\frac{v}{\text { speed of sound }}$

Quantity	Symbol	Vector or scalar?	Unit	Unit abbreviation	Notes
Density	ρ	scalar	mass per unit volume	$\begin{aligned} & \mathrm{kgm}^{-3} \\ & \mathrm{gcm}^{-3} \end{aligned}$	Air is about $1.2 \mathrm{kgm}^{-3}$ Wood is about $0.5 \mathrm{gcm}^{-3}$ Water is about $1 \mathrm{gcm}^{-3}$ Aluminium is $2.7 \mathrm{gcm}^{-3}$ Iron is $7.8 \mathrm{gcm}^{-3}$ Copper is $8.9 \mathrm{gcm}^{-3}$ Mercury is $13.5 \mathrm{gcm}^{-3}$ Gold is $19.3 \mathrm{gcm}^{-3}$ Uranium is $19.1 \mathrm{gcm}^{-3}$
Pressure	p	scalar	Pascal kilopascal megapascal millibar Atmosphere	Pa $\mathrm{kPa}=10^{3} \mathrm{~Pa}$ $\mathrm{MPa}=10^{6} \mathrm{~Pa}$ $\mathrm{mbar}=100 \mathrm{~Pa}$ atm	Force per unit area $\mathrm{Pa}=1 \mathrm{Nm}^{-2}$ atm $=101,325 \mathrm{~Pa}$ is essentially a 'reference' atmospheric pressure at sea level. atm $=1013.25$ mbar. Millibars are used in meteorology i.e. climate science and weather forecasting to measure air pressure.
Temperature SI	T	scalar	degrees celcius degrees fahrenheit degrees kelvin	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{F} \\ & \mathrm{~K} \end{aligned}$	K is a base SI unit $\begin{aligned} & T_{K}=T_{C}+273.15 \\ & T_{F}=\frac{9}{5} T_{C}+32 \end{aligned}$ Temperature in K is proportional to the mean kinetic energy of molecules. Hence nothing can be colder than OK "absolute zero"
Solid or liquid specific heat capacity	c	scalar	joules per kilogram per Kelvin	$\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	water $4,200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ alcohol $2,500 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ ice $2,100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ aluminium $900 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ concrete $800 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ glass $700 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ steel $500 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ copper $400 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
Gas specific heat capacity	$\begin{gathered} c_{p} \\ c_{V} \end{gathered}$	scalar	joules per kilogram per Kelvin	$\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	c_{p} is at constant pressure, c_{V} is at constant volume. c_{p} for dry air is about $1,000 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$. Molar heat capacities are: $c_{V}=\frac{1}{2} \alpha R$ and $c_{p}=c_{V}+R$ (Mayer Relation). Molar gas constant $R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ and for air, molar volume is about $29 \mathrm{gmol}^{-1}$.
Specific latent heat of fusion	$\begin{aligned} & L \\ & \Delta H \end{aligned}$	scalar	joules per kilogram	Jkg^{-1}	water $336,000 \mathrm{Jkg}^{-1}$ alcohol 108,000 Jkg^{-1}
Specific latent heat of vaporisation	L ΔH	scalar	joules per kilogram	Jkg^{-1}	water $2,260,000 \mathrm{Jkg}^{-1}$ alcohol $855,000 \mathrm{Jkg}^{-1}$

Quantity	Symbol	Vector or scalar?	Unit	Unit abbreviation	Notes
Charge	q, Q	scalar	Coulombs	C	charge on electron $e=1.602 \times 10^{-19} \mathrm{C}$
Voltage	V	scalar	Volts millivolts kilovolts Megavolts	$\begin{aligned} & \mathrm{V} \\ & \mathrm{mV}=10^{-3} \mathrm{~V} \\ & \mathrm{kV}=10^{3} \mathrm{~V} \\ & \mathrm{MV}=10^{6} \mathrm{~V} \end{aligned}$	Potential energy per coulomb of charge Energy change per coulomb of charge across a resistor. 'Electromotive force' (EMF).
Current SI	I	scalar	Amps milliamps	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	A is a base Sl unit Rate of charge flowing in an electrical circuit (coulombs per second).
Resistance	R	scalar	Ohms kilo-ohms mega-ohms	Ω	Ohm's Law: $V=I R$ Voltage drop across a resistor is proportional to resistance, and current flowing through it.
Resistivity	ρ	scalar	ohm-metre	$\Omega \mathrm{m}$	Resistance of a cylindrical wire of length l and cross sectional area A is $R=\rho \frac{l}{A}$ Copper $\quad \rho=1.68 \times 10^{-8} \Omega \mathrm{~m}$ Aluminium $\rho=2.82 \times 10^{-8} \Omega \mathrm{~m}$ Gold $\rho=2.44 \times 10^{-8} \Omega \mathrm{~m}$ Iron $\rho=1.00 \times 10^{-7} \Omega \mathrm{~m}$ Sea water $\rho=2.00 \times 10^{-1} \Omega \mathrm{~m}$ Glass $\rho=10^{11}-10^{15} \Omega \mathrm{~m}$ Hard rubber $\rho=10^{13} \Omega \mathrm{~m}$ Dry wood $\rho=10^{14}-10^{16} \Omega \mathrm{~m}$ Air $\rho=1.3-3.3 \times 10^{16} \Omega \mathrm{~m}$
Capacitance	C	scalar	Farads picofarads nanofarads microfarads	$\begin{aligned} & \mathrm{F} \\ & \mathrm{pF} \\ & \mathrm{nF} \\ & \mu \mathrm{~F} \end{aligned}$	Typical capacitances of electronic components are < a few $\mu \mathrm{F}$. pF or nF are common. $\tau=R C$ is an approximate time period associated with a resistor, capacitor circuit. $\tau=\sqrt{L C}$ is an approximate time period associated with an inductor, capacitor circuit. These often exhibit resonance phenomenon, so can be used to amplify signals at a particular frequency.
Inductance	L	scalar	Henry	H	An inductor with an inductance of 1 Henry produces an 'electromotive force' (EMF) of 1 volt when the current through the inductor changes at the rate of 1 ampere per second.
Electric field strength	$\begin{gathered} \hline \mathbf{E} \\ E \end{gathered}$	vector	Volts per metre	Vm^{-1}	Force on a charge q coulombs in a electric field of strength E is $F=q E$ A dielectric will conduct electricity ('breakdown') when E exceeds a critical value. Note: $\mathbf{1 M V m} \mathbf{M}^{-1}=\mathbf{1 0}^{6} \mathbf{V m}^{-1}$ Air $\quad E>3 \mathrm{MVm}^{-1}$ Glass $E>10 \mathrm{MVm}^{-1}$ Oil $E>10 \mathrm{MVm}^{-1}$ Rubber $E>15 \mathrm{MVm}^{-1}$ pure water $E>65 \mathrm{MVm}^{-1}$ Mica $E>118 \mathrm{MVm}^{-1}$ Diamond $E>2,000 \times 10^{6} \mathrm{Vm}^{-1}$

Quantity	Symbol	Vector or scalar?	Unit	Unit abbreviation	Notes
Magnetic field strength	\mathbf{B}	vector	Tesla	T	Force on a wire of length l carrying current in magnetic field B is $F=B I l$ Note force, current and field are mutually perpendicular Magnetic field inside a solenoid (a coil of
wire carrying current I of n turns per unit					
length) is $B=\mu_{0} n I$					

2. Mechanics

Name	Equation	Description of variables	Notes / diagram
Kinematics	$\begin{array}{ll} v=\frac{d x}{d t} & x=\int v d t \\ a=\frac{d v}{d t} & v=\int a d t \end{array}$	x displacement v velocity a acceleration t time	Velocity is the gradient of a (time,displacement) graph. Displacement is the area under a (time, velocity). graph. Note areas below the time axis are negative. Acceleration is the gradient of a (time, velocity) graph velocity is the area under a (time, velocity). graph. Note areas below the time axis are negative.
Constant acceleration motion	$\begin{aligned} & v=u+a t \\ & x=x_{0}+\frac{1}{2}(u+v) t \\ & x=x_{0}+u t+\frac{1}{2} a t^{2} \\ & v^{2}=u^{2}+2 a x \end{aligned}$	u initial velocity $/ \mathrm{ms}^{-1}$ a acceleration $/ \mathrm{ms}^{-2}$ t time $/ \mathrm{s}$ v final velocity $/ \mathrm{ms}^{-1}$ x displacement /m x_{0} initial displacement /m	Only valid for motion when acceleration a is constant. Easily derived from linear velocity, time graph. a is the gradient $a=\frac{v-u}{t}$ and $x-x_{0}$ is the area under the graph, which is a trapezium hence $x-x_{0}=\frac{1}{2}(u+v) t$
Newton's First Law	$\begin{aligned} & \mathbf{a}=0 \\ & \Rightarrow \mathbf{v}=\text { constant } \end{aligned}$	a acceleration v velocity	A object will move at constant velocity if it is not accelerating, and therefore the vector sum of forces is zero. It is in equilibrium.
Newton's Second Law	$m \mathbf{a}=\sum_{i} \mathbf{f}_{\mathrm{i}}$	mass x acceleration = vector sum of forces	Most mechanics problems are often solved by firstly writing down Newton II for each direction of a coordinate system (typically Cartesian x, y) appropriate for the problem.
Newton's Third Law	"For every action there is an equal and opposite reaction"		If body A imposes a contact force \mathbf{F} upon body B, body B will in turn impose a contact force -F upon body A.
Conservation of momentum	$\underbrace{m_{1} \mathbf{u}_{1}+m_{2} \mathbf{u}_{2}+\ldots}_{\text {BEFRRE COLUSIIN }}=\underbrace{m_{1} \mathbf{v}_{1}+m_{2} \mathbf{v}_{2}+\ldots}_{\text {AFTER COLISIION }}$	momentum = mass x velocity	The vector sum of momenta is the same before and after a collision
Impulse	"Force x time = change in momentum" $\int_{0}^{t} \mathbf{f}(t) d t=m \mathbf{v}-m \mathbf{u}$	$\mathbf{f}(t)$ force (as a function of time t), m mass v final velocity u initial velocity 'impulse' means momentum change	In each direction of a coordinate system, the integral of the (time,force) graph is the change in momentum. If force is a constant force x time $=$ change in momentum

Conservation of energy	$\begin{aligned} & \frac{1}{2} m u^{2}+\mathrm{GPE}_{0}+\mathrm{EPE}_{0}+\ldots .=\frac{1}{2} m v^{2}+\mathrm{GPE}_{1}+\mathrm{EPE}_{1}+\ldots . \\ & \mathrm{GPE}=m g h \\ & \mathrm{GPE}=-\frac{G M m}{r} \\ & \mathrm{EPE}=\frac{1}{2} k x^{2}=\frac{1}{2} \frac{\lambda}{l} x^{2} \end{aligned}$	m mass. u, v initial and final speeds. h change in vertical height. g gravitational field strength. M, m masses. r distance between masses. G gravitational force constant. x spring extension. k spring constant. λ modulus of elasticity. l original length of spring.	$\begin{aligned} & g_{\text {earrh }}=9.81 \mathrm{~ms}^{-2} \\ & g_{\text {moon }}=1.63 \mathrm{~ms}^{-2} \\ & G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \end{aligned}$
Coefficient of restitution	$C=\frac{\text { speed of separation }}{\text { speed of approach }}$		$C=1$ elastic collision (kinetic energy conserved). C=0 inelastic collision (objects remain together, some kinetic energy is lost)
Work done	'WORK DONE = FORCE x DISTANCE' $W=\int \mathbf{f} \cdot d \mathbf{r}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$	f force. r displacement. m mass. u, v initial and final speeds.	Work done is "the area under a (displacement, force) graph", noting that areas below the x axis are negative.
Moments	'MOMENT = FORCE \times PERPENDICULAR DISTANCE FROM ROTATION AXIS' $M=F d$	F force d distance from axis of rotation	In equilibrium, the sum of moments (clockwise or anticlockwise) is zero, regardless of the axis position chosen!
Moment of inertia	$I=\int r^{2} d m$	I moment of inertia. r distance from rotation axis. m mass	thin rod, about centre $\frac{1}{12} m l^{2}$ solid sphere $\frac{2}{5} m r^{2}$ solid cone $\frac{3}{10} m r^{2}$
Perpendicular axis theorem	$I_{z}=I_{x}+I_{y}$		Only works for laminae defined in the x, y plane.
Parallel axis theorem	$I_{z^{\prime}}=I_{z}+M d^{2}$	M mass d distance of new axis from z' rotation axis	
Angular momentum	$\mathbf{L}=\mathbf{r} \times m \mathbf{v}$	$\stackrel{\mathbf{r}}{\text { displacement. }}$ m mass. v velocity.	For a rigid body, can decompose into angular momenta of centre of mass + angular momenta about centre of mass. i.e. particle motion of centre of mass plus rotation about centre of mass.

Torque	$\begin{aligned} & \boldsymbol{\tau}=\mathbf{r} \times \mathbf{f} \\ & \boldsymbol{\tau}=\frac{d \mathbf{L}}{d t} \\ & \boldsymbol{\tau}=\mathbf{I} \dot{\boldsymbol{\omega}}=\left(\begin{array}{ccc} I_{x} & I_{x y} & I_{x z} \\ I_{y x} & I_{y} & I_{y z} \\ I_{z x} & I_{z y} & I_{z} \end{array}\right)\left(\begin{array}{c} \dot{\omega}_{x} \\ \dot{\omega}_{y} \\ \dot{\omega}_{z} \end{array}\right) \\ & F d=I \ddot{\theta} \end{aligned}$	r displacement f force t time I inertia tensor F force d distance from axis of rotation $\ddot{\theta}$ angular acceleration	If torque is zero this means angular momentum is a constant. Rotational equivalent of Newton's Second Law. angular acceleration in radians per second ${ }^{2}$
Projectile motion	$\begin{aligned} & v_{x}=u \cos \theta \quad v_{y}=u \sin \theta-g t \\ & v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{u^{2}-2 g\left(y-y_{0}\right)} \\ & x=u t \cos \theta \\ & y=y_{0}+x \tan \theta-\frac{g}{2 u^{2}}\left(1+\tan ^{2} \theta\right) x^{2} \\ & t_{a}=\frac{u \sin \theta}{g} \quad y_{a}=y_{0}+\frac{u^{2} \sin ^{2} \theta}{2 g} \quad x_{a}=\frac{u^{2} \sin \theta \cos \theta}{g} \\ & R=\frac{u^{2} \sin 2 \theta}{g} \end{aligned}$	v_{x} horizontal velocity v_{y} vertical velocity v speed u launch speed θ launch elevation g gravitational acceleration t time since launch x horizontal displacement y vertical displacement y_{0} initial vertical displacement t_{a} apogee time x_{a}, y_{a} apogee coordinates R horizontal range if $y_{0}=0$	Projectile motion is essentially constant acceleration motion in both x and y directions. Air resistance is ignored. In the x direction acceleration is zero, hence a constant velocity $v_{x}=u \cos \theta$. The x, y curve traced out by particle is an inverted parabola. Typically for a given range there are two possible trajectories for a given launch velocity u corresponding to 'steep' and 'shallow' solutions for elevation θ.
Motion in a circle	$\begin{aligned} & \omega=\dot{\theta}=\frac{d \theta}{d t} \quad \dot{\omega}=\ddot{\theta}=\frac{d^{2} \theta}{d t^{2}} \\ & \mathbf{v}=r \omega \hat{\boldsymbol{\theta}} \\ & \mathbf{a}=-\frac{v^{2}}{r} \hat{\mathbf{r}}+r \ddot{\theta} \hat{\boldsymbol{\theta}}=-r \omega^{2} \hat{\mathbf{r}}+r \ddot{\theta} \hat{\boldsymbol{\theta}} \\ & \frac{d \hat{\mathbf{r}}}{d t}=\dot{\theta} \hat{\boldsymbol{\theta}} \quad \frac{d \hat{\boldsymbol{\theta}}}{d t}=-\dot{\theta} \hat{\mathbf{r}} \\ & \dot{\mathbf{r}}=\frac{d}{d t}(r \hat{\mathbf{r}})=\dot{r} \hat{\mathbf{r}}+r \dot{\theta} \hat{\boldsymbol{\theta}} \\ & \ddot{\mathbf{r}}=\frac{d^{2}}{d t^{2}}(r \hat{\mathbf{r}})=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{\mathbf{r}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\boldsymbol{\theta}} \\ & \hat{\mathbf{r}}=\cos \theta \hat{\mathbf{x}}+\sin \theta \hat{\mathbf{y}} \\ & \hat{\boldsymbol{\theta}}=-\sin \theta \hat{\mathbf{x}}+\cos \theta \hat{\mathbf{y}} \\ & x=r \cos \theta \\ & y=r \sin \theta \end{aligned}$	θ anticlockwise angle /radians r circle radius /m ω angular velocity $/ \mathrm{rads}^{-1}$ \mathbf{v}, v velocity, speed a acceleration $\hat{\mathbf{r}}$ radial unit vector $\hat{\boldsymbol{\theta}}$ polar angle unit vector $\hat{\mathbf{x}} \times$ direction unit vector y y direction unit vector	Assumes the circle radius r is a constant In general we can incorporate an \dot{r} term into both velocity and acceleration expressions. Note if one chooses a reference frame which rotates at ω then one will experience a 'centrifugal force' of magnitude $F_{r}=m r \dot{\theta}^{2}$ away from the axis of rotation.

Lift and drag	$\begin{aligned} & F_{L}=\frac{1}{2} c_{L} \rho A v^{2} \\ & F_{D}=\frac{1}{2} c_{D} \rho A v^{2} \\ & F=6 \pi a \eta v \end{aligned}$	c_{L} lift coefficient c_{D} drag coefficient ρ density of air/fluid A area of object in fluid stream v speed a radius of sphere η viscosity	The linear Stokes Drag equation $F=6 \pi a \eta v$ is typically applicable in low Reynolds number scenarios when viscous forces dominate. Air resistance models for bikes, cars, planes, skydivers are typically better served by the v^{2} models.
Force of gravity \& Kepler's Laws of orbital motion	$\begin{aligned} & \mathbf{W}=m \mathbf{g} \\ & \mathbf{F}=-\frac{G M m}{r^{2}} \hat{\mathbf{r}} \\ & r=\frac{a\left(1-\varepsilon^{2}\right)}{1+\varepsilon \cos \theta} \\ & \varepsilon=\sqrt{1-\frac{b^{2}}{a^{2}}} \\ & P^{2}=\frac{4 \pi^{2}}{G(M+m)} a^{3} \\ & \frac{d A}{d t}=\frac{1}{2} \sqrt{\mathrm{G}(M+m)\left(1-\varepsilon^{2}\right) a} \end{aligned}$	W weight g gravitational field strength. M, m masses. r distance between masses. G gravitational force constant. ε eccentricity of elliptical orbit a semi-major axis of the ellipse. b semi-minor axis of the ellipse. M, m star and planet masses θ polar angle (anticlockwise from semimajor axis) P orbital period	$\begin{aligned} & \hline g_{\text {earth }}=9.81 \mathrm{~ms}^{-2} \\ & g_{\text {moon }}=1.63 \mathrm{~ms}^{-2} \\ & G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \end{aligned}$ Kepler's First Law: Bound gravitational orbits of two masses are ellipses, with foci about the common centre of mass. Kepler's Second Law: The rate of ellipse area swept out (radially from the focus of the ellipse) is a constant Kepler's Third Law: The square of orbital period is proportional to the cube of the ellipse semi-major axis
Elasticity (or elastic strings)	$\begin{aligned} & F=k x=\frac{\lambda}{l} x \\ & E=\frac{1}{2} k x^{2} \end{aligned}$	F force k elastic constant λ elastic modulus l original length of elastic string x extension E elastic potential energy	Most elasticity models are Hookean and assume a constant modulus of elasticity. In reality for large extensions there will be plastic deformation and ultimately breakage.
Friction	$\begin{aligned} & F \leq \mu R \\ & F=\mu R \end{aligned}$	F frictional force μ coefficient of friction R normal contact force	A system is said to be in 'limiting' equilibrium' if $F=\mu R$ i.e. 'on the point of sliding'. Once an object is sliding along a surface, the friction force 'maxes out' out $F=\mu R$. Note μ may change in this dynamic case. $F \leq \mu R$ can be used to determine conditions (e.g. tilt angle of a slope) for sliding to occur.

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Power \& } \\ \text { driving force }\end{array} & \begin{array}{l}P=F v \\ P=\mathbf{F} \cdot \mathbf{v} \\ D=\frac{P}{v}\end{array} & \begin{array}{l}\text { F,F force } \\ P \text { power } \\ \mathbf{v}, v \text { velocity } \\ D \text { driving force }\end{array} & \begin{array}{l}\text { One Horsepower (hp) }= \\ 746 \mathrm{~W} \text {. This equation is } \\ \text { useful in relating energy } \\ \text { conversion rates in } \\ \text { engines to resulting }\end{array} \\ \text { motion. }\end{array}\right]$
3. Electricity \& Magnetism

Name	Equation	Description of variables	Notes / diagram
Charge on a capacitor	$Q=C V$	Q charge/coulombs C capacitance /Farads V voltage /volts	Voltage across two capacitor plates separated by an insulating dielectric.
Ohm's law	$V=I R$	V voltage/volts I current/amps R resistance /ohms	Voltage or 'potential difference' across a resistive element.
Electrical power	$P=V I$	P power /watts V voltage /volts I current/amps	
Resistive power loss	$P=I^{2} R$	P power /watts I current/amps R resistance /ohms	
Electric field strength	$\begin{aligned} & E=\frac{V}{d} \\ & E_{x}=-\frac{\partial V}{\partial x} \\ & \mathbf{E}=-\nabla V \end{aligned}$	V voltage /volts d distance between charged parallel plates x displacement E electric field $\nabla V=\hat{\mathbf{x}} \frac{\partial V}{\partial x}+\hat{\mathbf{y}} \frac{\partial V}{\partial y}+\hat{\mathbf{z}} \frac{\partial V}{\partial z}$	
(Lorentz) force on a charge in an electric and magnetic field	$\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})$	E electric field B magnetic field v velocity of charge q	
Force between two static charges	$\mathbf{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}$	```\(q_{1}, q_{2}\) charges \(r\) charge separation \(\hat{\mathbf{r}}\) charge separation unit vector \(\varepsilon_{0}\) permittivity of free space \(=8.85 \times 10^{-12} \mathrm{~m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}\)```	Coulomb's law of electrostatics.
Resistance of a wire	$R=\frac{\rho l}{A}$	R resistance l length A cross sectional area ρ resistivity	Assume uniform resistivity and cross sectional area along length of wire Copper $\rho=1.68 \times 10^{-8} \Omega \mathrm{~m}$ Aluminium $\rho=2.82 \times 10^{-8} \Omega \mathrm{~m}$ Air $\rho=1.3-3.3 \times 10^{16} \Omega \mathrm{~m}$
Energy stored in a capacitor	$E=\frac{1}{2} C V^{2}$	C capacitance V voltage between capacitor plates E energy	
Energy stored in an inductor	$E=\frac{1}{2} L I^{2}$	L inductance I current E energy	
Addition of series resistors	$R=R_{1}+R_{2}+\ldots$	R resistance	
Addition of parallel resistors	$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$	R resistance	
Addition of series capacitors	$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots$	C capacitance	
Addition of parallel capacitors	$C=C_{1}+C_{2}+\ldots$	C capacitance	

Addition of series inductors	$L=L_{1}+L_{2}+\ldots$	L inductance	
Addition of parallel inductors	$\frac{1}{L}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\ldots$	L inductance	
Magnetic field inside an infinite solenoid	$B=\mu \mu_{0} \frac{N I}{l}$	B magnetic field strength μ relative permeability μ_{0} permeability of free space $=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$ N turns in length l I current	A soft magnetic material inside the coil will enhance the magnetic field. For ferrite $\mu>640$
Characteristic frequency of an inductor-capacitor 'tuned' circuit	$f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}$	f_{0} frequency C capacitance L inductance	
Voltage vs time curves for charging and discharging of a capacitor	$\frac{V}{V_{0}}=e^{-\frac{t}{R C}} \quad$ discharging $\frac{V}{V_{0}}=1-e^{-\frac{t}{R C}} \quad$ charging	V voltage at time t V_{0} maximum voltage R resistance C capacitance	Note $R C$ is a time constant for a capacitor charging/discharging through a resistor.
Capacitance of a spherical conductor	$C=4 \pi \varepsilon_{0} a$	ε_{0} permittivity of free space $=8.85 \times 10^{-12} \mathrm{~m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$ a radius of sphere	
Capacitance of a parallel plate capacitor	$C=\frac{\varepsilon \varepsilon_{0} A}{d}$	ε relative permittivity (of dielectric) A area of capacitor plates d plate separation C capacitance	ε vacuum 1 paper 3.9 silicon 11.7 calcium copper titanate $>250,000$
Voltage induced by an inductor	$V=-L \frac{d I}{d t}$	V voltage induced I current L inductance t time	- sign due to Lenz's law i.e. an inductor will resist changes in electrical current passing through it
Energy density of electric and magnetic fields	$u=\frac{1}{2} \varepsilon \varepsilon_{0} E^{2}+\frac{1}{2} \frac{B^{2}}{\mu \mu_{0}}$	u potential energy per unit volume E electric field strength B magnetic field strength	
Inductance of a coil	$L=\frac{\mu \mu_{0} K N^{2} A}{l}$	N turns in length l with cross sectional area A If $l \gg$ coil radius ("infinite solenoid") then Nagaoka coefficient $K \approx 1$	
Inductance of a toroidal coil	$L \approx 0.007975 \frac{d^{2} N^{2}}{D}, d<0.1 D$	d diameter of coil windings N number of windings D diameter of torus	Semi-empirical formula
Biot-Savart law for calculating magnetic fields due to current elements	$d \mathbf{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \mathbf{l} \times \mathbf{r}}{r^{3}}$	B magnetic field I current dl vector line element r position vector at which B is calculated $r=\|\mathbf{r}\|$	

Maxwell's equations for electric and magnetic fields	$\begin{aligned} & \int_{S} \mathbf{E} \cdot d \mathbf{S}=\frac{1}{\varepsilon_{0}} Q \\ & \int_{S} \mathbf{B} \cdot d \mathbf{S}=0 \\ & \oint \mathbf{E} \cdot d \mathbf{l}=-\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot d \mathbf{S} \\ & \oint \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I+\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t} \int_{S} \mathbf{E} \cdot d \mathbf{S} \end{aligned}$	S surface enclosing charge Q $\oint . .$. means integrate around a closed loop, usig lie elements $d \boldsymbol{l}$	\#1 is Gauss's Law of electrostatics \#2 means 'no magnetic magnetic monopoles' (although dipoles can be though as a 'source' of magnetic fields) \#3 is Faraday's/Lenz's law of electromagnetic induction \#4 is Coulombs law + Maxwell's 'displacement current' term $\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t} \int_{S} \mathbf{E} \cdot d \mathbf{S}$
Generalized Ohm's law for Alternating Current (AC) circuits Impedance of resistors, capacitors and inductors	$\begin{aligned} & V=I Z \\ & V=V_{0} e^{i \omega t} \\ & I=I_{0} e^{i(\omega t-\phi)} \\ & Z_{R}=R \\ & Z_{L}=i \omega L \\ & Z_{C}=\frac{1}{i \omega C} \\ & Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \approx 376.7 \Omega \end{aligned}$	V voltage I current Z impedance t time $\omega=2 \pi f$ f frequency of AC input voltage L inductance C capacitance Z_{0} impedance of free space (i.e. vacuum, and to a very good approximation, air)	Complex impedance is a useful rick for finding out voltages across circuit elements e.g. in an LCR series circuit $\frac{V_{C}}{V_{0}}=\frac{Z_{C}}{Z_{C}+Z_{L}+Z_{R}}$ i.e. 'potential divider' concept. $\left\|\frac{V_{c}}{V_{0}}\right\|$ is the voltage amplitude response and $\phi=\arg \left(\frac{V}{V_{0}}\right)$ is the phase.
Skin depth i.e. penetration depth of electromagnetic fields within a conductor transmitting AC	$\delta=\sqrt{\frac{\rho}{\mu_{0} \pi f}}$	δ field penetration depth ρ resistivity f frequency μ_{0} permeability of free space $=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$	
Transformers	$\begin{aligned} & \frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}} \\ & \frac{I_{2}}{I_{1}} \approx \frac{N_{1}}{N_{2}} \end{aligned}$	V_{1}, I_{1} voltage, current in primary coil. V_{2}, I_{2} voltage, current in secondary coil. N_{1}, N_{2} are number of turns in (respectively) primary and secondary coils.	This assumes no power is lost in the transfer of electrical energy from coil 1 to coil 2 i.e. $I_{1} V_{1}=I_{2} V_{2} .$

4. Waves \& optics
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Name } & \text { Equation } & \begin{array}{l}\text { Description of } \\
\text { variables }\end{array} & \text { Notes / diagram } \\
\hline \begin{array}{l}\text { Wave speed } \\
\text { equation }\end{array} & c=f \lambda & \begin{array}{l}c \text { wave speed } \\
f \text { frequency } \\
\lambda \text { wavelength }\end{array} & \begin{array}{l}\text { Speed of light in a } \\
\text { vacuum } \\
c=2.998 \times 10^{8} \mathrm{~ms}^{-1} \\
\text { Speed of sound in air } \\
\left(20^{\circ} \mathrm{C}\right): 344 \mathrm{~ms}^{-1}\end{array}
$$

\hline Speed of sound in

water: 1482 \mathrm{~ms}^{-1}\end{array}\right]\)| Wavenumber |
| :--- |

		θ_{r} angle of reflection	reflecting surface.
Fraunhofer diffraction limit	$L \gg \frac{(\Delta x)^{2}}{\lambda}$	Δx aperture size λ wavelength L distance of aperture from observer	Beyond this range we can assume waves are planar and not spherical.
Diffraction pattern from a slit of width a	$I(\theta)=\frac{I_{0} \sin ^{2}\left(\frac{\pi a \sin \theta}{\lambda}\right)}{\left(\frac{\pi a \sin \theta}{\lambda}\right)^{2}}$	θ diffraction angle λ wavelength I_{0} peak intensity a slit width	Broad '1D' slit Assume uniform illumination normal to slits. Ignore effect of 'height' only width. i.e. assume slit is 'long and thin'. A rectangular slit is a product of these functions.
Diffraction pattern from two thin slits of separation D	$I(\theta)=I_{0} \cos ^{2}\left(\frac{\pi D \sin \theta}{\lambda}\right)$	D slit spacing θ diffraction angle λ wavelength I_{0} peak intensity	Young's double slits Assume uniform illumination normal to slits.
Diffraction pattern due to a grating of N slits of width a with separation d	$I(\theta)=I_{0}\left(\frac{\sin \left(\frac{\pi a \sin \theta}{\lambda}\right)}{\frac{\pi a \sin \theta}{\lambda}} \times \frac{\sin \left(\frac{N \pi d \sin \theta}{\lambda}\right)}{N \sin \left(\frac{\pi d \sin \theta}{\lambda}\right)}\right.$	N number of slits θ diffraction angle λ wavelength d slit spacing a slit width I_{0} peak intensity	Assume uniform illumination normal to slits.
Gauss' Lens Formula	$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$	u object distance v image distance f focal length of a lens	1/f = Dioptre number. f-number is: \qquad aperture diameter An f-number of 2 would conventionally be written as $f / 2$, which gives the aperture diameter given the lens focal length.
Lensmakers' formula	$\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$	f focal length of a lens n refractive index of lens R_{1}, R_{2} radii of curvature of lens surface	
Mach cone shockwave angle	$\sin \theta=\frac{c}{v}$	θ shockwave angle c speed of sound in external medium v velocity of source of wave disturbances	Shock front is only formed when $v>c$. When $v=c$ a broad shockwave is formed, which is the 'sonic boom'.

Kelvin Wedge wave pattern for a vessel moving over deep water	$\begin{aligned} & \theta=\sin ^{-1} \frac{1}{3} \approx 19.5^{\circ} \\ & \alpha=\tan ^{-1} \sqrt{2} \approx 54.7^{\circ} \\ & v=\sqrt{\frac{2 g \lambda}{4 \pi}} \\ & \omega^{2}=g k \\ & c_{p}=f \lambda=\frac{\omega}{k} \\ & c_{g}=\frac{d \omega}{d k}=\frac{1}{2} c_{p} \end{aligned}$	θ angle of bow waves α angle of wave-fronts relative to direction of motion v vessel velocity g gravitational field strength λ wavelength f frequency $k=\frac{2 \pi}{\lambda}$ wavenumber c_{p} phase velocity c_{g} group velocity	$\omega^{2}=g k$ is the dispersion relationship for deep water waves Wave packets travel at the group velocity. Information carried by waves can only travel at the group velocity.
Generalized dispersion relationship for interfacial waves between two fluids	$\begin{aligned} & \omega^{2}=\frac{\sigma k^{3}+g\left(\rho_{1}-\rho_{2}\right) k}{\rho_{2}+\rho_{1} \operatorname{cotanh}(k D)} \\ & \omega^{2}=\left\{\begin{array}{cc} \frac{\sigma k^{4} D}{\rho_{1}}+g k^{2} D & \tanh (k D) \approx k D \\ \frac{\sigma k^{3}}{\rho_{1}}+g k & \tanh (k D) \approx 1 \end{array}\right. \end{aligned}$ Ripples are when $\tanh (k D) \approx 1$ $\text { and } \rho_{1} \gg \rho_{2}$ $\begin{aligned} & c_{p}=\frac{\omega}{k}=\sqrt{\frac{\sigma k}{\rho_{1}}+\frac{g}{k}}=\sqrt{\frac{2 \pi \sigma}{\lambda \rho_{1}}+\frac{g \lambda}{2 \pi}} \\ & c_{p}=\sqrt[4]{\frac{4 g \sigma}{\rho_{1}}} \end{aligned}$	σ surface tension ρ_{1}, ρ_{2} densities D depth of fluid 1 $k=\frac{2 \pi}{\lambda}$ wavenumber g gravitational field strength λ wavelength Minimum phase velocity of ripples	
Wave transmission and reflection coefficients	$\begin{aligned} & Z_{n}=\rho_{n} c_{n} \\ & t=\frac{2 Z_{1}}{Z_{1}+Z_{2}} \\ & r=\frac{Z_{1}-Z_{2}}{Z_{1}+Z_{2}} \end{aligned}$	Z wave impedance ρ density of medium c wave speed in medium t transmission coefficient r reflection coefficient	If $\psi=\psi_{0} e^{i(k x-\omega t)}$ is an incident plane wave $r \psi$ is the reflected wave (moving in the the $-x$ direction) and $t \psi$ is the transmitted wave from the interface of two media of differing wave impedances.
Free-space wave equations for electrical and magnetic fields	$\begin{aligned} & \nabla^{2} \mathbf{E}=\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \\ & \nabla^{2} \mathbf{B}=\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}} \\ & c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}} \end{aligned}$	E electrical field B magnetic field c speed of light t time ε_{0} permittivity of free space $=8.85 \times 10^{-12}$ $\mathrm{m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$ μ_{0} permeability of free space $=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$	$c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
Wave equation	$\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}$	ψ wave amplitude x displacement t time c wave speed	

Doppler effect	$\Delta f=-\frac{\cos \theta}{\frac{c}{u}+\cos \theta} f$ $\begin{aligned} & \lambda_{e}=\frac{c}{f} \quad \lambda_{o}=\frac{c}{f+\Delta f} \\ & u \cos \theta=\frac{\Delta \lambda}{\lambda_{e}} \end{aligned}$	v velocity away from observer c wave speed f emitted wave frequency Δf frequency shift (from f) of waves arriving at observer. Wavelength Doppler shift formula.	$\text { If } \theta=0^{\circ} \quad \Delta f \approx-\frac{u}{c} f \text {. }$
Rainbows	$\begin{aligned} & \left(n^{2}-1\right)^{-2}=\beta+\alpha\left(\frac{f}{10^{15} \mathrm{~Hz}}\right)^{2} \\ & \alpha=-0.3612 \\ & \beta=1.7587 \\ & \varepsilon=4 \sin ^{-1}\left(\sqrt{\frac{4-n^{2}}{3 n^{2}}}\right)-2 \sin ^{-1}\left(\sqrt{\frac{4-n^{2}}{3}}\right) \end{aligned}$	n refractive index f frequency of light ε elevation of rainbow element of colour corresponding to frequency f	Colour Wavelength in vacuo /nm Red 780-622 Orange 622-597 Yellow 597-577 Green 577-492 Blue 492-455 Violet 455-390 A rainbow is observed at a mean angle of about 41.7° with an angular width of about 1.6°.

5. Thermal physics

Name	Equation	Description of variables	Notes / diagram
Ideal gas laws	$\begin{array}{ll} p V=n R T \\ V \propto T & \text { Charles' Law } \\ p \propto \frac{1}{V} & \text { Boyle's Law } \end{array}$	```p pressure V volume n}\mathrm{ number of moles of gas R molar gas constant T absolute temperature (in kelvin)```	$R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Equipartition	$\begin{aligned} & U=\sum_{\text {d.o.f }} \frac{1}{2} k_{B} T \\ & k_{B}=\frac{R}{N_{A}} \end{aligned}$	k_{B} Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{kgs}^{-2} \mathrm{~K}^{-1}$ T absolute temperature (in Kelvin) R molar gas constant N_{A} Avogadro's number $=6.02 \times 10^{23}$ molecules per mole	$\frac{1}{2} k_{B} T$ is the energy per 'degree of freedom' of molecular motion. If a molecule can translate in three dimensions, vibrate in two modes and rotate in two orientations, this means the mean thermal energy per molecule is $\frac{7}{2} k_{B} T$
Maxwell-Boltzmann molecular speed distribution	$\begin{aligned} & p(v)=4 \pi v^{2}\left(\frac{m}{2 \pi k_{B} T}\right)^{\frac{\frac{3}{2}}{2}} e^{-\frac{m v^{2}}{2 k_{B} T}} \\ & p(E)=\frac{2 E^{\frac{1}{2}}}{\sqrt{\pi}\left(k_{B} T\right)^{\frac{3}{2}}} e^{-\frac{E}{k_{B} T}} \end{aligned}$	v molecular speed k_{B} Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{kgs}^{-2} \mathrm{~K}^{-1}$ T absolute temperature (in Kelvin) m molecular mass $p(\ldots)$ probability density E kinetic energy	The probability of a speed being in the range v to $v+d v$ is defined as $p(v) d v$. Hence $1=\int_{0}^{\infty} p(v) d v$
Boltzmann entropy	$\begin{aligned} & S=k_{B} \ln W \\ & W=\frac{N!}{(N-n)!n!} \end{aligned}$	S entropy k_{B} Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{kgs}^{-2} \mathrm{~K}^{-1}$ W number of ways of arranging N two state systems, with n in the 'excited' state.	
Second Law of Thermodynamics	$\begin{aligned} & \Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }} \\ & \Delta S_{\text {surroundingss }}=\frac{\Delta H}{T} \\ & \Delta S_{\text {total }}>0 \end{aligned}$	ΔS entropy change ΔH enthalpy i.e. heat exchanged with surroundings T absolute temperature (in Kelvin)	For any chemical change, the total amount of entropy must increase
Ratio of specific heat capacities	$\begin{aligned} & \gamma=\frac{c_{p}}{c_{V}} \\ & c_{p}=c_{V}+\frac{1}{2} D \frac{R T}{m} \end{aligned}$	c_{p} constant pressure specific heat capacity c_{V} constant volume specific heat capacity D degrees of freedom of molecular motion R molar gas constant m molecular mass T absolute temperature (in Kelvin)	$R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Adiabatic changes	$\begin{aligned} & p V^{\gamma}=\text { constant } \\ & \Delta W=\frac{1}{\gamma-1}\left(p_{1} V_{2}-p_{1} V_{1}\right) \end{aligned}$	p pressure V volume	i.e. no mass or energy is exchanged between system and surroundings

Conservation of energy (First Law of Thermodynamics)	$\begin{aligned} & d U=d Q+d W \\ & d W=-p d V \\ & d W=\sigma d A \end{aligned}$	U internal energy Q heat energy W work done by gas p pressure V volume σ surface tension A area	
Constant volume heat capacity	$\begin{aligned} & C_{V}=\left.\frac{\partial Q}{\partial T}\right\|_{V} \\ & c_{V}=C_{V} / m \end{aligned}$	```\(Q\) heat energy \(T\) absolute temperature (in Kelvin) \(m\) molecular mass```	Change in gas state occurs at constant volume
Constant volume heat capacity	$\begin{aligned} & C_{P}=\left.\frac{\partial Q}{\partial T}\right\|_{P} \\ & c_{P}=C_{P} / m \end{aligned}$	```Q heat energy T absolute temperature (in Kelvin) m}\mathrm{ molecular mass```	Change in gas state occurs at constant pressure
Clausius-Clapeyron equation for the (solid,liquid,gas) phase boundary in a p, V, T space	$\frac{d p}{d T}=\frac{L}{T \Delta V}$	p pressure ΔV volume change during phase change L latent heat absorbed T absolute temperature (in Kelvin)	
Planck radiation distribution and Stefan's Law for black body radiation	$\begin{aligned} & B(\lambda, T)=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{\frac{h c}{\lambda k_{B} T}}-1} \\ & I=\int_{0}^{\infty} B(\lambda, T) d \lambda=\sigma T^{4}=\frac{1}{4} u c \\ & \sigma=\frac{2 \pi^{5} k_{B}^{4}}{15 c^{2} h^{3}} \end{aligned}$	I 'irradiance' (measure of radiation intensity per wavelength) c speed of light T absolute temperature (in Kelvin) λ frequency h Planck's constant $=6.63 \times 10^{-34} \mathrm{~m}^{2} \mathrm{kgs}^{-1}$ σ Stefan-Boltzmann constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$ k_{B} Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{kgs}^{-2} \mathrm{~K}^{-1}$ u radiation energy density.	Emmisitivies: $I=\varepsilon \sigma T^{4}$ $0 \leq \varepsilon \leq 1$ Black-Body $\varepsilon=1$ Albedo $A=1-\varepsilon$
Isothermal atmospheric pressure model	$\begin{aligned} & p=p_{0} \exp \left(-\frac{m g}{R T_{0}}\left(h-h_{0}\right)\right) \\ & T=T_{0} \\ & L=0 \end{aligned}$	```\(p\) pressure at altitude \(h\) \(p_{0}\) pressure at altitude \(h_{0}\) \(T\) temperature (Kelvin) at altitude \(h\) \(T_{0}\) temperature (Kelvin) at altitude \(h_{0}\) \(R\) molar gas constant \(m\) molar mass of air \(g\) gravitational field strength```	$\begin{aligned} & R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \\ & \text { for dry air } \\ & m=0.02896 \mathrm{kgmol}^{-1} \\ & g=9.81 \mathrm{~ms}^{-2} \end{aligned}$
Standard Atmospheric pressure model incorporating lapse rate (i.e. change of temperature with altitude)	$\begin{aligned} & p=p_{0}\left(1-\frac{L\left(h-h_{0}\right)}{T_{0}}\right)^{\frac{m g}{L R}} \\ & T=T_{0}-L\left(h-h_{0}\right) \\ & L \neq 0 \\ & p_{0}=1013.25 \mathrm{mbar} \\ & T_{0}=288.15^{\circ} \mathrm{K} \end{aligned}$	```\(p\) pressure at altitude \(h\) \(p_{0}\) pressure at altitude \(h_{0}\) \(T_{0}\) temperature (Kelvin) at altitude \(h_{0}\) \(L\) lapse rate```	$\begin{aligned} & \mathrm{h}_{0}=0 \mathrm{~km} \quad \mathrm{~h}_{1}=11 \mathrm{~km} \\ & \mathrm{~h}_{2}=20 \mathrm{~km} \\ & \mathrm{~h}_{3}=32 \mathrm{~km} \\ & \mathrm{~h}_{4}=47 \mathrm{~km} \quad \mathrm{~h}_{5}=51 \mathrm{~km} \\ & \mathrm{~h}_{6}=71 \mathrm{~km} \quad \mathrm{~h}_{7}=85 \mathrm{~km} \\ & \\ & \mathrm{~L}_{0}=6.5^{\circ} / \mathrm{km} \\ & \mathrm{~L}_{1}=0^{\circ} / \mathrm{km} \\ & \mathrm{~L}_{2}=-1^{\circ} / \mathrm{km} \\ & \mathrm{~L}_{3}=-28^{\circ} / \mathrm{km} \\ & \mathrm{~L}_{4}=0^{\circ} / \mathrm{km} \\ & \mathrm{~L}_{5}=2.8^{\circ} / \mathrm{km} \\ & \mathrm{~L}_{6}=2^{\circ} / \mathrm{km} \end{aligned}$

Vapour pressure	$\begin{aligned} & p_{\text {vap }}=U E_{s} \\ & E_{s}=a \exp \left\{\left(b-\frac{T}{234.5}\right)\left(\frac{T}{T+257.14}\right)\right. \\ & a=6.1121 \\ & b=18.678 \\ & \rho=\frac{m_{d}}{R T}\left(p-U\left(1-\frac{m_{\text {vap }}}{m_{d}}\right) E_{s}(T)\right) \\ & d p=-\rho g d h \end{aligned}$	$p_{\text {vap }}$ vapour pressure U relative humidity E_{s} Saturation vapour pressure T temperature (kelvin) m_{d} molar mass of dry air $m_{\text {vap }}$ molar mass of vapour R molar gas constant ρ overall vapour plus dry air density g gravitational field strength p pressure h altitude	$\begin{aligned} & m_{d}=0.02896 \mathrm{kgmol}^{-1} \\ & m_{\text {vap }}=0.01802 \mathrm{kgmol}^{-1} \\ & g=9.81 \mathrm{~ms}^{-2} \\ & 0 \leq U \leq 1 \end{aligned}$
Dew point	$\begin{aligned} T_{d} & =\frac{b\left(\ln U+\frac{a T}{b+T}\right)}{a-\ln U-\frac{a T}{b+T}} \\ a & =17.625 \\ b & =243.04 \end{aligned}$	U relative humidity T temperature in degrees Celcius	i.e. temperature at which vapour will be saturated and condensation occurs
Boiling point	$T=\left(\frac{1}{T_{*}}-\frac{R}{\Delta H} \ln \left(\frac{p}{p_{*}}\right)\right)^{-1}$	T boiling point at pressure p given known boiling point T_{*} at pressure p_{*} R molar gas constant ΔH latent heat of vaporization	$\Delta H_{0}=40.7 \mathrm{~kJ} \mathrm{~mol}$ at 100 C and 1013.25 mbar ambient air pressure.
Heat capacity and energy change	$\Delta E=m c \Delta T$	ΔE energy required to raise the temperature of a mass m by ΔT c is the specific heat capacity	
Kelvin, Celsius and Fahrenheit temperature scales	$\begin{aligned} & T_{K}=T_{C}+273.15 \\ & T_{F}=\frac{9}{5} T_{C}+32 \end{aligned}$		
Fluid pressure	$p=\rho g h$	p pressure ρ fluid density g gravitational field strength h height of fluid column	
Fourier's law of heat transfer via conduction	$q_{x}=-k \frac{\partial T}{\partial x}$	q_{x} heat flux $\left(\mathrm{Wm}^{-2}\right)$ in x direction, k thermal	$\frac{\partial T}{\partial x} \text { temperature }$

		conductivity	gradient
Heat diffusion equation	$\begin{aligned} & \frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{D} \frac{\partial T}{\partial t} \\ & l=\frac{1}{\sqrt{2 \pi} d^{2} n} \\ & D \approx \frac{2}{3} l\langle c\rangle \\ & \eta \approx \frac{1}{2} \rho l\langle c\rangle \end{aligned}$	```T temperature x direction t time D diffusion coefficient l mean free molecular path d molecular diameter \langlec\rangle mean molecular speed \rho density \eta viscosity```	These transport properties assume the kinetic theory i.e. matter is comprised of molecules in constant, largely random, motion. Heat, temperature is a measure of the energy of these random movements.
Newton's law of cooling	$\frac{d Q}{d t}=h A\left(T-T_{a}\right)$	Q thermal energy /J h heat transfer coefficient, A surface area, T temperature of body, T_{a} ambient temperature of environment	If $d Q=-m c d T$ $m=$ thermal mass, $c=$ specific heat capacity $\begin{aligned} & \frac{d T}{d t}=-\frac{h A}{m c}\left(T-T_{a}\right) \\ & T=T_{a}+\left(T_{0}-T_{a}\right) e^{-\frac{h t t}{m c}} \end{aligned}$

6. Nuclear \& Quantum physics

Name	Equation	Description of variables	Notes / diagram
Photon energy	$E=h f$	h Planck's constant $=6.63 \times 10^{-34} \mathrm{~m}^{2} \mathrm{kgs}^{-1}$ f frequency	
Mass-energy relation	$\Delta E=\Delta m c^{2}$	ΔE energy change Δm mass change c speed of light	Mass change in a nuclear reaction equates to an energy change - essentially due to the changes in nucleon binding energies $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
Photon momentum	$\begin{aligned} & p=\frac{h}{\lambda} \\ & p=\hbar k \\ & k=\frac{2 \pi}{\lambda} \end{aligned}$	$\begin{aligned} & \hline p \text { momentum } \\ & h \text { Planck's constant } \\ & =6.63 \times 10^{-34} \mathrm{~m}^{2} \mathrm{kgs}^{-1} \\ & \hbar=\frac{h}{2 \pi} \\ & k \text { wavenumber } \end{aligned}$	Note although photons have momentum, they don't have mass!
Heisenberg's uncertainly principle	$\begin{aligned} & \Delta p \Delta x \geq \frac{1}{2} \hbar \\ & \Delta E \Delta t \geq \frac{1}{2} \hbar \end{aligned}$	Δp momentum uncertainty Δx positional uncertainty ΔE energy uncertainty Δt time uncertainty h Planck's constant $=6.63 \times 10^{-34} \mathrm{~m}^{2} \mathrm{kgs}^{-1}$$\hbar=\frac{h}{2 \pi}$	
Schrödinger's wave equation	$-\frac{\hbar}{2 m} \frac{\partial^{2} \psi}{\partial t^{2}}+V \psi=E \psi$ time independent $-\frac{\hbar}{2 m} \frac{\partial^{2} \psi}{\partial t^{2}}+V \psi=i \hbar \frac{\partial \psi}{\partial t}$ time dependent	$\|\psi\|^{2} d x$ is the probability of a particle 'existing' within x position x to $x+d x$ h Planck's constant $=6.63 \times 10^{-34} \mathrm{~m}^{2} \mathrm{kgs}^{-1}$ $\hbar=\frac{h}{2 \pi}$ t time, $\quad V$ potential energy E total energy, m mass 'Classic' (!) textbook solutions are - Free particle - Particle in a box - Particle in a potential well - Particle 'tunnelling' through a barrier - Harmonic oscillator - Hydrogenic spherical atom	
Particle in a box	$\begin{aligned} & \psi(x, y, z)=\left(\frac{8}{a b c}\right)^{\frac{1}{2}} \sin \frac{l \pi x}{a} \sin \frac{m \pi y}{b} \sin \frac{n \pi z}{c} \\ & E_{n l m}=\frac{h^{2}}{8 m}\left(\frac{l^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}+\frac{n^{2}}{c^{2}}\right) \end{aligned}$	Solutions to time independent Schrödinger equation for a particle of mass m in a box of dimensions $a \times b \times c$ n, l, m are integers ≥ 1 $E_{n l m}$ are particle energies characterized by energy state n, l, m	

Bohr model of a Hydrogenic atom 'Orbital angular momentum is quantized' Model is a quasiclassical analogy. Electrons follow circular orbits, but at fixed (quantized) angular momentum. This must be an analogy, since an accelerating point-like electron would radiate, and hence rapidly lose energy.	$\begin{aligned} & L_{n}=\mu r_{n} v_{n}=n \hbar \\ & \mu=\frac{m_{e} m_{n u c}}{m_{e}+m_{n u c}} \approx m_{e} \\ & \alpha \approx \frac{1}{137}=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c} \\ & a_{0}=\frac{\alpha}{4 \pi R_{\infty}} \\ & r_{n}=\frac{n^{2} m_{e}}{Z \mu} a_{0} \\ & E_{n}=-\frac{R_{\infty} h c \mu Z^{2}}{m_{e} n^{2}} \\ & R_{\infty}=\frac{m_{e} e^{4}}{8 h^{3} \varepsilon_{0}^{2} c} \\ & \frac{1}{\lambda_{m n}}=\frac{R_{\infty} \mu Z^{2}}{m_{e}}\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right) \end{aligned}$	L_{n} orbital angular momentum of electron, nucleus two-body system n, m orbital numbers (positive integers) m_{e} electron mass $9.11 \times 10^{-31} \mathrm{~kg}$ $m_{\text {nuc }}$ nucleus mass $=\mathrm{A} u$, $u=1.66 \times 10-{ }^{27} \mathrm{~kg}$, A is the atomic mass number μ reduced mass r_{n} radius of nth electron 'orbit' v_{n} velocity of electron in $\mathrm{n}^{\text {th }}$ 'circular orbit' c speed of light $2.998 \times 10^{8} \mathrm{~ms}^{-1}$ e charge on electron 1.60×10^{-19} coulombs h Planck's constant $=6.63 \times 10^{-34} \mathrm{~m}^{2} \mathrm{kgs}^{-1}$ $\hbar=\frac{h}{2 \pi}$ α Fine structure constant R_{∞} Rydberg constant Z Atomic number (number of protons in nucleus) ε_{0} permittivity of free space $=8.85 \times 10^{-12} \mathrm{~m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$ $\lambda_{m n}$ wavelength of photon produced/absorbed resulting from an electron energy state change between 'orbits' m to n
'Liquid drop' nuclear binding energy model	$\begin{aligned} & B=a_{v} A-a_{s} A^{\frac{2}{3}}-a_{c} \frac{Z^{2}}{A^{\frac{2}{3}}}-a_{a} \frac{(N-Z)^{2}}{A}+\delta A^{-\frac{3}{4}} \\ & \delta=\left\{\begin{array}{cc} a_{p} & Z, N \text { both even } \\ -a_{p} & Z, N \text { both odd } \\ 0 & \text { otherwise } \end{array}\right. \\ & m=Z m_{H}+N m_{n}-B \end{aligned}$	B nuclear binding energy A Atomic mass number Z Atomic number (number of protons) N Number of neutrons $M(Z, A)$ atomic mass c speed of light $2.998 \times 10^{8} \mathrm{~ms}^{-1}$ $\begin{aligned} & m_{H}=1.673 \times 10^{-27} \mathrm{~kg} \\ & m_{n}=1.675 \times 10^{-27} \mathrm{~kg} \\ & a_{V} \approx 15.8 \mathrm{MeV}, a_{S} \approx 17.8 \mathrm{MeV}, \\ & a_{C} \approx 0.71 \mathrm{MeV}, a_{A} \approx 23.7 \mathrm{MeV}, a_{P} \approx 34 \mathrm{MeV} \\ & 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J} \\ & 1 \mathrm{MeV}=1.60 \times 10^{-13} \mathrm{~J} \end{aligned}$
Radioactive decay	$\begin{aligned} & \frac{d N}{d t}=-\lambda N \\ & \lambda=\frac{\ln 2}{T_{\frac{1}{2}}} \\ & N=N_{0} \exp \left(-\frac{t}{T_{\frac{1}{2}}} \ln 2\right) \end{aligned}$	N Number of radioactive atoms at time t that have not yet decayed N_{0} Number of radioactive atoms at $t=0$ λ decay constant $T_{\frac{1}{2}}$ half life. The time taken for $N=\frac{1}{2} N_{0}$ t time
Geiger-Nuttall rule	$\log \lambda=A+B \log x$	λ decay constant A, B empirical parameters or radioactive sample, and medium in which they are decaying into (e.g. air, paper, metal, lead ...) x distance from source
Alpha decay	$\begin{aligned} & { }_{Z}^{Z+N} \mathrm{X} \rightarrow{ }_{Z-2}^{Z+N-4} \mathrm{Y}+\alpha \\ & { }_{90}^{229} \mathrm{Th} \rightarrow{ }_{88}^{225} \mathrm{Ra}+\alpha \end{aligned}$	Alpha decay. Atomic number (Z) reduces by 2. Mass number reduces by 4 Kinetic energy of alpha particle approximately 5 MeV . (100,000 x ionization energy for an air molecule)

Beta decay	$\begin{aligned} & \overline{Z+N} \mathrm{X} \rightarrow{ }_{Z}^{Z+N} \mathrm{Y}+\beta \\ & { }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} \mathrm{~N}+\beta \end{aligned}$	Beta decay. Atomic number (Z) increases by 1 Mass number stays the same Kinetic energy of beta particles 0.01 to 10 MeV i.e. a spectrum of energies $\left[1 \mathrm{MeV}=1.60 \times 10^{-13} \mathrm{~J}\right]$
Nuclear fission	${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3{ }_{0}^{1} \mathrm{n}$	174 MeV per reaction 71.5 million $\mathrm{MJ} / \mathrm{kg}$ of fuel coal 24 MJ per kg gas 46 MJ per kg sandwich 10 MJ per kg $1 \mathrm{MeV}=1.60 \times 10^{-13} \mathrm{~J}$
Nuclear fusion	${ }_{1}^{2} \mathrm{D}+{ }_{0}^{3} \mathrm{~T} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$	17.6 MeV per reaction 338 million $\mathrm{MJ} / \mathrm{kg}$ of fuel $\left[1 \mathrm{MeV}=1.60 \times 10^{-13} \mathrm{~J}\right]$

umouyun un！̣วounun on 81レ	umouryun un！ldasunun sn LLレ			cict	UMOUPYU unuluunun 7n عレレ						$\begin{gathered} \hline \angle z L 7> \\ \text { wnuyog } \\ \angle O L \end{gathered}$		＜892＞ un！̣uqna		E0L－68		
$\begin{array}{r} \hline \hline \begin{array}{c} \text { szzz } \\ \text { uopey } \\ \text { UY } \end{array} \\ 98 \\ \hline \end{array}$			（L） 0 ロ088＇802 પұnus！${ }^{\text {g }}$ 18 ع8	（1）$\because \angle O Z$ реәך			$\begin{array}{r} \hline \text { (s) } 695996961 \\ \text { plog }_{2} \\ \hline \end{array}$	（6） 80 ＇ 961 unuņeld		（£）モZ081 un！uso so 92	（1） 20 Z 981 un！̣uәчч		（Z）88 1 V6 ${ }^{\circ} 081$ unjequeı $\mathbf{e} \perp_{\varepsilon L}$	（z） 818 FLL um！̣цен fH ZL	1－L－LS	（L）$\angle Z E \angle E 1$ unueg $e_{9 G}$	（9）96เรヶS06てとし un！sej SO GS
（9）$\varepsilon 6$ L LEL uоиəX өX 7 G			（เ） 09 L＇LZ！ Kuou！дū qS LG				（z） 2898 LOL 1əハ！！S 6 \forall L		（Z） 0 SSO6＇ 201 un！̣poyч पप St				（Z）Lع900 Z6 un！qu！ qN レ \downarrow			$\begin{array}{r} \hline \hline \begin{array}{c} \text { (t) } 29 \angle 8 \\ \text { wnipuons } \\ 1 母 \end{array} \\ 8 \varepsilon \\ \hline \end{array}$	（ 8 ） $8 \angle 9 \sigma^{\prime} 58$ un！̣p！qny 9 C Lع
（z） 88 L ＇ 8 dy 9ε	［208＇6L＇L08＇8L］ әu！uosg $\mathrm{G} \varepsilon$				（1）EZL＇69 un！l！ey eD Lع		（દ） saddo nソ 62				（s）spose8＇ts asəuesuew UW GZ	（9） 1966^{\prime} เร un！uory） JO七Z			（9） $806958^{\prime} \neq 7$ un！！puess 35 LZ		
（1） 80666 uosiv J．\forall				［980＇8z＇：v80＇8z］ uov！！！ ！ $\rightarrow 1$	（8）98est869z unulumpy IV ع1	$\begin{aligned} & \text { gZ } \\ & \text { gII } \\ & \text { Z। } \end{aligned}$	$\begin{aligned} & \text { gl } \\ & \text { gI } \\ & 15 \end{aligned}$		$\begin{gathered} 8 \\ -\quad \mathrm{IIIN} \\ 6 \end{gathered}$	γ_{8}^{4}	$\begin{gathered} \text { 9L } \\ \text { gII^ } \\ L \end{gathered}$	$\begin{gathered} 99 \\ \text { gI^ } \\ 9 \end{gathered}$	\qquad u 커롱 Cu 4	9！ 日NI \boldsymbol{t} 	98 gIII ε	［LOE＇ทでゆ0モ＇ทて］ uniseusิew 6W	
								$10 \mathrm{q}$	S			ssew 주올 уо	 \qquad	quisp pue persfyd ap 	\qquad	（s）เと8เてし＂ †	［268＇9：888＇9］ un！̣！！！ ε
（z） $20920{ }^{\circ} \mathrm{v}$ un！！ə ӨН Z	$\begin{gathered} \hline \forall L \\ \forall I I \Lambda \\ \angle 1 \end{gathered}$	$\begin{gathered} \forall 9 \\ \forall I \Lambda \\ 91 \end{gathered}$	$\begin{aligned} & \forall G \\ & \forall \Lambda \\ & \text { GI } \end{aligned}$	$\begin{gathered} \forall t \\ \forall \wedge I \\ \forall 1 \end{gathered}$	$\begin{gathered} \forall \varepsilon \\ \forall I I I \\ \varepsilon L \end{gathered}$	S¢U	1 비	41.40	Joquinn गִuory O｜qe	O1P						$\begin{gathered} \forall Z \\ \forall I I \\ z \end{gathered}$	
$\begin{gathered} \forall 8 \\ \forall I I I \Lambda \\ 81 \end{gathered}$																	$\begin{gathered} \forall I \\ \forall I \\ \downarrow \end{gathered}$

7. Relativity, cosmology

Name	Equation	Description of variables	Notes / diagram
Bode's law for the solar system	$D_{A U}=\frac{4+3 \times 2^{n}}{10}$	```\(D_{A U}\) planetary orbital radius /AU \(n=0\) Venus \(n=1\) Earth \(n=2\) Mars \(n=3\) Ceres \(n=4\) Jupiter \(n=5\) Saturn \(n=6\) Uranus \(n=7\) Neptune```	1AU (Astronomical unit) $=$ mean Earth-Sun separation $=1.496$ $\times 10^{11} \mathrm{~m}$
Cepheid variable luminosity relationship	$\log _{10} \frac{\bar{L}}{L_{\odot}} \approx 1.15 \log _{10} T_{d}+2.47$	\bar{L} mean Cepheid luminosity L_{\odot} Solar luminosity T_{d} pulsation period/days	$L_{\odot} \approx 3.85 \times 10^{26} \mathrm{~W}$
Hubble's law	$v=H_{0} d$	v cosmological recession velocity H_{0} Hubble constant $=67.8 \mathrm{kms}^{-1} / \mathrm{Mpc}$ d distance of galaxy	The entire universe is expanding, so d can be measured from any observation point. $1 \mathrm{Mpc}=3.09 \times 10^{22} \mathrm{~m}$
Gravitational lensing (Einstein rings)	$\theta^{2}=\frac{4 G M}{c^{2}}\left(\frac{d_{O S}-d_{O L}}{d_{O S} d_{O L}}\right)$	$\begin{aligned} & G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\ & M \text { lens mass } \\ & c \text { speed of light } 2.998 \mathrm{x} \\ & 10^{8} \mathrm{~ms}^{-1} \\ & d_{o s} \text { distance from } \\ & \text { observer to source of } \\ & \text { light } \\ & d_{o L} \text { distance from } \\ & \text { observer to lensing mass } \\ & M \\ & \theta \text { ring angular half-width } \\ & \hline \end{aligned}$	Light is bent by the presence of massive objects such as black holes. Objects (stars, galaxies..) behind the 'lens mass' will appear to be distorted into a ring formation.
Schwarzschild radius of a Black Hole	$R_{s}=\frac{2 G M}{c^{2}} \approx 3 \frac{M}{M_{\odot}} \mathrm{km}$	$\begin{aligned} & G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\ & M \text { black hole mass } \\ & c \text { speed of light } 2.998 \mathrm{x} \\ & 10^{8} \mathrm{~ms}^{-1} \end{aligned}$	M_{\odot} solar mass $=1.99 \times 10^{30} \mathrm{~kg}$. The Schwarzschild radius is the radius of a spherical mass whose gravitational escape velocity equals the speed of light.
Escape velocity	$\begin{aligned} & E=\frac{1}{2} m u^{2}-\frac{G M m}{r} \\ & E_{R}=\frac{1}{2} m u^{2}-\frac{G M m}{R} \\ & E_{\infty}=\frac{1}{2} m v^{2} \\ & v>0 \Rightarrow E_{R}>0 \\ & \therefore u>\sqrt{\frac{2 G M}{R}} \end{aligned}$	$\begin{aligned} & G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\ & M \text { mass of (spherical) } \\ & \text { object } \\ & R \text { radius of object } \\ & u \text { launch velocity } \\ & r \text { radius from object } \\ & \text { centre } \\ & m \text { mass of object } \\ & \text { escaping } \\ & E \text { total energy of } \\ & \text { escaping object } \\ & \hline \end{aligned}$	For Earth, the escape velocity is $\begin{aligned} & u>\sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{6.38 \times 10^{6}}} \\ & u>11.2 \mathrm{kms}^{-1} \end{aligned}$

Equations of static (i.e. time independent) structure of stars	$\begin{aligned} & \frac{d M}{d r}=4 \pi \rho r^{2} \\ & \frac{d p}{d r}=-\frac{G \rho M}{r^{2}} \\ & \frac{d L}{d r}=4 \pi \rho r^{2} \varepsilon \\ & \frac{d T}{d r}=\frac{-3 \kappa \rho}{16 \sigma T^{3}} \frac{L}{4 \pi r^{2}} \\ & \frac{d T}{d r}=\frac{\gamma-1}{\gamma} \frac{T}{p} \frac{d p}{d r} \end{aligned}$	M mass within radius r ρ density $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ L luminosity ε power generated per unit mass T temperature $/ \mathrm{K}$ κ mean opacity p pressure σ Stefan-Boltzmann constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$ $\gamma=\frac{c_{p}}{c_{V}}$ ratio of constant pressure and constant volume heat capacities	
Gravitational Redshift	$\frac{f_{\infty}}{f_{r}}=\sqrt{1-\frac{2 G M}{r c^{2}}}$	f_{∞} frequency at range $r=\infty$ from mass centre f_{r} frequency at range r $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ M mass c speed of light 2.998 x $10^{8} \mathrm{~ms}^{-1}$	
Redshift	$z=\frac{\lambda_{o}-\lambda_{e}}{\lambda_{e}}$	λ_{o} observed wavelength λ_{e} emitted wavelength	
Black hole temperature	$T=\frac{\hbar c^{3}}{8 \pi G M k_{B}} \approx 10^{-7} \frac{M_{\odot}}{M}$	h Planck's constant = $6.63 \times 10^{-34} \mathrm{~m}^{2} \mathrm{kgs}^{-1}$ $\hbar=\frac{h}{2 \pi}$ k_{B} Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{kgs}^{-2} \mathrm{~K}^{-1}$ $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ M black hole mass M_{\odot} solar mass c speed of light 2.998 x $10^{8} \mathrm{~ms}^{-1}$ T temperature /Kelvin	$M_{\odot}=1.99 \times 10^{30} \mathrm{~kg}$

Lorentz space-time transformations	$\begin{aligned} & \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}} \\ & x=\gamma\left(x^{\prime}+v t^{\prime}\right) \quad y=y^{\prime} \quad z=z^{\prime} \\ & t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right) \end{aligned}$	v velocity of frame S^{\prime} relative to x direction of frame S $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$ x, y, z coordinates in frame S $x^{\prime}, y^{\prime}, z^{\prime}$ coordinates in frame S t time in frame S t^{\prime} time in frame S^{\prime}	S,S' are Cartesian x, y, z frames of reference. Relatively speaking, S is the 'stationary frame' and S' is the 'moving frame'. (But obviously the converse is true from the perspective of S^{\prime}). Assume S and S^{\prime} are coincident at $t=0$ (which may not be $t^{\prime}=0$)
Relativistic velocity transformations	$\begin{aligned} & u_{x}=\frac{u_{x}^{\prime}+v}{1+u_{x}^{\prime} v / c^{2}} \\ & u_{y}=\frac{u_{y}^{\prime}}{\gamma\left(1+u_{x}^{\prime} v / c^{2}\right)} \\ & u_{z}=\frac{u_{z}^{\prime}}{\gamma\left(1+u_{x}^{\prime} v / c^{2}\right)} \end{aligned}$	v velocity of frame S^{\prime} relative to x direction of frame S $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$ u_{x}, u_{y}, u_{z} velocities in S frame $u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}$ velocities in S^{\prime} frame	S, S ' are Cartesian x, y, z frames of reference. $\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}$
Relativistic momentum \& energy transformations	$\begin{aligned} & \hline \mathbf{p}=\gamma m \mathbf{u} \\ & E=\gamma m c^{2} \\ & E^{2}-p^{2} c^{2}=\text { constant } \\ & p_{x}=\gamma\left(p_{x}^{\prime}+\frac{v E^{\prime}}{c^{2}}\right) \\ & p_{y}=p_{y}^{\prime} \quad p_{z}=p_{z}^{\prime} \\ & E=\gamma\left(E^{\prime}+v p_{x}^{\prime}\right) \end{aligned}$	$\mathbf{p}, p=\|\mathbf{p}\|$ momentum in S frame $p_{x, y, z}^{\prime}$ momentum in S^{\prime} frame m mass u velocity v velocity of frame S^{\prime} $\begin{aligned} & \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}} \\ & c=2.998 \times 10^{8} \mathrm{~ms}^{-1} \end{aligned}$ E total energy	
Relativistic Doppler shift	$\frac{f^{\prime}}{f}=\gamma\left(1+\frac{v}{c} \cos \theta\right)$	```\(\theta\) photon arrival angle (anticlockwise from horizontal) in S frame \(v\) velocity of \(\mathrm{S}^{\prime}\) \(c=2.998 \times 10^{8} \mathrm{~ms}^{-1}\) \(f^{\prime}\) frequency emitted in \(\mathrm{S}^{\prime}\) frame \(f\) frequency received in S frame```	
Relativistic aberration	$\cos \theta=\frac{\cos \theta^{\prime}+v / c}{1+(v / c) \cos \theta^{\prime}}$	θ emission angle of light in S θ^{\prime} emission angle of light in S^{\prime} v velocity of S' relative to S $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$	

The Solar System has the following parameters. (Woan, 2000 pp 176). All orbits are assumed to be elliptical about the sun. Note

$$
\frac{M_{\odot}}{M_{\oplus}} \approx 332,948
$$

and

$$
R_{\oplus} \approx \frac{\mathrm{AU}}{23,455}
$$

In SI units:

$$
\begin{aligned}
M_{\odot} & =1.9891 \times 10^{30} \mathrm{~kg} \\
R_{\odot} & =6.960 \times 10^{8} \mathrm{~m} \\
M_{\oplus} & =5.9742 \times 10^{24} \mathrm{~kg} \\
R_{\oplus} & =6.37814 \times 10^{6} \mathrm{~m} \\
1 \mathrm{AU} & =1.495979 \times 10^{11} \mathrm{~m}
\end{aligned}
$$

Object	M / M_{\oplus}	a / AU	ε^{4}	θ_{0}	β	α	R / R_{\oplus}	$T_{\text {rot }} /$ days	P / Yr
Sun	332,837	-	-	-	-	-	109.123	-	-
Mercury	0.055	0.387	0.21	$*$	7.00	0	0.383	58.646	0.241
Venus †	0.815	0.723	0.01	$*$	3.39	0	0.949	243.018	0.615
Earth	1.000	1.000	0.02	$*$	0.00	0	1.000	0.997	1.000
Mars	0.107	1.523	0.09	$*$	1.85	0	0.533	1.026	1.881
Jupiter	317.85	5.202	0.05	$*$	1.31	0	11.209	0.413	11.861
Saturn	95.159	9.576	0.06	$*$	2.49	0	9.449	0.444	29.628
Uranus †	14.500	19.293	0.05	$*$	0.77	0	4.007	0.718	84.747
Neptune $^{\text {Sent }}$	17.204	30.246	0.01	$*$	1.77	0	3.883	0.671	166.344
Pluto †	0.003	39.509	0.25	$*$	17.5	0	0.187	6.387	248.348

where β is the orbital inclination /degrees. In all cases the semi-major axis pointing direction is

$$
\mathbf{d}=d_{x} \hat{\mathbf{x}}+d_{y} \hat{\mathbf{y}}+d_{\mathbf{y}} \hat{\mathbf{z}}=\cos \beta \hat{\mathbf{x}}+\sin \beta \hat{\mathbf{z}}
$$

* For the current orbital polar angle θ_{0} (and indeed more accurate values for solar system parameters) see the website of the Jet Propulsion Laboratory (JPL) http://ssd.jpl.nasa.gov/
\dagger These planets rotate clockwise about their own internal polar axis. ("Retrograde"). All the other planets rotate anti-clockwise about their own internal axis. All the planets orbit the sun in an anticlockwise direction.
${ }^{4}$ http://nineplanets.org/data.html

8.

Mathematics

Name	Equation	Notes / diagram
Trigonometry \& Pythagoras' theorem	$\begin{aligned} & x=r \cos \theta \\ & y=r \sin \theta \\ & r=\sqrt{x^{2}+y^{2}} \\ & \sin ^{2} \theta+\cos ^{2} \theta=1 \\ & \tan \theta=\frac{\sin \theta}{\cos \theta} \\ & \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\ & \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\ & \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \end{aligned}$	$\cos \theta$ is the x coordinate of the unit circle $\sin \theta$ is the y coordinate. θ is measured anticlockwise from the x axis.
Special triangles	$\begin{array}{ll} \sin 30^{\circ}=\frac{1}{2} & \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\ \cos 60^{\circ}=\frac{1}{2} & \cos 30^{\circ}=\frac{\sqrt{3}}{2} \\ \tan 30^{\circ}=\frac{1}{\sqrt{3}} & \tan 60^{\circ}=\sqrt{3} \\ \sin 45^{\circ}=\frac{1}{\sqrt{2}} \cos 45^{\circ}=\frac{1}{\sqrt{2}} \tan 45^{\circ}=1 \end{array}$	
Laws of indices	$\begin{aligned} & x^{a} x^{b}=x^{a b} \\ & \left(x^{a}\right)^{b}=x^{a b} \\ & x^{-a}=\frac{1}{x^{a}} \\ & \sqrt[n]{x}=x^{\frac{1}{n}} \end{aligned}$	
Laws of logarithms	$\begin{aligned} & y=\log _{b} x \Rightarrow x=b^{y} \\ & \log _{b} x+\log _{b} y=\log _{b} x y \\ & \log _{b} x-\log _{b} y=\log _{b} \frac{x}{y} \\ & \log _{b} x^{n}=n \log _{b} x \\ & x=b^{\log _{b} x} \\ & \log _{b} x=\frac{\log _{10} x}{\log _{10} b}=\frac{\log _{c} x}{\log _{c} b} \end{aligned}$	Base $b>0$
De-Moivre's Theorem	$e^{i \theta}=\cos \theta+i \sin \theta$	
Taylor \& Maclaurin expansions	$\begin{aligned} & f(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{(3)}(0) \frac{x^{3}}{3!}+\ldots \\ & f(x+h)=f(h)+f^{\prime}(h) \mathrm{x}+f^{\prime \prime}(h) \frac{x^{2}}{2!}+\ldots \end{aligned}$	
Binomial expansion	$\begin{aligned} & (a+b)^{n}=\binom{n}{0} a^{0} b^{n}+\binom{n}{1} a^{1} b^{n-1}+\binom{n}{2} a^{2} b^{n-2}+\ldots .+\binom{n}{n} \\ & \binom{n}{r}=\frac{n!}{(n-r)!r!} \\ & (1+x)^{n}=1+n x+n(n-1) x+n(n-1)(n-2) \frac{x^{2}}{2!}+\ldots \\ & +n(n-1)(n-2)(n-3) \frac{x^{3}}{3!}+\ldots \end{aligned}$	Binomial expansion n integer, >0 Generalized binomial expansion $\|x\|<1$

Arithmetic progression	$\begin{aligned} & \hline u_{n}=a+(n-1) d \\ & u_{1}=a \\ & u_{n+1}-u_{n}=d \\ & S_{n}=\sum_{i=1}^{n} u_{i}=\frac{1}{2} n\left(u_{1}+u_{n}\right) \end{aligned}$	
Geometric progression	$\begin{aligned} & u_{n}=a r^{n-1} \\ & u_{1}=a \\ & \frac{u_{n+1}}{u_{n}}=r \\ & S_{n}=a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{1-r} \end{aligned}$	$\begin{aligned} & \text { If }\|r\|<1 \\ & S_{\infty} \rightarrow \frac{a}{1-r} \end{aligned}$
Summation formulae	$\begin{aligned} & \sum_{n=1}^{N} n=\frac{1}{2} n(n+1) \\ & \sum_{n=1}^{N} n^{2}=\frac{1}{6} n(n+1)(2 n+1) \\ & \sum_{n=1}^{N} n^{3}=\frac{1}{4} n^{2}(n+1)^{2} \end{aligned}$	
Triangle	$\begin{array}{ll} A=\frac{1}{2} b h=\frac{1}{2} a b \sin C & \text { Area of a triangle } \\ \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} & \text { Sine and Cosine rules } \\ a^{2}=b^{2}+c^{2}-2 b c \cos A & \end{array}$	b is base of triangle h perpendicular height a, b, c sides of triangle A, B, C opposite angles to sides
Circle	$\begin{aligned} & (x-a)^{2}+(x-b)^{2}=r^{2} \\ & C=2 \pi r \\ & A=\pi r^{2} \\ & s=r \theta \\ & a=\frac{1}{2} r^{2} \theta \end{aligned}$	Circle centre (a, b) and radius r Circumference C and area A Arc angle (radians) θ and area a
Ellipse	$\begin{aligned} & \frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1 \\ & A=\pi a b \end{aligned}$	Geometric centre (x_{0}, y_{0}) semi-major axis a and semi-minor axis b Area A
Cylinder	$\begin{aligned} & A=2 \pi r h+2 \pi r^{2} \\ & V=\pi r^{2} h \end{aligned}$	Area A and volume V h height or length of cylinder
Cone	$\begin{aligned} A & =\pi r l \\ V & =\frac{1}{3} \pi r^{2} h \end{aligned}$	l slant height r radius of base h perpendicular height
Frustum	$V=\frac{1}{3} h(A+\sqrt{a A}+a)$	Top and base areas a, A Perpendicular height h
Stirling's Formula	$\begin{aligned} & n!\approx n^{n+\frac{1}{2}} e^{-n} \sqrt{2 \pi} \\ & \ln (n!) \approx n \ln n-n \end{aligned}$	
Combinatorics	$\begin{aligned} & P=\frac{n!}{p!q!r!\ldots} \\ & { }^{n} C_{r}=\frac{n!}{(n-r)!r!} \\ & { }^{n} P_{r}=\frac{n!}{(n-r)!} \end{aligned}$	n objects, p repeats of type A, q repeats of type B etc. ${ }^{n} C_{r}$ is umber of combinations of r distinct objects from a population of n distinct objects i.e. order of subset doesn't matter. ${ }^{n} P_{r}$ is umber of permutations of r distinct objects from a population of n distinct objects i.e. order of subset does matter.

Quadratic equations	$\begin{aligned} & y=a x^{2}+b x+c \\ & y=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \end{aligned}$	Quadratic formula Discriminant $\Delta=b^{2}-4 a c$
Vector scalar (dot) product	$\begin{aligned} & \mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta \\ & \hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{x}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}=0 \\ & \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ & \mathbf{a}=a_{x} \hat{\mathbf{x}}+a_{y} \hat{\mathbf{y}}+a_{z} \hat{\mathbf{z}}=\left(\begin{array}{l} a_{x} \\ a_{y} \\ a_{z} \end{array}\right) \\ & \mathbf{b}=b_{x} \hat{\mathbf{x}}+b_{y} \hat{\mathbf{y}}+b_{z} \hat{\mathbf{z}}=\left(\begin{array}{l} b_{x} \\ b_{y} \\ b_{z} \end{array}\right) \\ & \mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \end{aligned}$	Projection (shadow) of one vector on another is $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$
Vector (cross) product	$\begin{aligned} & \|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta \\ & \mathbf{b} \times \mathbf{a}=-\mathbf{a} \times \mathbf{b} \\ & \hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}} \\ & \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ & \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \\ & \mathbf{a} \times \mathbf{b}=\hat{\mathbf{x}}\left(a_{y} b_{z}-a_{z} b_{y}\right)+\hat{\mathbf{y}}\left(a_{z} b_{x}-a_{x} b_{z}\right)+\hat{\mathbf{z}}\left(a_{x} b_{y}-a_{y} b_{x}\right. \\ & (\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \\ & (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \\ & \mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \end{aligned}$	Evaluate using 'right hand screw rule'
Vector equations and planes, and distances between lines and planes.	$\begin{aligned} & \mathbf{r}=\mathbf{a}+\lambda \mathbf{b} \\ & d=\sqrt{\|\mathbf{b}-\mathbf{a}\|^{2}-\frac{((\mathbf{b}-\mathbf{a}) \cdot \mathbf{c})^{2}}{\|\mathbf{c}\|^{2}}}=\frac{\|(\mathbf{b}-\mathbf{a}) \times \mathbf{c}\|}{\|\mathbf{c}\|} \\ & \hat{\mathbf{n}}=\frac{(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})}{\|(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})\|} \\ & (\mathbf{r}-\mathbf{a}) \cdot \hat{\mathbf{n}}=0 \\ & \mathbf{r}=\mathbf{a}+\lambda(\mathbf{b}-\mathbf{a})+\mu(\mathbf{c}-\mathbf{a}) \\ & d=\|(\mathbf{a}-\mathbf{p}) \cdot \hat{\mathbf{n}}\| \\ & \Delta=\frac{\|(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{c} \times \mathbf{d})\|}{\|\mathbf{c} \times \mathbf{d}\|} \\ & d=\|(\mathbf{c}-\mathbf{a}) \cdot \hat{\mathbf{n}}\| \end{aligned}$	Vector equation of a straight line through point a and with direction vector \mathbf{b} 'Foot of the perpendicular' i.e. closest distance from \mathbf{b} to line passing through a with direction vector \mathbf{c} Normal unit vector $\hat{\mathbf{n}}$ to plane containing non-parallel position vectors a,b,c Vector equation of a plane Distance from a point \mathbf{p} to plane characterized by point a on the plane and unit normal $\hat{\mathbf{n}}$ Distance between line through a with direction vector \mathbf{c} and a line through \mathbf{b} with direction vector \mathbf{d} If a line $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ is parallel to a plane, $\hat{\mathbf{n}} \cdot \mathbf{b}=0$. Distance between line and plane is $d=\|(\mathbf{c}-\mathbf{a}) \cdot \hat{\mathbf{n}}\|$ Volume of a parallelepiped formed from vectors a,b,c

	$V=[\mathbf{a}, \mathbf{b}, \mathbf{c}]=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$	
Matrices	$\begin{aligned} & \left(\begin{array}{ll} a & b \\ c & d \end{array}\right)\left(\begin{array}{ll} e & f \\ g & h \end{array}\right)=\left(\begin{array}{ll} a e+b g & a f+b h \\ c e+d g & c f+d h \end{array}\right) \\ & \left(\begin{array}{ll} a & b \\ c & d \end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) \\ & \left(\begin{array}{ll} a & b \\ c & d \end{array}\right)^{-1}\left(\begin{array}{ll} a & b \\ c & d \end{array}\right)=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \end{aligned}$	Inverse matrix Identity matrix
Basic differentiation	$\begin{aligned} & f^{\prime}(x)=\frac{d}{d x} f(x) \\ & \frac{d}{d x} x^{n}=n x^{n-1} \\ & \frac{d}{d x} e^{a x}=a e^{a x} \\ & \frac{d}{d x} \ln \|x\|=\frac{1}{x} \\ & \frac{d}{d x} \ln \|f(x)\|=\frac{f^{\prime}(x)}{f(x)} \\ & \frac{d}{d x} \sin a x=a \cos a x \\ & \frac{d}{d x} \cos a x=-a \sin a x \\ & \frac{d}{d x} \tan a x=a \sec { }^{2} a x \\ & \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} \\ & \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\ & \frac{d y}{d x}=\frac{d y}{d z} \times \frac{d z}{d x} \\ & \end{aligned}$	For trigonometric functions, variables must be in radians π radians $=180^{\circ}$ Note: if $\theta \ll 1$ $\theta \approx \sin \theta \approx \tan \theta$ Product Rule Quotient Rule Chain Rule
Basic integration	$\begin{aligned} & \int f^{\prime}(x) d x=f(x)+c \\ & \int_{a}^{b} f^{\prime}(x) d x=[f(x)]_{a}^{b}=(f(b))-(f(a)) \\ & \int e^{a x} d x=\frac{1}{a} e^{a x}+c \\ & \int \frac{f^{\prime}(x)}{f(x)} d x=\ln \|f(x)\|+c \\ & \int \sin a x d x=-\frac{1}{a} \cos a x \\ & \int \cos a x d x=\frac{1}{a} \sin a x \\ & \int \tan a x d x=-\frac{1}{a} \ln \|\cos a x\|+c \\ & \int(u v) d x=u \int v d x-\int\left(\frac{d u}{d x} \times \int v d x\right) d x \end{aligned}$	$\int g(x) d x$ is the area between the curve $g(x)$ and the x axis, with the caveat that the area beneath the axis counts a negative. $\int g(x) d x$ is also the inverse of differentiating $y=g(x)$. i.e. $\int \frac{d y}{d x} d x=y+c$ (which is true up to a constant of integration c, which must be specified. Integration by parts

Volumes of revolution	$V_{x}=\int_{x=a}^{b} \pi y^{2} d x$ $V_{y}=\int_{y=a}^{b} \pi x^{2} d y$ $A_{x}=2 \pi \int_{a}^{b} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$	About x axis.
	$L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ About y axis. $R=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}\left(\frac{d^{2} y}{d x^{2}}\right)^{-1}$	Rurface area
	Rength of a curve	

Linear regression	$\begin{aligned} & \bar{x}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \bar{y}=\frac{1}{N} \sum_{n=1}^{N} y_{n} \\ & \overline{x^{2}}=\frac{1}{N} \sum_{n=1}^{N} x_{n}^{2} \quad \overline{y^{2}}=\frac{1}{N} \sum_{n=1}^{N} y_{n}^{2} \\ & \overline{x y}=\frac{1}{N} \sum_{n=1}^{N} x_{n} y_{n} \\ & \operatorname{cov}[x, y]=\overline{x y}-\bar{x} \times \bar{y} \\ & V[x]=\overline{x^{2}}-\bar{x}^{2} \quad V[\mathrm{y}]=\overline{y^{2}}-\bar{y}^{2} \\ & p=\frac{\operatorname{cov}[x, y]}{\sqrt{V[x] V[y]}} \\ & y=m x+c \\ & m=\frac{\operatorname{cov}[x, y]}{V[x]} \quad c=\bar{y}-m \bar{x} \quad \text { vertical fit } \\ & m=\frac{V[y]}{\operatorname{cov}[x, y]} \quad c=\bar{y}-m \bar{x} \text { horizontal fit } \end{aligned}$	Formulae for calculating the line of best fit to a set of data $\left\{x_{n}, y_{n}\right\}$ $\operatorname{cov}[x, y]$ is the covariance $p=\frac{\operatorname{cov}[x, y]}{\sqrt{V[x] V[y]}}$ is the product moment correlation coefficient. $p=-1$ perfect negative correlation between x and y $p=+1$ perfect positive correlation between x and y $p=0$ no correlation between x and y
Statistical analysis	$\begin{aligned} & \bar{x}=E[x]=\frac{1}{N} \sum_{n=1}^{N} x_{n} \\ & \sigma^{2}=V[x]=\frac{1}{N-1} \sum_{n=1}^{N}\left(x_{n}-\bar{x}\right)^{2} \\ & \operatorname{skew}[x]=\frac{N}{(N-1)(N-2)} \sum_{n=1}^{N}\left(\frac{x_{n}-\bar{x}}{\sigma}\right)^{3} \end{aligned}$	\bar{x} mean, or expectation σ^{2} variance For continuous variables and probability distribution $p(x)$ $\begin{aligned} & E[x]=\int x p(x) d x \\ & V[x]=E\left[x^{2}\right]-(E[x])^{2} \\ & V[x]=\int x^{2} p(x) d x-\left(\int x p(x) d x\right)^{2} \end{aligned}$
Numeric integration: Trapezium Rule	$\begin{aligned} & \int_{x_{0}}^{x_{n}} f(x) d x \approx \frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n-1}\right)\right)+f\left(x_{n}\right)\right) \\ & \Delta x=\frac{x_{n}-x_{0}}{N} \end{aligned}$	Estimate integral by summing trapezia fitted to the curve. Each trapezia has a fixed base width Δx
Solving Ordinary Differential Equations Euler's Method	$\begin{aligned} & \frac{d y}{d x}=f(x, y) \\ & x_{n+1}=x_{n}+\Delta x \\ & y_{n+1}=y_{n}+f\left(x_{n}, y_{n}\right) \Delta x \end{aligned}$	Errors of the order of Δx
Solving Ordinary Differential Equations -Runge-Kutta Method	$\begin{aligned} & \frac{d y}{d x}=f(x, y) \\ & x_{n+1}=x_{n}+\Delta x \\ & k_{1}=f\left(x_{n}, y_{n}\right) \Delta x \\ & k_{2}=f\left(x_{n}+\frac{1}{2} \Delta x, y_{n}+\frac{1}{2} k_{1}\right) \Delta x \\ & k_{3}=f\left(x_{n}+\frac{1}{2} \Delta x, y_{n}+\frac{1}{2} k_{2}\right) \Delta x \\ & k_{4}=f\left(x_{n}+\frac{1}{2} \Delta x, y_{n}+k_{3}\right) \Delta x \\ & y_{n+1}=y_{n}+\frac{1}{6} k_{1}+\frac{1}{3} k_{2}+\frac{1}{3} k_{3}+\frac{1}{6} k_{4} \\ & \hline \end{aligned}$	Errors of the order of Δx^{4}
Solving vector dynamics problems via Verlet Method	$\begin{aligned} & \mathbf{a}_{n}=f\left(t_{n}, \mathbf{r}_{n}\right) \\ & \mathbf{v}_{n+1}=\mathbf{v}_{n}+\frac{1}{2}\left(\mathbf{a}_{n}+\mathbf{a}_{n+1}\right) \Delta t \\ & \mathbf{r}_{n+1}=\mathbf{r}_{n}+\mathbf{v}_{n} \Delta t+\frac{1}{2} \mathbf{a}_{n} \Delta t^{2} \end{aligned}$	Errors of the order of Δx^{2}
Newton's Raphson method for root finding	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$	Requires initial guess of root x_{0} Fails near to a stationary point $f^{\prime}(x)=0$

Normal distribution	$\begin{aligned} & p(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\ & \bar{x}=\mu \\ & M(x, t)=e^{\mu+\frac{1}{2} \sigma^{2} t^{2}} \end{aligned}$	Gaussian distribution or 'bell curve'. Central limit theorem: "The distribution of the mean values of a set of independent random values tends towards a Gaussian distribution if the number of samples is large enough."
Exponential distribution	$\begin{aligned} & p(x \mid \lambda)=\lambda e^{-\lambda x} \\ & \bar{x}=\frac{1}{\lambda} \\ & \sigma^{2}=\frac{1}{\lambda^{2}} \end{aligned}$	
Rayleigh distribution	$\begin{aligned} & p(x \mid \sigma)=\frac{x}{\sigma^{2}} e^{-\frac{x^{2}}{2 \sigma^{2}}} \\ & \bar{x}=\sigma \sqrt{\pi / 2} \\ & V[x]=2 \sigma^{2}\left(1-\frac{1}{4} \pi\right) \end{aligned}$	
Chi-squared distribution	$\begin{aligned} & p(x \mid r)=\frac{e^{-x / 2} x^{(r / 2)-1}}{2^{r / 2} \Gamma(r / 2)} \\ & \bar{x}=r \\ & \sigma^{2}=2 r \\ & \Gamma(x)=\int_{0}^{\infty} t^{z-1} e^{-t} d t \end{aligned}$	$\Gamma(x)$ is the Gamma function.
Binomial distribution	$\begin{aligned} & p(x \mid n, p)=\binom{n}{x} p^{x}(1-p)^{n-x} \\ & p(x \mid n, p) \approx \frac{1}{\sqrt{2 \pi n p(1-p)}} \exp \left[-\frac{1}{2} \frac{(x-n p)^{2}}{n p(1-p)}\right] \\ & \bar{x}=n p \\ & \sigma^{2}=n p(1-p) \\ & M(x, t)=\left(p e^{t}+1-p\right)^{n} \end{aligned}$	Probability of x successes out of n independent trials, each with probability of success p
Geometric distribution	$\begin{aligned} & p(x \mid p)=(1-p)^{x-1} p \\ & \bar{x}=\frac{1}{p} \\ & \sigma^{2}=\frac{1-p}{p^{2}} \end{aligned}$	Probability of success in the $x^{\text {nh }}$ independent trial, following x-1 failures. Each trial has probability of success p.
Poisson distribution	$\begin{aligned} & p(x \mid \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!} \approx \frac{1}{\sqrt{2 \pi \lambda}} e^{-\frac{(x-\lambda)^{2}}{2 \lambda}} \\ & \bar{x}=\lambda \\ & \sigma^{2}=\lambda \\ & M(x, t)=e^{\lambda\left(e^{\prime}-1\right)} \end{aligned}$	Probability of success rate x, given mean success rate λ. For example, goals per football game, decays per second etc...
Moment generating functions	$\begin{aligned} & M(x, t)=E\left[e^{t x}\right] \\ & e^{t x}=1+t x+\frac{1}{2!}(t x)^{2}+\frac{1}{3!}(t x)^{3}+\ldots \\ & M(x, t)=1+t E[x]+\frac{1}{2!} t^{2} E\left[x^{2}\right]+\ldots \\ & E\left[x^{n}\right]=\left.\frac{\partial^{n} M(x, t)}{\partial t^{n}}\right\|_{t=0} \\ & V[x]=E\left[x^{2}\right]-(E[x])^{2} \end{aligned}$	$E[x]$ expectation $V[x]$ variance

Bayes' Theorem \& statistical inference	$\begin{aligned} & P(H \mid T) P(T)=P(T \mid H) P(H) \\ & P(H \mid T)=\frac{P(T \mid H) P(H)}{P(T \mid H) P(H)+P\left(T \mid H^{\prime}\right) P\left(H^{\prime}\right)} \\ & P\left(H \mid T^{\prime}\right)=\frac{P\left(T^{\prime} \mid H\right) P(H)}{P\left(T^{\prime} \mid H\right) P(H)+P\left(T^{\prime} \mid H^{\prime}\right) P\left(H^{\prime}\right)} \end{aligned}$	H hypothesis true H^{\prime} hypothesis false T test for hypothesis pass T^{\prime} test for hypothesis fail $P(H \mid T)$ is probability of hypothesis being true given a test has been passed. This is often what a patient wants to know following a test for a disease. Note in medical applications a pharmaceutical company will instead measure $P(T \mid H)$ e.g. probability that a test passes given a sample has the disease. If a disease is rare, $P(H) \ll 1$ which may mean $P(H \mid T)$ is low even if $P(T \mid H)$ is close to 100%. $P\left(H \mid T^{\prime}\right)$ is called a false positive.

9. Recommended books and resources

Online portal to Physics, Mathematics references (including this document)

www.eclecticon.info

* Don't start a Physics University course without these! ** Standard texts

General Physics

French, A., Science by Simulation*
Woan, G., The Cambridge Handbook of Physics Formulas*
Cullerne, J.P., Machacek, A., The Language of Physics*
Rees, W.G., Physics by Example*
Kirk, T., IB Study Guide: Physics 2nd Edition*
Chadha, G et al., A Level Physics for OCR A*
Feynman Lectures on Physics**

Mechanics

Kleppner, D., \& Kolenkow, R., An Introduction to Mechanics*
Morin, D., Introduction to Classical mechanics: With problems and solutions*
Pain, H.J., The Physics of Vibrations and Waves
Hand, L.N., Finch, J.D. Analytical Mechanics
Strogatz, S.H., Nonlinear Dynamics \& Chaos**
Faber, T.E., Fluid Dynamics for Physicists*
Goldstein, H., Poole, C.P., Safko, J.L. Classical Mechanics**

Waves \& Optics

Hecht, E., Optics**

Thermal Physics
Mandl, F., Statistical Physics**

Electricity \& Magnetism

Bleaney,B., Bleaney, B., Electricity \& Magnetism (volumes 1 and 2)*
Jackson, J,D., Classical Electrodynamics**

Quantum Physics / Solid State Physics / Nuclear Physics/ Particle Physics etc

McEvoy, J.P., Zarate, O., Introducing Quantum Theory*
Martin, B., Nuclear \& Particle Physics: An Introduction**
McCaw, C.S., Orbitals With Applications in Atomic Spectra
Kittel, C., Introduction to Solid State Physics**
Haken, H., Wolf, C. H., The Physics of Atoms and Quanta**
Warner, M., Cheung, A., A Cavendish Quantum Mechanics Primer*

Cosmology

Basset, B., Edney, R., Relativity: A Graphic Guide
d'Inverno, R., Introducing Einstein's Relativity**

Earth Sciences \& Remote Sensing

Fowler, C.M.R., The Solid Earth: An Introduction to Global Geophysics**

Shearer, P.M., Introduction to Seismology**
Rees, W.G., Physical Principles of Remote Sensing**

Mathematics

Riley, K.F., Hobson, M.P., Bence, S.J., Mathematical Methods for Physics and Engineering*
Rayner, D., Extended Mathematics for Cambridge IGCSE*
Quadling et al, OCR (Cambridge Advanced Level Mathematics) Core1\&2,Core3\&4,Further Pure1,Further Pure 2\&3,Statistics1,Statistics2\&3, Mechanics1,Mechanics2,Mechanics3\&4,Decision1,Decision2\&3 **

Misc

Gleick, J., Chaos: Making a New Science
MacKay, D.J.C., Sustainable Energy - Without the Hot Air
MacKay, D.J.C., Information Theory, Inference and Learning Algorithms
Feynman, R.P., Leighton, R., Hutchings, E., Surely You're Joking Mr Feynman
Bellos, A., Alex's Adventures in Numberland

Computer Programming \& document processing

Hanselman, D.C., Littlefield, B.L., Mastering MATLAB
Press, W.H., Teukolsky, S.A., Vetterling, T., Flannery, B.P., Numerical Recipes: The Art of Scientific Computing**
www.mathworks.co.uk (MATLAB)
https://thonny.org/
http://www.lyx.org/ (LaTeX)
www.python.org
www.irfanview.com/
www.pcspecialist.co.uk

