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1. Physical quantities and units 

3.142 2.718 2 1.414e               SI means 'Système International d'Unités' (International System of Units) 

Quantity Symbol Vector 
or 
scalar? 

Unit Unit 
abbreviation 

Notes 

Mole 

SI 
n   scalar mole mol Mol is a base SI unit  

Avogadro's constant 
236.022 10

A
N    molecules per mole 

Mass 

SI 
m , M    scalar kilogram 

tonne 
gram 
atomic mass 
unit 
 

kg 
10

3 
kg 

10
-3

kg 
 
u 

kg is a base SI unit  

Electron mass 
319.109 10 kg

e
m     

Proton mass 
271.673 10 kg

p
m     

Neutron mass 
271.675 10 kg

n
m    

271.660 10 kgu      

Earth mass 
245.974 10 kgM


    

Solar mass 
301.989 10 kgM    

 

Length 

SI 
, ,

, , ,..

... , ,

l L

a b c

x y z

  

scalar angstrom 
nanometre 
micron 
millimetre 
centimetre 
metre 
kilometre 
mile 
Astronomical 
Unit 
parsec 
light-year 
 

Å = 10
-10

m 
nm = 10

-9
m 

m = 10
-6

m 
mm = 10

-3
m 

cm = 10
-2

m 
m 
km = 10

3
m 

mile 
 
AU 
parsec 
lyr 

m is a base SI unit 
 
 
 
 
 
 
mile = 1,609m 
 
AU = 1.496 x10

11
m 

parsec = 3.086 x10
16

m 
lyr = 9.461 x10

15
m 

Angle ,

, , ... ,a b c

 

 
  

scalar degrees 
radians 
arc-minute 
arc-second 

o 
, deg

 

rad 
arcmin = 
(1/60) deg 
arcsec = 
(1/3600) deg 

 radians = 180
o
 

Area A   scalar square mm 
square 
centimetres 
square metres 
square 
kilometre 
hectares 
acre 

mm
2 

 
cm

2 

m
2 

 
km

2
 

ha 
acre 

mm
2
 = 10

-6
 m

2 

 
cm

2
 = 10

-4
 m

2 

 
 
km

2
 = 10

6
 m

2 

ha = 10
4 
m

2 

acre = 4.047 x 10
3
 m

2 

Volume V   scalar cubic 
centimetre 
cubic metre 
cubic kilometre 
millilitre 
litre 
gallon 

 
cm

3 

m
3
 

km
3
 

ml 
l 
gal 

 
cm

3
 = 10

-6
 m

3 

 

km
3
 = 10

9
 m

3 

ml = 1cm
3
 (pure water at STP) 

l = 10
3
cm

3
 = 10

-3
m

3 

gal = 4.546 x10
-3

 m
3 
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Quantity Symbol Vector 
or 
scalar? 

Unit Unit 
abbreviation 

Notes 

Time 

SI 
,t    scalar picosecond 

nanosecond 
microsecond 
millisecond 
second 
minute 
hour 
day 
year 

ps 
ns 

s 
ms 
s 
min 
hr 
d = 24hr 
yr 

s is a base SI unit 
 
min = 60s, hr = 60min = 3600s,  

7

7

yr 365 24 3600s

yr 3.154 10 s

yr 10 s

  

 

 

  

Age of the Earth = 4.5 x 10
9
 yr 

Age of the Universe = 13.8 x 10
9
 yr 

Speed 

,

s

u v
  

scalar metre per 
second 
 
kilometre per 
hour 
mile per hour 

 
ms

-1
 

 
kmh

-1
 

 
mph 

Speed of light in a vacuum 
c  = 2.998 x 10

8
 ms

-1
 

Speed of sound in air (20
o
C):  344 ms

-1
 

Speed of sound in water:  1482 ms
-1

 
 
1ms

-1
 = 3.6kmh

-1
 

1ms
-1

 = 2.24 mph 
1 min per mile at 60mph 
3 mins per mile at 20mph 
6 mins per mile at 10mph 

Frequency f   scalar Hertz 
Kilohertz 
Megahertz 
Gigahertz 
Terahertz 

Hz = s
-1 

kHz = 10
3 
Hz 

MHz = 10
6
 Hz 

GHz = 10
9
 Hz 

THz = 10
12

 Hz 

Voice sound waves 0 - 2kHz 
Radio waves 3kHz - 300MHz 
Microwaves 3MHz - 100GHz 
Infrared 100GHz - 300THz 
Visible light 10

14
 - 10

15
 Hz

 

Ultraviolet 10
15 

Hz - 10
16 

Hz 
X-rays 10

16
 Hz - 10

20
 Hz 

Gamma rays > 10
20

 Hz 

Period T   scalar Same as time Same as time Time to complete a single oscillation. 

1
T

f
  e.g. period of Earth's rotation is 

24 hours, period of Earth's orbit about 
the sun is 1 year. 

Displacement 

, ,x y z

x
  

vector Same as 
length 

Same as 
length 

Magnitude as well as direction. Often 
we describe in terms of a coordinate 
system e.g. x,y,z Cartesians. In this 
case a negative value of x means 'going 
backwards'. 
In one direction, displacement is the 
area under a (time,velocity) graph, 
where area below the time axis is 
negative. 

Velocity 

,u v

v
  

vector Same as 
speed 

Same as 
speed 

Magnitude as well as direction. Often 
we describe in terms of a coordinate 
system e.g. x,y,z Cartesians. In this 
case a negative value of v means 'going 
backwards'. 
In one direction, velocity is the gradient 
of a (time,displacement) graph. 
It is also the area under a (time, 
acceleration) graph, where area below 
the time axis is negative. 
u  is typically a symbol for initial velocity 

v  for final or 'current' velocity 

Acceleration 

a

a
  

vector metre per 
second 
squared 

ms
-2

 Magnitude as well as direction. Often 
we describe in terms of a coordinate 
system e.g. x,y,z Cartesians. 
In one direction, acceleration is the 
gradient of a (time,velocity) graph. 
'Free-fall' acceleration under gravity: 

-2

-2

9.81ms

1.63ms

earth

moon

g

g




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Quantity Symbol Vector 
or 
scalar? 

Unit Unit 
abbreviation 

Notes 

Energy E  scalar Joules 
kilojoules 
megajoules 
calories 
kilo-calories 
kilowatt-
hour 
 
 
 
electron-
volts 

J 
kJ = 10

3
J 

MJ = 10
6
J 

cal = 4.184J 
kcal = 10

3
 cal 

kWh 
 
 
 
eV 
keV = 10

3
eV 

MeV = 10
6
eV 

Energy is conserved, i.e. in a closed 
system has the same numerical value. It 
can be converted into different forms e.g. 
kinetic and potential energy. 
Calories measure energy in food 
1kWh is a standard measure of domestic 
electricity consumption. Total UK energy 
consumption is about 125 kWh per person 
per day. 
eV = kinetic energy of an electron 
accelerated by a voltage V 

191.602 10 JeV    

Power P   scalar Watts 
kilowatts 
megawatts 
gigawatts 
terawatts 
horsepower 

W = Js
-1

 
kW = 10

3 
W 

MW = 10
6 
W 

GW = 10
9 
W 

TW = 10
12 

W 
hp = 746W 

Power is the rate of energy changed from 
one form into another 
A light bulb uses about 20W 
Dr French's computers use about 250W 
A kettle uses about 2kW 
A Tour-de-France cyclist expends 250-
500W 
A wind turbine generates 1-10MW 
A power station generates up to 5GW 
About 1.36 kWm

-2
 or solar radiation shine 

on the Earth. 

Force 

,f F

f
  

vector Newtons 
kilonewtons 

N 
kN 

Newton's Second Law: 
mass x acceleration = vector sum of forces 

Weight W   vector Newtons 
kilonewtons 

N 
kN 

The gravitational force F  acting upon a 

mass m  is F mg . 

Tension T   vector Newtons 
kilonewtons 

N 
kN 

Force in a cable or string. Often these are 
modelled as light and inextensible. i.e. 
ignore the effect of their mass and assume 
they don't stretch. 

Momentum m

p mv





p v
  

vector kilogram-
metres per 
second 

kgms
-1 

Note impulse is a change in momentum, 
e.g. due to a collision or from the action of 
some external force over a period of time. 

Moment m Fd  scalar Newton-
metre 

Nm Force x perpendicular distance from a pivot 

Torque τ = r×F   vector Newton-
metre 

Nm Vector quantity whose magnitude is the 

moment of force F about pivot. Force F  
acts from displacement r  about pivot. 

Magnitude of torque is F  multiplied by 

perpendicular distance of line of action of 

F from pivot. 

Angular 
velocity 

ω
  

vector radians per 
second 

rads
-1

 Used in circular and oscillatory motion. 
  radians = 180

o
 

Moment of 
inertia 

 scalar 
(or in 
general a 
matrix) 

kilogram 
metre-
squared 

kgm
2
 Sum of masses x square of perpendicular 

distance r from rotation axis of a rigid 
body. 

2I r dm    

Angular 
momentum 

m

J mvr

J I

 





J r v

J = Iω
  

vector kilogram-
metres-
squared per 
second 

kgm
2
s

-1
 Angular momentum is conserved in a rigid 

body, in the absence of any torque. 

The inertia tensor 

x xy xz

yx y yz

zx zy z

I I I

I I I

I I I

 
 

  
 
 

I  is a 

matrix containing moments of inertia about 
the body x,y,z axis of a rigid body. If the 
body has symmetry, the off diagonal 
elements are typically zero 
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Quantity Symbol Vector 
or 
scalar? 

Unit Unit 
abbreviation 

Notes 

Elasticity 
k

l


   

scalar Newtons 
per metre 

Nm
-1

 If an elastic body (such as spring or rubber 
band) is Hookean, the restoring force 
following extension by x  is 

F x
l


  where l  is the natural length and 

  is the elastic modulus. 

Stress    scalar Newtons 
per square 
metre 

Nm
-2

 Force per unit area - same as pressure 

F

A
    

Strain    scalar Just a 
number 

- Ratio of extension to natural length 

x

l
    

Young's Modulus is 

x l
Y

lA x A

AY

  





   

 

  

 
Young's modulus for different materials: 
(GPa = 10

9
 Nm

-2
) 

rubber  0.01-0.1 GPa 
Nylon  2-4 GPa 
Wood  11 GPa 
Bone  14 GPa 
Concrete  30 GPa 
Glass  50-90 GPa 
Aluminium 69 
Copper 117 GPa 
Diamond 1,050-1,210 GPa 

Viscosity    scalar poiseuille PI 
=Nm

-2
s 

=Pa s 
=kgm

-1
s

-1
 

shear stress

velocity gradient
     

Stress is force per unit area. 
Velocity gradient is change in velocity per 
metre of fluid. 
warm blood 3-4 x 10

-3 
kgm

-1
s

-1
 

honey 2-10 kgm
-1

s
-1

 
molten chocolate 10-25 kgm

-1
s

-1
 

ketchup 50-100 kgm
-1

s
-1

 
peanut butter 250 kgm

-1
s

-1
 

corn syrup 1.4 kgm
-1

s
-1

 
olive oil 8.1 x 10

-2
 kgm

-1
s

-1
 

water 8.9 x 10
-4

 kgm
-1

s
-1

 
mantle of Earth  10

21
 kgm

-1
s

-1
 

Reynolds 
number 

Re   scalar just a 
number 

- density × velocity × length
Re

viscosity

vL


    

Turbulent flow if Re > few thousand 

Re = 
inertial force

viscous force
  

Mach number Ma   scalar just a 
number 

- 
Ma

speedof sound

v
   
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Quantity Symbol Vector 
or 
scalar? 

Unit Unit 
abbreviation 

Notes 

Density    scalar mass per 
unit volume 

kgm
-3

 
gcm

-3
 

Air is about 1.2 kgm
-3

  
Wood is about 0.5 gcm

-3 

Water is about 1 gcm
-3

 
Aluminium is 2.7 gcm

-3
 

Iron is 7.8 gcm
-3

 
Copper is 8.9 gcm

-3 

Mercury is 13.5 gcm
-3

 
Gold is 19.3 gcm

-3 

Uranium is 19.1 gcm
-3 

 

Pressure p   scalar  
Pascal 
kilopascal 
megapascal 
millibar 
Atmosphere 
 

 
Pa 
kPa = 10

3 
Pa 

MPa = 10
6 
Pa 

mbar = 100Pa 
atm 

Force per unit area 
Pa = 1Nm

-2 

 

 

 
atm = 101,325 Pa is essentially a 'reference' 
atmospheric pressure at sea level. 
atm = 1013.25 mbar. Millibars are used in 
meteorology i.e. climate science and 
weather forecasting to measure air pressure. 

Temperature 

SI 
T   scalar degrees 

celcius 
degrees 
fahrenheit 
degrees 
kelvin 
 

 

o
C 

 

o
F 

K 

K is a base SI unit 

9

5

273.15

32

K C

F C

T T

T T

 

 
  

Temperature in K is proportional to the mean 
kinetic energy of molecules. Hence nothing 
can be colder than 0K "absolute zero" 

Solid or liquid 
specific heat 
capacity 

c   scalar joules per 
kilogram 
per Kelvin 

Jkg
-1

K
-1

 water  4,200 Jkg
-1

K
-1

 
alcohol 2,500 Jkg

-1
K

-1
 

ice 2,100 Jkg
-1

K
-1

 
aluminium 900 Jkg

-1
K

-1
 

concrete 800 Jkg
-1

K
-1

 
glass 700 Jkg

-1
K

-1
 

steel 500 Jkg
-1

K
-1

 
copper 400 Jkg

-1
K

-1
 

Gas specific 
heat capacity 

p

V

c

c
 

scalar joules per 
kilogram 
per Kelvin 

Jkg
-1

K
-1 

p
c  is at constant pressure, 

V
c  is at constant 

volume. 
p

c  for dry air is about 1,000Jkg
-1

K
-1

. 

Molar heat capacities are: 
1
2V

c R  and 
p V

c c R   (Mayer 

Relation). Molar gas constant 
-1 -18.314Jmol KR   and for air, molar 

volume is about 29gmol
-1

. 

Specific latent 
heat of fusion 

L

H
 

scalar joules per 
kilogram 

Jkg
-1 

water  336,000 Jkg
-1 

alcohol  108,000 Jkg
-1

 

Specific latent 
heat of 
vaporisation 

L

H
  

scalar joules per 
kilogram 

Jkg
-1 

water   2,260,000 Jkg
-1

 
alcohol  855,000 Jkg

-1
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Quantity Symbol Vector 
or 
scalar? 

Unit Unit 
abbreviation 

Notes 

Charge ,q Q

e
  

scalar Coulombs C charge on electron 
191.602 10 Ce     

Voltage V   scalar Volts 
millivolts 
kilovolts 
Megavolts 

V 
mV = 10

-3
V 

kV = 10
3
V 

MV = 10
6
V 

Potential energy per coulomb of charge 
Energy change per coulomb of charge 
across a resistor. 
'Electromotive force' (EMF). 

Current 

SI 
I   scalar Amps 

milliamps 
A 
mA 

A is a base SI unit 
Rate of charge flowing in an electrical circuit 
(coulombs per second). 

Resistance R   scalar Ohms 
kilo-ohms 
mega-ohms 

  Ohm's Law: V IR   

Voltage drop across a resistor is proportional 
to resistance, and current flowing through it. 

Resistivity    scalar ohm-metre m   Resistance of a cylindrical wire of length l

and cross sectional area A  is 

l
R

A
   

Copper       = 1.68 x 10
-8

m  

Aluminium  = 2.82 x 10
-8

m  

Gold   = 2.44 x 10
-8

m  

Iron   = 1.00 x 10
-7

m  

Sea water  = 2.00 x 10
-1

m  

Glass  = 10
11

 - 10
15

m  

Hard rubber  = 10
13

m  

Dry wood = 10
14

 - 10
16

m  

Air  = 1.3 - 3.3 x 10
16

m  

Capacitance C   scalar Farads 
picofarads 
nanofarads 
microfarads 

F 
pF 
nF 

F 

Typical capacitances of electronic 

components are < a few F. pF or nF are 
common. 

RC    is an approximate time period 

associated with a resistor, capacitor circuit. 

LC   is an approximate time period 

associated with an inductor, capacitor circuit. 
These often exhibit resonance phenomenon, 
so can be used to amplify signals at a 
particular frequency. 
 

Inductance L   scalar Henry H An inductor with an inductance of 1 Henry 
produces an 'electromotive force' (EMF) of 1 
volt when the current through the inductor 
changes at the rate of 1 ampere per second.  
 

Electric field 
strength 

E

E
  

vector Volts per 
metre 

Vm
-1

 Force on a charge q  coulombs in a electric 

field of strength E   is 

F qE   

A dielectric will conduct electricity 

('breakdown') when E  exceeds a critical 
value. Note:  1MVm

-1
 = 10

6
Vm

-1
 

Air        
-13MVmE   

Glass
-110MVmE   

Oil
-110MVmE   

Rubber
-115MVmE   

pure water
-165MVmE   

Mica
-1118MVmE   

Diamond
6 -12,000 10 VmE    
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Quantity Symbol Vector 
or 
scalar? 

Unit Unit 
abbreviation 

Notes 

Magnetic field 
strength 

B

B
  

vector Tesla T Force on a wire of length l  carrying current 

I  in magnetic field B  is F BIl   

Note force, current and field are mutually 
perpendicular 
Magnetic field inside a solenoid (a coil of 

wire carrying current I of n  turns per unit 

length) is 
0

B nI   

'Permeability of free space' 
7 1

0
4 10 Hm       

Earth's magnetic field 25μT 65μT    

T = 10
-6

T) 
Fridge magnet = 5 x 10

-3
T 

1.5-3T  field strength of a Magnetic 
Resonance Imaging (MRI) system 
10

6
T-10

8
T field strength of a neutron star 

10
8
T-10

11
T field strength of a magnetar 

Gravitational 
field strength g

g
  

vector metres per 
second 
squared 

ms
-2

 -2

-2

9.81ms

1.63ms

earth

moon

g

g




 

Radioactive 
activity 

A   scalar Becquerel 
Curies 

Bq 
 
 
Ci 

Bq = radioactive decays per second 
 
 
Ci = 3.7 10

10
Bq  

(activity of one gram of 
226

88
Ra )  

Half life 
1
2

T   scalar Seconds, 
days, years 

s, d, yr Time for half of radioactive isotopes to have 
decayed 
235

92
U  7 x 10

8
 yr 

14

12
C   5,730 yr 

123

53
I   13 hrs 

Refractive 
index 

n   scalar just a 
number 

- 
vacuum

material

c
n

c
   i.e. ratio of speed of light in a 

vacuum (2.998 x 10
8
ms

-1
) to speed of light in 

a material 
vacuum  1 
air 1.00 
ice 1.31 
water 1.33 
human cornea 1.37-1.40 
human lens 1.39-1.41 
plexiglas 1.49 
crown glass 1.52 
sapphire 1.76-1.78 
diamond 2.42 
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2. Mechanics 

Name Equation Description of 
variables 

Notes / diagram 

Kinematics dx
v x vdt

dt
     

dv
a v adt

dt
    

x  displacement 

v  velocity 

a  acceleration 

t  time 

Velocity is the gradient 
of a (time,displacement) 
graph. 
Displacement is the 
area under a (time, 
velocity). graph. Note 
areas below the time 
axis are negative. 
Acceleration is the 
gradient of a 
(time,velocity) graph 
velocity is the area 
under a (time, velocity). 
graph. Note areas below 
the time axis are 
negative. 

Constant 
acceleration 
motion 

 1
0 2

21
0 2

2 2 2

v u at

x x u v t

x x ut at

v u ax

 

  

  

 

  

u  initial velocity 

/ms
-1 

a  acceleration 

/ms
-2 

t  time /s 

v  final velocity 

/ms
-1

 

x  displacement 

/m 

0
x  initial 

displacement 
/m 
 

Only valid for motion 
when acceleration a is 

constant. 
Easily derived from 
linear velocity, time 
graph. a  is the gradient 

v u
a

t


   

and 
0

x x  is the area 

under the graph, which 
is a trapezium hence 

 1
0 2

x x u v t    

Newton's First 
Law 

0

 constant



 

a

v
  

a  acceleration 

v  velocity 

A object will move at 
constant velocity if it is 
not accelerating, and 
therefore the vector sum 
of forces is zero. It is in 
equilibrium. 

Newton's 
Second Law i

m  i
a f   mass x 

acceleration = 
vector sum of 
forces 

Most mechanics 
problems are often 
solved by firstly writing 
down Newton II for each 
direction of a coordinate 
system (typically 
Cartesian x,y) 
appropriate for the 
problem. 

Newton's Third 
Law 

"For every action there is an equal and opposite 
reaction" 

 If body A imposes a 

contact force F upon 
body B, body B will in 
turn impose a contact 

force F  upon body A. 

Conservation 
of momentum 

1 1 2 2 1 1 2 2

BEFORE COLLISION AFTER COLLISION

... ...m m m m    u u v v   momentum = 
mass x velocity 

The vector sum of 
momenta is the same 
before and after a 
collision 

Impulse "Force x time = change in momentum" 

0
( )

t

t dt m m  f v u   

( )tf  force (as a 

function of time 
t ), m  mass 

v  final velocity 

u  initial velocity 

'impulse' means 
momentum 
change 

In each direction of a 
coordinate system, the 
integral of the 
(time,force) graph is the 
change in momentum. If 
force is a constant  
force x time = change in 
momentum 
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Conservation 
of energy 

2 21 1
0 0 1 12 2

2 21 1
2 2

GPE EPE .... GPE EPE ....

GPE

GPE

EPE

mu mv

mgh

GMm

r

kx x
l



      



 

 

  

m  mass. 

,u v  initial and 

final speeds. 

h  change in 

vertical height. 
g  gravitational 

field strength. 

,M m  masses. 

r  distance 
between 
masses. 

G  gravitational 

force constant. 

x  spring 

extension. 

k  spring 

constant. 

  modulus of 

elasticity. 

l  original length 

of spring. 

-2

-2

9.81ms

1.63ms

earth

moon

g

g




 

11 2 -26.67 10 Nm kgG     

Coefficient of 
restitution 

speed of separation

speed of approach
C    

 1C   elastic collision 

(kinetic energy 
conserved). 

0C   inelastic collision 

(objects remain 
together, some kinetic 
energy is lost) 

Work done 'WORK DONE = FORCE x DISTANCE' 
2 21 1

2 2
W d mv mu   f r   

f  force. 

r  
displacement. 

m  mass. 

,u v  initial and 

final speeds. 
 

Work done is "the area 
under a (displacement, 
force) graph", noting 
that areas below the x 
axis are negative. 

Moments 'MOMENT = FORCE x PERPENDICULAR DISTANCE 
FROM ROTATION AXIS' 

M Fd   

F  force 

d  distance 

from axis of 
rotation 

In equilibrium, the sum 
of moments (clockwise 
or anticlockwise) is 
zero, regardless of the 
axis position chosen! 

Moment of 
inertia 

2I r dm    I  moment of 
inertia. 
r  distance from 
rotation axis. 

m  mass 

thin rod, about centre
21

12
ml   

solid sphere 
22

5
mr   

solid cone 
23

10
mr   

Perpendicular 
axis theorem 

z x y
I I I     Only works for laminae 

defined in the x,y plane. 

Parallel axis 
theorem 

2

'z z
I I Md   M  mass 

d  distance of 

new axis from 
'z' rotation axis 

 

Angular 
momentum 

m L r v   r  
displacement. 

m  mass. 

v  velocity. 

For a rigid body, can 
decompose into angular 
momenta of centre of 
mass + angular 
momenta about centre 
of mass. i.e. particle 
motion of centre of mass 
plus rotation about 
centre of mass. 
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Torque 

x xy xz x

yx y yz y

zx zy z z

d

dt

I I I

I I I

I I I

Fd I









 



  
  

    
  
  



τ r f

L
τ

τ Iω

  

 

r  displacement 

f  force 

t  time 

I  inertia tensor 

F  force 

d  distance 

from axis of 
rotation 

  angular 

acceleration 

If torque is zero this 
means angular 
momentum is a 
constant. Rotational 
equivalent of Newton's 
Second Law. 
 
 
 
 
 
angular acceleration in 
radians per second

2 

Projectile 
motion 

2 2 2

0

2 2

0 2

2 2 2

0

2

cos sin

2 ( )

cos

tan (1 tan )
2

sin sin sin cos

2

sin 2

x y

x y

a a a

v u v u gt

v v v u g y y

x ut

g
y y x x

u

u u u
t y y x

g g g

u
R

g

 



 

   



  

    



   

   



  

x
v  horizontal 

velocity 

y
v  vertical 

velocity 

v  speed 

u  launch speed 

  launch 

elevation 
g  gravitational 

acceleration 

t  time since 

launch 

x  horizontal 

displacement 
y  vertical 

displacement 

0
y  initial 

vertical 
displacement 

a
t  apogee time 

,
a a

x y  apogee 

coordinates 

R  horizontal 

range if 
0

0y    

Projectile motion is 
essentially constant 
acceleration motion in 
both x and y directions. 
Air resistance is ignored.  
 
In the x direction 
acceleration is zero, 
hence a constant 

velocity cos .
x

v u    

 
The x,y curve traced out 
by particle is an inverted 
parabola. Typically for a 
given range there are 
two possible trajectories 
for a given launch 
velocity u  

corresponding to 'steep' 
and 'shallow' solutions 

for elevation  .  

Motion in a 
circle 

2

2

2

2

ˆ

ˆ ˆˆ ˆ

d d

dt dt

r

v
r r r

r

 
   



  

   



     

v θ

a r θ r θ

  

 

 

     
2

2

2

ˆˆ ˆ ˆ

ˆˆ ˆ

ˆˆ ˆ 2

d d

dt dt

d
r r r

dt

d
r r r r r

dt

 



  

  

  

    

r θ
θ r

r r r θ

r r r θ

 

ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

cos

sin

x r

y r

 

 





 

  





r x y

θ x y
 

  anticlockwise 

angle /radians 
r  circle radius 
/m 
  angular 

velocity /rads
-1 

,vv  velocity, 

speed 
a  acceleration 

 

r̂ radial unit 
vector 

θ̂  polar angle 

unit vector 

x̂  x direction 
unit vector 

ŷ y direction 

unit vector 
 
 

Assumes the circle 
radius r  is a constant 
 
 
 
 
 
 
 
In general we can 

incorporate an r  term 
into both velocity and 
acceleration 
expressions. Note if one 
chooses a reference 
frame which rotates at 
  then one will 

experience a 'centrifugal 
force' of magnitude 

2

r
F mr  away from 

the axis of rotation. 
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Lift and drag 21
2

21
2

6

L L

D D

F c Av

F c Av

F a v





 







  

L
c  lift 

coefficient 

D
c  drag 

coefficient 

  density of 

air/fluid 

A  area of 
object in fluid 
stream 

v  speed 

a  radius of 

sphere 

  viscosity 

The linear Stokes Drag 

equation 6F a v  is 

typically applicable in 
low Reynolds number 
scenarios when viscous 
forces dominate. Air 
resistance models for 
bikes, cars, planes, 
skydivers are typically 

better served by the 
2v  

models. 

Force of 
gravity 
& Kepler's 
Laws of orbital 
motion  

 

2

2

2

2

2

2 3

21
2

ˆ

1

1 cos

1

4

( )

G( ) 1

m

GMm

r

a
r

b

a

P a
G M m

dA
M m a

dt



 









 






 




  

W g

F r

  

W  weight 

g  gravitational 

field strength. 

,M m  masses. 

r  distance 
between 
masses. 

G  gravitational 

force constant. 
  eccentricity 

of elliptical orbit 

a  semi-major 

axis of the 
ellipse. 

b  semi-minor 

axis of the 
ellipse. 

,M m  star and 

planet masses 

  polar angle 

(anticlockwise 
from semi-
major axis) 

P  orbital period 
 

-2

-2

9.81ms

1.63ms

earth

moon

g

g





11 2 -26.67 10 Nm kgG    

 
Kepler's First Law: 
Bound gravitational 
orbits of two masses are 
ellipses, with foci about 
the common centre of 
mass. 
 
Kepler's Second Law: 
The rate of ellipse area 
swept out (radially from 
the focus of the ellipse) 
is a constant 

 
Kepler's Third Law: 
The square of orbital 
period is proportional to 
the cube of the ellipse 
semi-major axis 

Elasticity (or 
elastic strings) 

21
2

F kx x
l

E kx


 



  

F  force 

k  elastic 

constant 

  elastic 

modulus 

l  original length 

of elastic string 

x  extension 

E  elastic 
potential energy 

Most elasticity models 
are Hookean and 
assume a constant 
modulus of elasticity. In 
reality for large 
extensions there will be 
plastic deformation and 
ultimately breakage. 

Friction F R

F R








  

F  frictional 
force 
  coefficient of 

friction 

R  normal 
contact force 

A system is said to be in 
'limiting' equilibrium' if 

F R  i.e. 'on the point 

of sliding'. Once an 
object is sliding along a 
surface, the friction force 

'maxes out' out F R . 

Note   may change in 

this dynamic case. 

F R  can be used to 

determine conditions 
(e.g. tilt angle of a slope) 
for sliding to occur. 
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Power & 
driving force 

P Fv

P



 F v
  

P
D

v
   

,FF  force 

P  power  
,vv  velocity 

D  driving force 
 

One Horsepower (hp) = 
746W. This equation is 
useful in relating energy 
conversion rates in 
engines to resulting 
motion. 

Bernoulli's 
equation for a 
fluid stream 

21
2

constantv p gz              incompressible 

 
21

2
constant

1

p
v gz



 
  


   compressible 

p

V

c

c
   

  fluid density 

p  pressure 

z  height  

v  velocity 

,
p V

c c  specific 

heat capacities 
of fluid and 
constant 
pressure, 
volume 

This explains why lift 
occurs across an aircraft 
wing. The fluid has to 
travel further over the 
upper edge. To preserve 
continuity of air, it 
therefore travels faster. 
Hence pressure is lower 
above the wind than 
below. The pressure 
difference causes a lift 
force. 

Young's 
modulus 

F A
E

l l



 
   

  stress 

  strain 

F  force 

A  area 

l  extension 

l  original length 

Rubber 0.01GPaE    

Wood 11GPaE   

Concrete 30GPaE   

Glass 70GPaE   

Steel 200GPaE   

Diamond 1,100GPaE   

Bending beam 4

4

2

( )
d y

EI w x
dx

I y dxdy



 

 

( )y x  beam 

vertical 
deflection vs 
horizontal 
displacement 

E  Young’s 
modulus 

I  moment of 
area 

( )w x  beam 

weight per unit 
length 

 

Simple 
Harmonic 
Motion (SHM) 

 
 

2
2 2

0 0 02

2

0 0

2
2 2 2 2

0

1

2 2

0

2
2 2 0 0
0 max 2 2

0

0

2 sin

( ) sin

4

2
tan

2 ,
2

2

res

d x dx
x A t

dt dt

A
x t t

A
x

Q

   


 

   




 


  

  







  

 

 

 
  

 

  




  

2
2 f

T


    

f  frequency 

T   period 
 
 
Steady-state 
solution 
 
 
phase /radians 
 
 
Resonance 
frequency 
 
 
Quality factor 

e.g. a damped, driven 
mechanical or electrical 
oscillator. x  could be 

displacement, electrical 
current, angle .... 
 
For  a mass, spring 
system 

0
ml


    

 
For a series L,C,R 
circuit 

0

1

LC
   

 
 

Higher Q  values mean 

sharper peaks in the 

 ,f x  graph 
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3. Electricity & Magnetism 

Name Equation Description of variables Notes / diagram 

Charge on a capacitor Q CV   Q  charge /coulombs 

C  capacitance /Farads 

V  voltage /volts 

Voltage across two 
capacitor plates 
separated by an 
insulating dielectric. 

Ohm's law V IR   V  voltage /volts 

I  current /amps 

R  resistance /ohms 

Voltage or 'potential 
difference' across a 
resistive element. 

Electrical power P VI   P  power /watts 

V  voltage /volts 

I  current /amps 
 

 

Resistive power loss 2P I R   P  power /watts 

I  current /amps 

R  resistance /ohms 

 

Electric field strength 

x

V
E

d

V
E

x

V




 



 E

  

V  voltage /volts 

d  distance between 

charged parallel plates 

x  displacement 

E  electric field 

ˆ ˆ ˆ
V V V

V
x y z

  
   

  
x y z   

 
 
 
 
 
 

(Lorentz) force on a 
charge in an electric 
and magnetic field 

 q  F E v B   E  electric field 

B  magnetic field 

v  velocity of charge q   

 

Force between two 
static charges 

1 2

2

0

1
ˆ

4

q q

r
F r   1 2

,q q  charges 

r  charge separation 

r̂  charge separation unit 
vector 

0
   

permittivity of free space  
= 8.85 × 10

-12
 m

-3
 kg

-1
 s

4
A

2
  

 

Coulomb's law of 
electrostatics. 

Resistance of a wire l
R

A


   

R  resistance 

l  length 

A  cross sectional area 

  resistivity 

 

Assume uniform 
resistivity and cross 
sectional area along 
length of wire 
Copper       

 = 1.68 x 10
-8

m  
Aluminium  

 = 2.82 x 10
-8

m  
Air  

 = 1.3 - 3.3 x 10
16

m  

Energy stored in a 
capacitor 

21
2

E CV   C  capacitance 

V  voltage between 

capacitor plates 

E  energy 

 

Energy stored in an 
inductor 

21
2

E LI   L  inductance 

I  current 

E  energy 

 

Addition of series 
resistors 

1 2
...R R R     R  resistance 

 

 

Addition of parallel 
resistors 

1 2

1 1 1
...

R R R
     

R  resistance 
 

 

Addition of series 
capacitors 

1 2

1 1 1
...

C C C
    

C capacitance  

Addition of parallel 
capacitors 

1 2
...C C C    C capacitance  
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Addition of series 
inductors 

1 2
...L L L    L  inductance 

 

 

Addition of parallel 
inductors 

1 2

1 1 1
...

L L L
    

L  inductance 
 

 

Magnetic field inside an 
infinite solenoid 0

NI
B

l
   

B  magnetic field strength 
  relative permeability 

0
  permeability of free 

space = 
7 -14 10 Hm    

N  turns in length l   

I  current 

A soft magnetic material 
inside the coil will 
enhance the magnetic 

field. For ferrite 640    

Characteristic frequency 
of an inductor-capacitor 
'tuned' circuit 

1
0 2

1
f

LC


   
0

f  frequency 

C  capacitance 

L  inductance 
 

 

Voltage vs time curves 
for charging and 
discharging of a 
capacitor 

0

t

RC
V

e
V



         discharging 

0

1
t

RC
V

e
V



      charging 

V  voltage at time t   

0
V  maximum voltage 

R  resistance 

C  capacitance 

Note RC is a time 
constant for a capacitor 
charging/discharging 
through a resistor. 

Capacitance of a 
spherical conductor 

0
4C a   

0
   

permittivity of free space  
= 8.85 × 10

-12
 m

-3
 kg

-1
 s

4
A

2 

a  radius of sphere 

 

Capacitance of a 
parallel plate capacitor 

0
A

C
d


   

  relative permittivity (of 

dielectric) 

A  area of capacitor plates 

d  plate separation 

C  capacitance 

  

vacuum 1 
paper 3.9 
silicon 11.7 
calcium copper titanate 
> 250,000 
 
 

Voltage induced by an 
inductor 

dI
V L

dt
    

V  voltage induced 

I  current 

L  inductance 
t  time 

- sign due to Lenz's law 
i.e. an inductor will resist 
changes in electrical 
current passing through 
it 

Energy density of 
electric and magnetic 
fields 

2

21 1
02 2

0

B
u E


    

u  potential energy per 

unit volume 

E  electric field strength 

B  magnetic field strength 

 

Inductance of a coil 
 

2

0KN A
L

l


  

N  turns in length l  with 

cross sectional area A   

If l  coil radius ("infinite 

solenoid") then Nagaoka 

coefficient 1K    

 

Inductance of a toroidal 
coil 

2 2

0.007975 , 0.1
d N

L d D
D

   
d  diameter of coil 

windings 

N  number of windings 

D  diameter of torus 

Semi-empirical formula 

Biot-Savart law for 
calculating magnetic 
fields due to current 
elements 

0

34

I d
d

r








l r
B   

B  magnetic field 

I  current 

dl  vector line element 

r  position vector at which 

B  is calculated 

r  r   
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Maxwell's equations for 
electric and magnetic 
fields 0

0 0 0

1

0

S

S

S

S

d Q

d

d d
t

d I d
t



  

 

 


   




   







 

 

E S

B S

E l B S

B l E S

  

S  surface enclosing 

charge Q   

 
 

...  means integrate 

around a closed loop, usig 

lie elements dl   

#1 is Gauss's Law of 
electrostatics 
#2 means 'no magnetic 
magnetic monopoles' 
(although dipoles can be 
though as a 'source' of 
magnetic fields) 
#3 is Faraday's/Lenz's 
law of electromagnetic 
induction 
#4 is Coulombs law + 
Maxwell's 
'displacement current' 

term 
0 0

S
d

t
 




 
E S  

Generalized Ohm's law 
for Alternating Current 
(AC) circuits 
 
Impedance of resistors, 
capacitors and 
inductors 

 

0

0

0

0

0

1

376.7

i t

i t

R

L

C

V IZ

V V e

I I e

Z R

Z i L

Z
i C

Z



 























  

  

V  voltage 

I  current 

Z  impedance 

t  time 

 

2 f    

f  frequency of AC input 

voltage 

L  inductance 

C  capacitance 

 

0
Z  impedance of free 

space (i.e. vacuum, and to 
a very good 
approximation, air) 
 
 
 
 
 
 
 

Complex impedance is a 
useful rick for finding out 
voltages across circuit 
elements e.g. in an LCR 
series circuit 

0

C C

C L R

V Z

V Z Z Z


 
  

i.e. 'potential divider' 
concept. 

0

C
V

V
is the voltage 

amplitude response and 

0

arg
V

V


 
  

 
 is the 

phase. 
 

Skin depth i.e. 
penetration depth of 
electromagnetic fields 
within a conductor 
transmitting AC 

0
f




 
  

  field penetration depth 

  resistivity 

f  frequency 

0
  permeability of free 

space = 
7 -14 10 Hm   

 

Transformers 
2 2

1 1

2 1

1 2

V N

V N

I N

I N





  

1 1
,V I  voltage, current in 

primary coil.  
2 2
,V I  

voltage, current in 

secondary coil. 
1 2
,N N  are 

number of turns in 
(respectively) primary and 
secondary coils. 

This assumes no power 
is lost in the transfer of 
electrical energy from 
coil 1 to coil 2 i.e. 

1 1 2 2
I V I V .   
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4. Waves & optics 

Name Equation Description of 
variables 

Notes / diagram 

Wave speed 
equation 

c f    c  wave speed 

f  frequency 

  wavelength 

 

Speed of light in a 
vacuum 
c  = 2.998 x 10

8
 ms

-1
 

Speed of sound in air 
(20

o
C):  344 ms

-1
 

Speed of sound in 
water:  1482 ms

-1
 

 

Wavenumber 2
k




   

  wavelength 

 

Phase of a wave is 

kx t     

Frequency and 
period 

1
f

T
   

f  frequency 

T  period 

 

Speed of waves in 
elastic media 

T
c


         string under tension 

E
c


        elastic solid 

 

c  wave speed 

T  string tension 
  mass per unit length 

E  Elastic modulus 

  Density 

e.g. guitar string low 
E 
  = 0.0059 kgm

-1
 

f  = 82.41Hz 

(fundamental  mode, 
so string length = 
1
2
 ) 

T   67.8N 

1.30   m 

Antenna beamwidth 
/ optical resolving 
power 

d


    

  minimum 

resolvable angular 
separation (radians) 
between objects 

  wavelength 

d  diameter of aperture 

of optical device (e.g. 
lens, dish antenna etc) 

 

Spherical adiabatic 
shock wave  

1
52

0

Et
R



 
  
 

  

R  shock radius 

E  energy release 
t  time 

0
  density of 

undisturbed medium, 
e.g. air in front 
('upstream') of the 
shock front 

Sedov-Taylor 
relation. Describes 
the shock wave 
resulting from a 
localized explosion! 
An adiabatic process 
is one that occurs 
without transfer of 
heat or matter 
between a system 
and its surroundings. 

Snell's law of 
refraction 

1 1 2 2
sin sinn n    

speed of light in vaccum

speed of light in medium
n   

1 1

2

2

1 11
2 2

2

1 2

1

1

sin
sin

sin
0 0 sin 1 0 1

sin

n

n

n

n

n

n





  

 



       

 
  

 

 

1
n  refractive index of 

medium 1 

1
  angle of incidence to 

boundary of medium 1 
to 2 

2
n  refractive index of 

medium 2 

2
  angle of refraction in 

medium 2 
 
 

Angles measured 
from normal to the 
reflecting surface 
 
Total internal 
reflection at glass : 
air interface i.e. no 
refraction if 

1

1

o

sin

1
sin

1.52

41.1

air

i

glass

i

i

n

n










 
  

 
 

 
  

 



  

This is the critical 
angle 

Law of reflection 
i r
   

i
 angle of incidence Angles measured 

from normal to the 
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r
 angle of reflection reflecting surface. 

Fraunhofer 
diffraction limit  

 
2

x
L




  

x  aperture size 

  wavelength 

L  distance of aperture 
from observer 

Beyond this range 
we can assume 
waves are planar and 
not spherical.  

Diffraction pattern 
from a slit of width a   

 

2

0

2

sin
sin

sin

a
I

I
a

 




 



 
 
 


 
 
 

  

  diffraction angle 

  wavelength 

0
I  peak intensity 

a  slit width 

Broad '1D' slit 
Assume uniform 
illumination normal to 
slits. Ignore effect of 
'height' only width. 
i.e. assume slit is 
'long and thin'. A 
rectangular slit is a 
product of these 
functions. 

Diffraction pattern 
from two thin slits of 

separation D   

2

0

sin
( ) cos

D
I I

 




 
  

 
  

D  slit spacing 

  diffraction angle 

  wavelength 

0
I  peak intensity 

 

Young's double slits 
Assume uniform 
illumination normal to 
slits. 

Diffraction pattern 
due to a grating of 

N  slits of width a  

with separation d   
 

2

0

sin sin
sin sin

sin sin
sin

a N d

I I
a d

N

   

 


   

 

    
    
     

  
  
  

 

N  number of slits 

  diffraction angle 

  wavelength 

d  slit spacing 

a  slit width 

0
I  peak intensity 

Assume uniform 
illumination normal to 
slits. 

Gauss' Lens 
Formula 

1 1 1

u v f
    

u  object distance 

v  image distance 

f  focal length of a 

lens 

1/ f = Dioptre 

number. 
  
f-number is: 

aperture diameter

f
  

An f-number of 2 
would conventionally 
be written as f/2, 
which gives the 
aperture diameter 
given the lens focal 
length. 

Lensmakers' formula 

 
1 2

1 1 1
1n

f R R

 
   

 
 

f  focal length of a 

lens 

n  refractive index of 

lens 

1 2
,R R  radii of curvature 

of lens surface 

 

Mach cone 
shockwave angle sin

c

v
    

  shockwave angle 

c  speed of sound in 

external medium 

v  velocity of source of 

wave disturbances 

Shock front is only 
formed when v c . 

When v c  a broad 

shockwave is formed, 
which is the 'sonic 
boom'. 
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Kelvin Wedge wave 
pattern for a vessel 
moving over deep 
water 

1 o1
3

1 o

2

1
2

sin 19.5

tan 2 54.7

2

4

p

g p

g
v

gk

c f
k

d
c c

dk




















 

 





 

 

  

  angle of bow waves  

  angle of wave-fronts 

relative to direction of 
motion 

v  vessel velocity 

g  gravitational field 

strength 

  wavelength 

f  frequency 

2
k




  wavenumber 

p
c  phase velocity 

g
c  group velocity 

2 gk  is the 

dispersion 
relationship for deep 
water waves 
 
Wave packets travel 
at the group velocity. 
Information carried 
by waves can only 
travel at the group 
velocity. 

Generalized 
dispersion 
relationship for 
interfacial waves 
between two fluids 

 

 

 

3

1 22

2 1

4

2

12

3

1

cotanh( )

tanh

tanh 1

k g k

kD

k D
gk D kD kD

k
gk kD

  


 










 





 


 
  



  

Ripples are when  tanh 1kD   

and 
1 2
    

1 1

4

1

2

2

4

p

p

k g g
c

k k

g
c

   

  





    



 

  surface tension 

1
  ,

2
  densities 

D  depth of fluid 1 

2
k




  wavenumber 

g  gravitational field 

strength 

  wavelength 

 
 
 
 
 
 
Minimum phase 
velocity of ripples 

 

Wave transmission 
and reflection 
coefficients 1

1 2

1 2

1 2

2

n n n
Z c

Z
t

Z Z

Z Z
r

Z Z











  

Z  wave impedance 

  density of medium 

c  wave speed in 

medium 
t  transmission 

coefficient 
r  reflection coefficient 
 

If 
( )

0

i kx te     is an 

incident plane wave 

r  is the reflected 

wave (moving in the 
the x  direction) and 

t  is the transmitted 

wave from the 
interface of two 
media of differing 
wave impedances. 

Free-space wave 
equations for 
electrical and 
magnetic fields 
 
 
 
 

2

2

2 2

2

2

2 2

0 0

1

1

1

c t

c t

c
 


 




 





E
E

B
B   

E  electrical field 

B  magnetic field 

c  speed of light 

t  time 

0
  permittivity of free 

space = 8.85 × 10
-12

 
 m

-3
 kg

-1
 s

4
A

2 

0
  permeability of free 

space = 
7 -14 10 Hm    

 

82.998 10c    ms
-1

 

Wave equation 2 2

2 2 2

1

x c t

  


 
  

  wave amplitude 

x  displacement 

t  time 

c  wave speed 
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Doppler effect cos

cos

f f
c

u





  



  

 
 
 
 
 
 

cos

e o

e

c c

f f f

u

 






 
 




  

v  velocity away from 

observer 

c  wave speed 

f  emitted wave 

frequency 

f  frequency shift 

(from f ) of waves 

arriving at observer. 
 
 
Wavelength Doppler 
shift formula. 
 
 
 
 

If 
o0   

u
f f

c
   . 

Rainbows 

 
2

2
2

15

2 2

1 1

2

  0.3

1

612

1.758

10 Hz

4 4
4si 2s

7

n in
3 3

f
n

n n

n

 









 

 
    

 

    
    

  
  











 

n  refractive index 

f  frequency of light 

  elevation of rainbow 

element of colour 
corresponding to 

frequency f   

Colour Wavelength in 
vacuo /nm 
Red 780-622 
Orange 622-597 
Yellow 597-577 
Green 577-492 
Blue 492-455 
Violet 455-390 
A rainbow is observed 
at a mean angle of 
about 41.7

o
 with an 

angular width of about 
1.6

o
.  
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5. Thermal physics 

Name Equation Description of variables Notes / diagram 

Ideal gas laws 
 

pV nRT   

V T     Charles' Law 

1
p

V
    Boyle's Law 

p  pressure 

V  volume 

n  number of moles of 

gas 

R  molar gas constant 

T  absolute temperature 
(in kelvin) 
 

R  = 8.314 Jmol
-1

K
-1

 

Equipartition 1
2

. .

B

d o f

U k T    

B

A

R
k

N
   

B
k  Boltzmann's constant 

= 1.38 x 10
-23

 m
2
kgs

-2
K

-1 

T  absolute temperature 
(in Kelvin) 

R  molar gas constant 

A
N  Avogadro's number 

= 6.02 x 10
23

 molecules 
per mole 

1

2 B
k T is the energy per 

'degree of freedom' of 
molecular motion. If a 
molecule can translate 
in three dimensions, 
vibrate in two modes 
and rotate in two 
orientations, this means 
the mean thermal 
energy per molecule is 
7

2 B
k T  

Maxwell-Boltzmann 
molecular speed 
distribution 

 

3 2
2

1
2

3
2

22( ) 4
2

2
( )

B

B

mv

k T

B

E

k T

B

m
p v v e

k T

E
p E e

k T










 
  

 



  

v  molecular speed 

B
k  Boltzmann's constant 

= 1.38 x 10
-23

 m
2
kgs

-2
K

-1 

T  absolute temperature 
(in Kelvin) 

m  molecular mass 

(...)p  probability density 

E  kinetic energy 

The probability of a 
speed being in the 

range v  to v dv  is 

defined as ( )p v dv . 

Hence 
0

1 ( )p v dv


    

Boltzmann entropy ln

!

( )! !

B
S k W

N
W

N n n






  

S  entropy 

B
k  Boltzmann's constant 

= 1.38 x 10
-23

 m
2
kgs

-2
K

-1 

W  number of ways of 

arranging N  two state 

systems, with n  in the 

'excited' state. 

 

Second Law of 
Thermodynamics 

0

total system surroundings

surroundings

total

S S S

H
S

T

S

    


 

 

  

S  entropy change 

H  enthalpy i.e. heat 
exchanged with 
surroundings 

T  absolute temperature 
(in Kelvin) 

For any chemical 
change, the total 
amount of entropy must 
increase 

Ratio of specific heat 
capacities 

p

V

c

c
    

1
2p V

RT
c c D

m
    

p
c  constant pressure 

specific heat capacity 

V
c  constant volume 

specific heat capacity 

D  degrees of freedom of 
molecular motion 

R  molar gas constant 

m  molecular mass 

T  absolute temperature 
(in Kelvin) 

R  = 8.314 Jmol
-1

K
-1

 

Adiabatic changes 

 1 2 1 1

constant

1

1

pV

W pV pV







  


  

p  pressure 

V  volume 

i.e. no mass or energy is 
exchanged between 
system and 
surroundings 
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Conservation of energy 
(First Law of 
Thermodynamics) 

dU dQ dW

dW pdV

dW dA

 

 



  

U  internal energy 

Q  heat energy 

W  work done by gas 

p  pressure 

V  volume 

  surface tension 

A  area 

 

Constant volume heat 
capacity V

V

V V

Q
C

T

c C m







  

Q  heat energy 

T  absolute temperature 
(in Kelvin) 

m  molecular mass 

Change in gas state 
occurs at constant 
volume 

Constant volume heat 
capacity P

P

P P

Q
C

T

c C m







 

Q  heat energy 

T  absolute temperature 
(in Kelvin) 

m  molecular mass 

Change in gas state 
occurs at constant 
pressure 

Clausius-Clapeyron 
equation for the 
(solid,liquid,gas) phase 

boundary in a , ,p V T  

space 

dp L

dT T V



  

p  pressure 

V  volume change 

during phase change 

L  latent heat absorbed 

T  absolute temperature 
(in Kelvin) 

 

Planck radiation 
distribution and 
Stefan's Law for black 
body radiation 

 
2

5

4 1
4

0

5 4

2 3

2 1
,

1

( , )

2

15

B

hc

k T

B

hc
B T

e

I B T d T uc

k

c h






  










  



   

I  'irradiance' (measure 
of radiation intensity per 
wavelength) 

c  speed of light 

T  absolute temperature 
(in Kelvin) 

  frequency 

h  Planck's constant 

= 6.63 x 10
-34

 m
2
kgs

-1
 

  Stefan-Boltzmann 

constant 
= 5.67 x 10

-8
 Wm

-2
K

-4
 

B
k  Boltzmann's constant 

= 1.38 x 10
-23

 m
2
kgs

-2
K

-1 

u  radiation energy 

density. 

Emmisitivies: 
4I T   

 

0 1   

Black-Body 1    

Albedo 1A     

 
 

Isothermal atmospheric 
pressure model 0 0

0

exp ( - )
mg

p p h h
RT

 
  

 
  

0

0

T T

L




 

p  pressure at  

altitude h  

0
p  pressure at  

altitude 
0

h  

T  temperature (Kelvin) 

at altitude h  

0
T  temperature (Kelvin) 

at altitude 
0

h  

R  molar gas constant 

m  molar mass of air 

g  gravitational field 

strength 

R  = 8.314 Jmol
-1

K
-1 

for dry air 
10.02896kgmolm   

-29.81msg    

Standard Atmospheric 
pressure model 
incorporating lapse rate 
(i.e. change of 
temperature with 
altitude) 

0

0

0

0 0

( )
1

( )

0

mg

LRL h h
p p

T

T T L h h

L

 
  

 

  



 

 

0

o

0

1013.25mbar

288.15 K

p

T




 

p  pressure at  

altitude h  

0
p  pressure at  

altitude 
0

h  

0
T  temperature (Kelvin) 

at altitude 
0

h  

L  lapse rate 

h0 = 0
 
km     h1 = 11km        

h2 = 20 km  h3 = 32 km 
h4 = 47 km  h5 = 51 km 
h6 = 71 km  h7 = 85 km 
 
L0 = 6.5

o
/km   

L1 = 0
o
/km 

L2 = -1
 o
/km  

L3 = -2.8
 o
/km 

L4 = 0
 o
/km   

L5 = 2.8
 o
/km 

L6 = 2
 o
/k 
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Vapour pressure 

exp
234.5 257.14

6.1121

18.678

1 ( )

vap s

s

vapd

s

d

p UE

T T
E a b

T

a

b

mm
p U E T

RT m

dp gdh







   
    

   





  
     

  

 

  

vap
p  vapour pressure 

U  relative humidity 

s
E  Saturation vapour 

pressure 

T  temperature (kelvin) 

d
m  molar mass of dry air 

vap
m  molar mass of 

vapour 

R  molar gas constant 

  overall vapour plus 

dry air density 
g  gravitational field 

strength 
p  pressure 

h  altitude 

1

1

0.02896kgmol

0.01802kgmol

d

vap

m

m








 

-29.81msg   

0 1U    

Dew point 
ln

ln

17.625

243.04

d

aT
b U

b T
T

aT
a U

b T

a

b

 
 

 


 






 

U  relative humidity 

T  temperature in 
degrees Celcius 
 

i.e. temperature at which 
vapour will be saturated 
and condensation 
occurs 

Boiling point 1

* *

1
ln

R p
T

T H p



  
       

 

T  boiling point at 
pressure p  given known 

boiling point 
*

T  at 

pressure 
*

p   

R  molar gas constant 

H  latent heat of 
vaporization 

H   = 40.7 kJ mol
-1

 at 

100
o

C and 1013.25 
mbar ambient air 
pressure.  
 

Heat capacity and 
energy change 

E mc T     E  energy required to 
raise the temperature of 
a mass  

m  by T  

c  is the specific heat 

capacity 
 

 

Kelvin, Celsius and 
Fahrenheit temperature 
scales 

9

5

273.15

32

K C

F C

T T

T T

 

 
 

  

Fluid pressure p gh   p  pressure 

  fluid density 

g  gravitational field 

strength 

h  height of fluid column 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fourier's law of heat 
transfer via conduction x

T
q k

x


 


  x

q  heat flux (Wm
-2

) in x  

direction, k  thermal 

T

x




temperature 
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conductivity 
 

gradient 

Heat diffusion equation 2

2

1T T

x D t

 


 
  

2

2
3

1
2

1

2
l

d n

D l c

l c



 







  

T  temperature 

x  direction 

t  time 

D  diffusion coefficient 

l  mean free molecular 

path 

d  molecular diameter 

c  mean molecular 

speed 

  density 

  viscosity 

These transport 
properties assume the 
kinetic theory i.e. matter 
is comprised of 
molecules in constant, 
largely random, motion. 
Heat, temperature is a 
measure of the energy 
of these random 
movements. 

Newton's law of cooling 
 a

dQ
hA T T

dt
    

Q  thermal energy /J 

h  heat transfer 

coefficient, A  surface 

area, T  temperature of 

body, 
a

T  ambient 

temperature of 
environment 

If dQ mcdT    

m   thermal mass, c  = 

specific heat capacity 

 

 0

a

hAt

mc
a a

dT hA
T T

dt mc

T T T T e


  

  
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6. Nuclear & Quantum physics 

Name Equation Description of 
variables 

Notes / diagram 

Photon energy E hf   h  Planck's constant 

= 6.63 x 10
-34

 m
2
kgs

-1
 

f  frequency 

 

Mass-energy relation 2E mc     E  energy change 

m  mass change 

c  speed of light 

Mass change in a 
nuclear reaction 
equates to an energy 
change - essentially 
due to the changes in 
nucleon binding 
energies 

8 -12.998 10 msc    

Photon momentum h
p

p k






  

2
k




   

p  momentum 

h  Planck's constant 

= 6.63 x 10
-34

 m
2
kgs

-1
 

2

h


   

k  wavenumber 

Note although 
photons have 
momentum, they 
don't have mass! 

Heisenberg's 
uncertainly principle 

1
2

1

2

p x

E t

  

  
  

p  momentum uncertainty 

x  positional uncertainty 

E  energy uncertainty 

t  time uncertainty 

h  Planck's constant 

= 6.63 x 10
-34

 m
2
kgs

-1
 

2

h


   

Schrödinger's wave 
equation  

2

22
V E

m t


 


  


  time independent 

 
2

22
V i

m t t

 


 
  

 
 time dependent 

2
dx  is the probability of a particle 'existing' 

within x  position x  to x dx   

h  Planck's constant  = 6.63 x 10
-34

 m
2
kgs

-1
 

2

h


  

t  time,                    V  potential energy 

E  total energy,      m  mass 

 
'Classic' (!) textbook solutions are  
- Free particle 
- Particle in a box 
- Particle in a potential well 
- Particle 'tunnelling' through a barrier 
- Harmonic oscillator 
- Hydrogenic spherical atom 

Particle in a box 1
2

2 2 2 2

2 2 2

8
( , , ) sin sin sin

8
nlm

l x m y n z
x y z

abc a b c

h l m n
E

m a b c

  


 
  
 

 
   

 

  

Solutions to time independent Schrödinger 
equation for a particle of mass m  in a box of 

dimensions a b c    

, ,n l m  are integers 1   

nlm
E  are particle energies characterized by 

energy state , ,n l m   
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Bohr model of a 
Hydrogenic atom 
 
'Orbital angular 
momentum is 
quantized' 
 
Model is a quasi-
classical analogy. 
Electrons follow 
circular orbits, but at 
fixed (quantized) 
angular momentum.  
 
This must be an 
analogy, since an 
accelerating point-like 
electron would 
radiate, and hence 
rapidly lose energy. 

2

1
137

0

0

2

0

2

2

4

3 2

0

2

2 2

4

4

8

1 1 1

n n n

e nuc

e

e nuc

e

n

n

e

e

mn e

L r v n

m m
m

m m

e

c

a
R

n m
r a

Z

R hc Z
E

m n

m e
R

h c

R Z

m n m






























 

 


 





 



 
  

 

  

n
L  orbital angular momentum of electron, 

nucleus two-body system 
,n m  orbital numbers (positive integers) 

e
m  electron mass 9.11 x 10

-31
kg 

nuc
m  nucleus mass = Au,  

u = 1.66 x 10-
27

kg,  
A is the atomic mass number 
  reduced mass 

n
r  radius of nth electron 'orbit' 

n
v  velocity of electron in n

th
 'circular orbit' 

c  speed of light 2.998 x 10
8
ms

-1
 

e  charge on electron 1.60 x 10
-19

 coulombs 

h  Planck's constant  = 6.63 x 10
-34

 m
2
kgs

-1 

2

h


  

  Fine structure constant 

R


 Rydberg constant 

Z  Atomic number (number of protons in 
nucleus) 

0
  permittivity of free space 

= 8.85 × 10
-12

 m
-3

 kg
-1

 s
4
A

2 

mn
  wavelength of photon produced/absorbed 

resulting from an electron energy state 
change between 'orbits' m  to n   

 

'Liquid drop' nuclear 
binding energy model 

2 3
3 4

2
3

2 2( )

, both even

, both odd

0 otherwise

v s c a

p

p

H n

Z N Z
B a A a A a a A

AA

a Z N

a Z N

m Zm Nm B






    




 



  

  

B  nuclear binding energy 

A  Atomic mass number 

Z  Atomic number (number of protons) 

N  Number of neutrons 

( , )M Z A  atomic mass 

c  speed of light 2.998 x 10
8
ms

-1
 

H
m  = 1.673 x 10

-27
kg 

n
m  = 1.675 x 10

-27
 kg 

15.8MeV
V

a  , 17.8MeV
S

a  ,

0.71MeV
C

a  , 23.7MeV
A

a  , 34MeV
P

a   

1eV = 1.60 x 10
-19

 J 
1MeV = 1.60 x 10

-13
 J 

Radioactive decay 

1
2

1
2

0

ln 2

exp ln 2

dN
N

dt

T

t
N N

T





 



 
  
 
 

  

N  Number of radioactive atoms at time t  

that have not yet decayed 

0
N  Number of radioactive atoms at 0t    

  decay constant 

1
2

T  half life. The time taken for 1
02

N N   

t  time 

Geiger-Nuttall rule log logA B x       decay constant 

,A B  empirical parameters or radioactive 

sample, and medium in which they are 
decaying into (e.g. air, paper, metal, lead ...) 

x  distance from source 

 

Alpha decay 4

2

229 225

90 88

X Y

Th Ra

Z N Z N

Z Z




  


 

 
 

Alpha decay. Atomic number (Z) reduces by 
2. Mass number reduces by 4 
Kinetic energy of alpha particle approximately 
5MeV. (100,000 x ionization energy for an air 
molecule) 
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Beta decay 
1

14 14

6 7

X Y

C N

Z N Z N

Z Z




 


 

 
 

Beta decay. Atomic number (Z) increases by 
1 Mass number stays the same 
Kinetic energy of beta particles 0.01 to 10MeV 
i.e. a spectrum of energies 
[1MeV = 1.60 x 10

-13
 J] 

Nuclear fission 235 1 141 92 1

92 0 56 36 0
U n Ba Kr 3 n      174 MeV per reaction 

71.5 million MJ /kg of fuel 
coal 24 MJ per kg 
gas 46 MJ per kg 
sandwich 10 MJ per kg 
1MeV = 1.60 x 10

-13
 J 

Nuclear fusion 2 3 4 1

1 0 2 0
T He nD    17.6 MeV per reaction 

338 million MJ /kg of fuel 
[1MeV = 1.60 x 10

-13
 J] 
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7. Relativity, cosmology 

Name Equation Description of variables Notes / diagram 

Bode's law for the 
solar system 

4 3 2

10

n

AU
D

 
   AU

D  planetary orbital 

radius /AU 

0n   Venus  

1n  Earth 

2n  Mars 

3n  Ceres 

4n  Jupiter 

5n  Saturn 

6n  Uranus 

7n  Neptune 

1AU (Astronomical unit) = mean 
Earth-Sun separation = 1.496 
x10

11
m 

 

Cepheid variable 
luminosity 
relationship 

10 10
log 1.15log 2.47

d

L
T

L
    

L  mean Cepheid 
luminosity 

L Solar luminosity  

d
T  pulsation period /days 

263.85 10 WL    

Hubble's law 
0

v H d   v  cosmological 

recession velocity 

0
H  Hubble constant 

= 67.8 kms
-1

/Mpc 

d  distance of galaxy 

The entire universe is expanding, 

so d  can be measured from any 

observation point. 
1Mpc = 3.09 x 10

22
m. 

Gravitational lensing 
(Einstein rings) 2

2

4 OS OL

OS OL

d dGM

c d d


 
  

 
  

11 2 -26.67 10 Nm kgG    

M lens mass 

c  speed of light 2.998 x 

10
8
ms

-1
 

OS
d distance from 

observer to source of 
light 

OL
d distance from 

observer to lensing mass 

M   

  ring angular half-width  

Light is bent by the presence of 
massive objects such as black 
holes. Objects (stars, galaxies..) 
behind the 'lens mass' will 
appear to be distorted into a ring 
formation. 

Schwarzschild radius 
of a Black Hole 2

2
3 km

s

GM M
R

c M
    

11 2 -26.67 10 Nm kgG    

M black hole mass 

c  speed of light 2.998 x 

10
8
ms

-1
 

 

M  solar mass = 1.99 x 10
30

kg. 

The Schwarzschild radius is the 
radius of a spherical mass whose 
gravitational escape velocity 
equals the speed of light.  

Escape velocity 
21

2

21
2

21

2

0 0

2

R

R

GMm
E mu

r

GMm
E mu

R

E mv

v E

GM
u

R



 

 



  

 

  

11 2 -26.67 10 Nm kgG    

M  mass of (spherical) 
object 

R  radius of object 

u  launch velocity 

r  radius from object 
centre 

m  mass of object 

escaping 

E  total energy of 
escaping object 

For Earth, the escape velocity is 
11 24

6

-1

2 6.67 10 5.97 10

6.38 10

11.2kms

u

u

   






 



Page 32 of 45 
 

Equations of static 
(i.e. time 
independent) 
structure of stars 

2

2

2

3 2

4

4

3

16 4

1

dM
r

dr

dp G M

dr r

dL
r

dr

dT L

dr T r

dT T dp

dr p dr





 



 







 









  

M  mass within radius r  

  density 

11 2 -26.67 10 Nm kgG    

L  luminosity 

  power generated per 

unit mass 

T  temperature /K 
  mean opacity 
p  pressure 

  Stefan-Boltzmann 

constant 
= 5.67 x 10

-8
 Wm

-2
K

-4 

p

V

c

c
   ratio of constant 

pressure and constant 
volume heat capacities 
 

 

Gravitational Redshift 

2

2
1

r

f GM

f rc

    
f


 frequency at range 

r   from mass centre 

r
f  frequency at range r   

11 2 -26.67 10 Nm kgG    

M  mass 

c  speed of light 2.998 x 

10
8
ms

-1
 

 

Redshift 
o e

e

z
 




  o

  observed wavelength 

e
  emitted wavelength 

 

Black hole 
temperature 

3

710
8

B

Mc
T

GMk M

   
h  Planck's constant  = 

6.63 x 10
-34

 m
2
kgs

-1 

2

h


  

B
k  Boltzmann's constant 

= 1.38 x 10
-23

 m
2
kgs

-2
K

-1 

11 2 -26.67 10 Nm kgG    

M black hole mass 

M  solar mass 

c  speed of light 2.998 x 

10
8
ms

-1 

T  temperature /Kelvin 

301.99 10 kgM    
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Lorentz space-time 
transformations 

 

1
22

2

2

1

' ' ' '

' '

v

c

x x vt y y z z

v
t t x

c









 
  
 

   

 
  

 

  

v  velocity of frame S' 

relative to x  direction of 

frame S 
8 -12.998 10 msc    

, ,x y z  coordinates in 

frame S 

', ', 'x y z  coordinates in 

frame S 

t  time in frame S 

't  time in frame S' 

S,S' are Cartesian , ,x y z frames 

of reference. 
 
Relatively speaking, S is the 
'stationary frame' and S' is the 
'moving frame'. (But obviously 
the converse is true from the 
perspective of S'). 
 
Assume S and S' are coincident 

at 0t    

(which may not be ' 0t  )  

Relativistic velocity 
transformations 

 

 

2

2

2

1

1

1

x

x

x

y

y

x

z

z

x

u v
u

u v c

u
u

u v c

u
u

u v c





 














  

v  velocity of frame S' 

relative to x  direction of 

frame S 
8 -12.998 10 msc    

, ,
x y z

u u u  velocities in S 

frame 

, ,
x y z

u u u   velocities in S' 

frame 

S,S' are Cartesian , ,x y z frames 

of reference. 
1
22

2
1

v

c




 
  
 

 

Relativistic 
momentum & energy 
transformations 

2

2 2 2 constant

m

E mc

E p c









 

p u

  

 

2

'

'

x x

y y z z

x

vE
p p

c

p p p p

E E vp





 
  

 

  

 

  

p , p  p  momentum in 

S frame 

, ,x y z
p  momentum in S' 

frame 

m  mass 

u  velocity 

v  velocity of frame S' 
1
22

2
1

v

c




 
  
 

 

8 -12.998 10 msc    

E  total energy 

 

Relativistic Doppler 
shift 

'
1 cos

f v

f c
 
 

  
 

  
  photon arrival angle 

(anticlockwise from 
horizontal) in S frame 

v  velocity of S' 
8 -12.998 10 msc    

'f  frequency emitted in 

S' frame 

f  frequency received in 

S frame 

 

Relativistic aberration cos '
cos

1 ( )cos '

v c

v c










  

  emission angle of light 

in S 

'  emission angle of light 

in S' 

v  velocity of S' relative to 

S 
8 -12.998 10 msc    
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8. Mathematics 

Name Equation Notes / diagram 

Trigonometry & 
Pythagoras' 
theorem 

 

 

 

2 2

2 2

cos

sin

sin cos 1

sin
tan

cos

sin sin cos cos sin

cos cos cos sin sin

tan tan
tan

1 tan tan

x r

y r

r x y

A B A B A B

A B A B A B

A B
A B

A B





 










 

 



  

 


 

  

cos  is the x  coordinate of the unit 

circle 
 

sin  is the y coordinate.  

 

  is measured anticlockwise from the x  

axis. 

Special triangles o o 31
2 2

o o 31
2 2

o o1

3

o o o1 1

2 2

sin30 sin 60

cos60 cos30

tan30 tan 60 3

sin 45 cos45 tan 45 1

 

 

 

  

  

 

Laws of indices 

 

1

1

n

a b ab

b
a ab

a

a

n

x x x

x x

x
x

x x











  

 

Laws of 
logarithms 

log

10

10

log

log log log

log log log

log log

log log
log

log log

b

y

b

b b b

x
b b b y

n

b b

x

c

b

c

y x x b

x y xy

x y

x n x

x b

x x
x

b b

  

 

 





 

  

Base 0b    

De-Moivre's 
Theorem 

cos sinie i       

Taylor & 
Maclaurin 
expansions 

2 3

(3)

2

( ) (0) '(0) ''(0) (0) ...
2! 3!

( ) ( ) '( ) x ''( ) ...
2!

x x
f x f f x f f

x
f x h f h f h f h

    

    

  

 

Binomial 
expansion  

 

0 1 1 2 2 0

2

3

....
0 1 2

!

( )! !

1 1 ( 1) ( 1)( 2) ...
2!

( 1)( 2)( 3) ...
3!

n n n n n

n

n n n n
a b a b a b a b a b

n

n n

r n r r

x
x nx n n x n n n

x
n n n n

        
            

       

 
 

 

        

    

  

Binomial expansion 

n  integer, >0 

 
 
 
Generalized binomial expansion 

1x   
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Arithmetic 
progression 

 

1

1

1
12

1

( 1)
n

n n

n

n i n

i

u a n d

u a

u u d

S u n u u





  



 

  

  

 

Geometric 
progression 

 

1

1

1

2 -1
1-

...
1-

n

n

n

n

n

n

n

u ar

u a

u
r

u

a r
S a ar ar ar

r











     

  

If 1r   

1

a
S

r




  

Summation 
formulae 

 

1
2

1

2 1
6

1

23 21
4

1

( 1)

( 1)(2 1)

1

N

n

N

n

N

n

n n n

n n n n

n n n







 

  

 







  

 

Triangle 1 1

2 2
sinA bh ab C           Area of a triangle 

2 2 2

sin sin sin

2 cos

a b c

A B C

a b c bc A

 

  

   Sine and Cosine rules 

b  is base of triangle 

h  perpendicular height 

, ,a b c  sides of triangle 

, ,A B C  opposite angles to sides 

Circle    
2 2 2

2

21
2

2

x a x b r

C r

A r

s r

a r









   









  

Circle centre ( , )a b  and radius r   

Circumference C  and area A   

Arc angle (radians)   and area a   

Ellipse    
2 2

0 0

2 2
1

x x y y

a b

A ab

 
 



  

Geometric centre 
0 0

( , )x y   

semi-major axis a  and semi-minor axis b   

Area A  

Cylinder 2

2

2 2A rh r

V r h

 



 


  

Area A and volume V  

h  height or length of cylinder  

Cone 

21
3

A rl

V r h








 

l  slant height 

r  radius of base 

h  perpendicular height 

Frustum  1
3

V h A aA a     Top and base areas ,a A   

Perpendicular height h   

Stirling's Formula 1
2! 2

ln( !) ln

n nn n e

n n n n


 

 
  

 

Combinatorics !

! ! !...

!

( )! !

!

( )!

n

r

n

r

n
P

p q r

n
C

n r r

n
P

n r









  

n  objects, p  repeats of type A, q  

repeats of type B etc. 
 
n

r
C is umber of combinations of r  distinct 

objects from a population of n  distinct 

objects i.e. order of subset doesn't matter. 
n

r
P is umber of permutations of r  distinct 

objects from a population of n  distinct 

objects i.e. order of subset does matter. 
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Quadratic 
equations 

2

2 4
0

2

y ax bx c

b b ac
y x

a

  

  
  

  

Quadratic formula 
 

Discriminant 
2 4b ac     

Vector scalar 
(dot) product 

cos

ˆ ˆ ˆ ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ ˆ ˆ 1

ˆ ˆ ˆ

ˆ ˆ ˆ

x

x y z y

z

x

x y z y

z

x x y y z z

a

a a a a

a

b

b b b b

b

a b a b a b

 

     

     

 
 

     
 
 

 
 

     
 
 

   

a b a b

x y x z y z

x x y y z z

a x y z

b x y z

a b

  

Projection (shadow) of one vector on 
another is 

a b

b
 

Vector (cross) 
product 

     
         

     

     

sin

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ
y z z y z x x z x y y x

a b a b a b a b a b a b

 

   

 

 

 

      

        

     

     

a b a b

b a a b

x y z

y z x

z x y

a b x y z

a b c d a c b d a d b c

a b c a c b b c a

a b c a c b a b c

  

Evaluate using 'right hand screw rule' 

Vector equations 
and planes, and 
distances 
between lines 
and planes. 

 r a b  

 
 

    
2

2

2
-d

  
  

b a cb a c
b a

cc
 

 

   

   
ˆ

  


  

b a c a
n

b a c a
 

 

  ˆ 0  r a n  

        r a b a c a  

 
 

  ˆd   a p n  

 
 

     
 



b a c d

c d
 

 

  ˆd   c a n  

 
 
 
 

Vector equation of a straight line through 

point a  and with direction vector b   

 
'Foot of the perpendicular' 

i.e. closest distance from b  to line 

passing through a  with direction vector c   

 

Normal unit vector n̂  to plane containing 

non-parallel position vectors a,b,c   

 
Vector equation of a plane 
 
 
Distance from a point p  to plane 

characterized by point a  on the plane and 

unit normal n̂  
 
Distance between line through a  with 

direction vector c  and a line through b

with direction vector d    

 

If a line  r a b  is parallel to a plane, 

ˆ 0 n b . Distance between line and 

plane is   ˆd   c a n   

 
Volume of a parallelepiped formed from 

vectors a,b,c   
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 [ , , ]V    a b c a b c  

Matrices 

1

1

1

1 0

0 1

a b e f ae bg af bh

c d g h ce dg cf dh

a b d b

c d c aad bc

a b a b

c d c d





     
    

     

   
   

   

     
     

     

  

 
 
 
 
Inverse matrix  
 
 
Identity matrix 

Basic 
differentiation 

 

1

1

2

2

'( ) ( )

ln

'( )
ln ( )

( )

sin cos

cos sin

tan sec

n n

ax ax

x

d
f x f x

dx

d
x nx

dx

d
e ae

dx

d
x

dx

d f x
f x

dx f x

d
ax a ax

dx

d
ax a ax

dx

d
ax a ax

dx

d dv du
uv u v

dx dx dx

du dv
v u

d u dx dx

dx v v

dy dy dz

dx dz dx















 



 


 

 
 

 

  

For trigonometric functions, variables 
must be in radians 
 

  radians = 180
o 

 

Note: if 1   

 

sin tan      

 
 
 
 
 
 
 
 
 
 
 
 
 
Product Rule 
 
 
Quotient Rule 
 
 
 
Chain Rule 

Basic integration 

     

 

1

1

1

1

'( ) ( )

'( ) ( ) ( ) ( )

'( )
ln ( )

( )

sin cos

cos sin

tan ln cos

bb

a a

ax ax

a

a

a

a

f x dx f x c

f x dx f x f b f a

e dx e c

f x
dx f x c

f x

axdx ax

axdx ax

axdx ax c

du
uv dx u vdx vdx dx

dx

 

  

 

 

 



  

 
   

 















   

 

( )g x dx  is the area between the curve 

( )g x  and the x  axis, with the caveat that 

the area beneath the axis counts a 
negative. 
 

( )g x dx  is also the inverse of 

differentiating ( )y g x . 

i.e. 
dy

dx y c
dx

   (which is true up to a 

constant of integration c , which must be 

specified.  
 
Integration by parts 
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Volumes of 
revolution 
 

3
2

2

2

2

2

12 2

2

2 1

1

1

b

x
x a

b

y
y a

b

x
a

b

a

V y dx

V x dy

dy
A y dx

dx

dy
L dx

dx

dy d y
R

dx dx

















 
   

 

 
   

 

    
     

     









 

About x  axis. 

 
About y  axis. 

 
 
Surface area 
 
 
Length of a curve 
 
 
Radius of curvatire 
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Linear 
regression 

1 1

2 2 2 2

1 1

1

2 2 2 2

1 1

1 1

1

cov[ , ]

[ ] [y]

cov[ , ]

[ ] [ ]

cov[ , ]
vertical fit

[ ]

[ ]
horizontal fit

cov[ , ]

N N

n n

n n

N N

n n

n n

N

n n

n

x x y y
N N

x x y y
N N

xy x y
N

x y xy x y

V x x x V y y

x y
p

V x V y

y mx c

x y
m c y mx

V x

V y
m c y mx

x y

 

 



 

 



  

   



 

  

  

 

 



  

Formulae for calculating the line 
of best fit to a set of data 

 ,
n n

x y   

cov[ , ]x y  is the covariance 

 

cov[ , ]

[ ] [ ]

x y
p

V x V y
 is the product 

moment correlation coefficient. 
 

1p    perfect negative 

correlation between x and y 

1p    perfect positive 

correlation between x and y 

0p   no correlation between x 

and y 
 

Statistical 
analysis 

 

1

22

1

3

1

1
[ ]

1
[ ]

1

skew[ ]
( 1)( 2)

N

n

n

N

n

n

N
n

n

x E x x
N

V x x x
N

x xN
x

N N











 

  


 
  

   







  

x  mean, or expectation 
2  variance 

For continuous variables and 

probability distribution ( )p x   

 

 

22

2
2

[ ] ( )

[ ] [ ] [ ]

[ ] ( ) ( )

E x xp x dx

V x E x E x

V x x p x dx xp x dx



 

 



 

  

Numeric 
integration: 
Trapezium 
Rule 

  
0

1
0 1 2 12

0

( ) ( ) 2 ( ) ( ) ... ( ) ( )
nx

n n
x

n

f x dx x f x f x f x f x f x

x x
x

N


      


 


  

Estimate integral by summing 
trapezia fitted to the curve. Each 
trapezia has a fixed base width 

x   

Solving 
Ordinary 
Differential 
Equations - 
Euler's Method 

1

1

( , )

( , )

n n

n n n n

dy
f x y

dx

x x x

y y f x y x







  

  

  

Errors of the order of x  

Solving 
Ordinary 
Differential 
Equations - 
Runge-Kutta 
Method 

1

1

1 1
2 12 2

1 1
3 22 2

1
4 32

1 1 1 1
1 1 2 3 46 3 3 6

( , )

( , )

( , )

( , )

( , )

n n

n n

n n

n n

n n

n n

dy
f x y

dx

x x x

k f x y x

k f x x y k x

k f x x y k x

k f x x y k x

y y k k k k







  

 

    

    

    

    

 

Errors of the order of 
4x   

Solving vector 
dynamics 
problems via 
Verlet Method 

 

 1
1 12

21
1 2

,
n n n

n n n n

n n n n

f t

t

t t

 





   

    

a r

v v a a

r r v a

  

Errors of the order of 
2x  

Newton's 
Raphson 
method for 
root finding 

1

( )

'( )

n

n n

n

f x
x x

f x

    

Requires initial guess of root 
0

x   

Fails near to a stationary point 

'( ) 0f x    
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Normal 
distribution 

2

2

2 21
2

( )

2
1

( | , )
2

( , )

x

t t

p x e

x

M x t e





 

 
 














  

Gaussian distribution or 'bell 
curve'.  
Central limit theorem:  
"The distribution of the mean 
values of a set of independent 
random values tends towards a 
Gaussian distribution if the 
number of samples is large 
enough.” 

Exponential 
distribution 

2

2

( | )

1

1

xp x e

x

 












  

 

Rayleigh 
distribution 

2

22

2

2 1
4

( | )

/ 2

[ ] 2 (1 )

x
x

p x e

x

V x




 

 







 

  

 

Chi-squared 
distribution 

/2 ( /2) 1

/2

2

1

0

( | )
2 ( / 2)

2

( )

x r

r

z t

e x
p x r

r

x r

r

x t e dt



 


 








  

  

( )x  is the Gamma function. 

Binomial 
distribution  

2

1

2

2

( | , ) 1

1 ( )
( | , ) exp

(1 )2 (1 )

(1 )

( , ) ( 1 )

n xx

t n

n
p x n p p p

x

x np
p x n p

np pnp p

x np

np p

M x t pe p





 
  
 

 
  

  



 

  

  

Probability of x  successes out 

of n  independent trials, each 

with probability of success p   

Geometric 
distribution 

1

2

2

( | ) (1 )

1

1

xp x p p p

x
p

p

p


 






  

Probability of success in the x
th 

independent trial, following x-1 
failures. Each trial has 
probability of success p . 

Poisson 
distribution 

2( )

2

2

( 1)

1
( | )

! 2

( , )
t

xx

e

e
p x e

x

x

M x t e














 






 







  

Probability of success rate x , 

given mean success rate  . For 

example, goals per football 
game, decays per second etc... 

Moment 
generating 
functions 

 

2 31 1

2! 3!

2 21

2!

0

22

( , )

1 ( ) ( ) ...

( , ) 1 [ ] [ ] ...

( , )
[ ]

[ ] [ ] [ ]

tx

tx

n

n

n

t

M x t E e

e tx tx tx

M x t tE x t E x

M x t
E x

t

V x E x E x



   

    

   






 

  

[ ]E x  expectation 

[ ]V x  variance 
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Bayes' 
Theorem & 
statistical 
inference 

( | ) ( ) ( | ) ( )

( | ) ( )
( | )

( | ) ( ) ( | ') ( ')

( ' | ) ( )
( | ')

( ' | ) ( ) ( ' | ') ( ')

P H T P T P T H P H

P T H P H
P H T

P T H P H P T H P H

P T H P H
P H T

P T H P H P T H P H









  

H   hypothesis true 

'H  hypothesis false 

T    test for hypothesis pass 

'T   test for hypothesis fail 
 

( | )P H T  is probability of 

hypothesis being true given a 
test has been passed. This is 
often what a patient wants to 
know following a test for a 
disease. Note in medical 
applications a pharmaceutical 
company will instead measure 

( | )P T H  e.g. probability that a 

test passes given a sample has 
the disease. If a disease is rare, 

( ) 1P H  which may mean 

( | )P H T is low even if ( | )P T H

is close to 100%. 

( | ')P H T is called a false 

positive. 
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9.  Recommended books and resources 

 

Online portal to Physics, Mathematics references (including this document) 

www.eclecticon.info 

* Don't start a Physics University course without these!  ** Standard texts 

 

General Physics 

French, A., Science by Simulation* 

Woan, G., The Cambridge Handbook of Physics Formulas* 

Cullerne, J.P., Machacek, A., The Language of Physics* 

Rees, W.G., Physics by Example* 

Kirk, T., IB Study Guide: Physics 2nd Edition* 

Chadha, G et al., A Level Physics for OCR A* 

Feynman Lectures on Physics** 

 

Mechanics 

Kleppner, D., & Kolenkow, R., An Introduction to Mechanics* 

Morin, D., Introduction to Classical mechanics: With problems and solutions* 

Pain, H.J., The Physics of Vibrations and Waves 

Hand, L.N., Finch, J.D. Analytical Mechanics 

Strogatz, S.H., Nonlinear Dynamics & Chaos** 

Faber, T.E., Fluid Dynamics for Physicists* 

Goldstein, H., Poole, C.P., Safko, J.L. Classical Mechanics** 

 

Waves & Optics 

Hecht, E., Optics** 

 

Thermal Physics 

Mandl, F., Statistical Physics** 

 

Electricity & Magnetism 

Bleaney,B., Bleaney, B., Electricity & Magnetism (volumes 1 and 2)* 

Jackson, J,D., Classical Electrodynamics** 
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Quantum Physics / Solid State Physics / Nuclear Physics/ Particle Physics etc 

McEvoy, J.P., Zarate, O., Introducing Quantum Theory* 

Martin, B., Nuclear & Particle Physics: An Introduction** 

McCaw, C.S., Orbitals With Applications in Atomic Spectra 

Kittel, C., Introduction to Solid State Physics** 

Haken, H., Wolf, C. H., The Physics of Atoms and Quanta** 

Warner, M., Cheung, A., A Cavendish Quantum Mechanics Primer* 

 

Cosmology 

Basset, B., Edney, R., Relativity: A Graphic Guide 

d'Inverno, R., Introducing Einstein's Relativity** 

 

Earth Sciences & Remote Sensing 

Fowler, C.M.R., The Solid Earth: An Introduction to Global Geophysics** 

Shearer, P.M., Introduction to Seismology** 

Rees, W.G., Physical Principles of Remote Sensing** 

 

Mathematics 

Riley, K.F., Hobson, M.P., Bence, S.J., Mathematical Methods for Physics and Engineering* 

Rayner, D., Extended Mathematics for Cambridge IGCSE* 

Quadling et al, OCR (Cambridge Advanced Level Mathematics) Core1&2,Core3&4,Further Pure1,Further Pure 

2&3,Statistics1,Statistics2&3, Mechanics1,Mechanics2,Mechanics3&4,Decision1,Decision2&3 ** 

 

Misc 

Gleick, J., Chaos: Making a New Science 

MacKay, D.J.C., Sustainable Energy - Without the Hot Air 

MacKay, D.J.C., Information Theory, Inference and Learning Algorithms 

Feynman, R.P., Leighton, R., Hutchings, E., Surely You're Joking Mr Feynman 

Bellos, A., Alex's Adventures in Numberland 
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Computer Programming & document processing 

Hanselman, D.C., Littlefield, B.L., Mastering MATLAB 

Press, W.H., Teukolsky, S.A., Vetterling, T., Flannery, B.P., Numerical Recipes: The Art of Scientific Computing** 

 

www.mathworks.co.uk (MATLAB)   www.python.org  

https://thonny.org/    www.irfanview.com/ 

http://www.lyx.org/ (LaTeX)   www.pcspecialist.co.uk   


