

Dr Andrew French. October 2020.

Plastic tube for observing LEDs

Equipment setup

Don't use more than 4V for the power supply – the maximum input to the Planck's Constant LED apparatus is 5V.

Ammeter scale will be mA Voltmeter scale will be 0 to 2 and then 2 to 20V

The LED (light emitting diode) is a *semiconductor*, with **electron energy levels** that are separated by an amount that corresponds to the **energy of photons in the visible and infra-red spectrum.**

If the photon energy is:

then photons will only be released from the LED when the applied voltage V multiplied by the charge on the electron e exceeds E.

Therefore expect *no light* from the LED (and no current in the ammeter) until:

$$V \ge \frac{hc}{e\lambda}$$

$$e = 1.602 \times 10^{-19} \text{C}$$

electron charge

TASK1:

- Set up equipment and turn potentiometer fully anti-clockwise. This will correspond to maximum resistance and therefore minimum voltage across the LED.
- Choose an LED using the switch. Write down the wavelength in nm.
- Gradually reduce the potentiometer resistance until the LED begins to lights up. Observe it using the plastic tube.
- Record the voltage that this occurs.

When the LED 'just starts to illuminate'

$$\frac{eV}{c} = \frac{h}{\lambda} \qquad \text{So plotting} \quad \frac{eV}{c} \quad \text{vs} \quad \frac{1}{\lambda}$$

N= 0.0.2×

১১

should yield a **straight line graph from the origin**, the gradient of which is Planck's constant *h*. In the example below, this is the red line of best fit, yielding

 $h = 5.41 \times 10^{-34}$ Js which is about 18% different from the actual value.

PLANCK'S CONSTANT FROM LEDs

0.00E+00

0.000E+00

5.000E+05

1.000E+06

1/(wavelength/m)

1.500E+06

2.000E+06

2.500E+06

A. French. 10/10/2020. P5 Winchester College.

Record voltag eV should equ	e V across L late to the c	ED when it ju energy hc/lam	st starts for il nbda of the er	luminate. nmitted pho	otons.	\mathcal{V}	S=eV	$e = 1.602 \times 6^{-10} C$		
	speed of light /ms^-1 electron charge e /C		2.998E+08 1.602E-19				2	c = 2.998768 M/r		
LED wavelength			1/lambda		using I,V cur	ves	$h_{1} = \frac{e}{V}$			
/nm	V /volts	I /mA	(m^-1)	eV/c	V /volts	eV/c	[a] pbr			
425	2.57	0.0065	2.353E+06	1.37E-27	2.9	6 1.58E-27				
505	1.98	0.0003	1.980E+06	1.06E-27	2.4	6 1.31E-27				
565	1.72	0.0375	1.770E+06	9.19E-28	1.9	0 1.02E-27		o (
615	1.47	0.0003	1.626E+06	7.86E-28	1.8	1 9.67E-28		ALV		
660	1.44	0.0073	1.515E+06	7.69E-28	1.6	7 8.92E-28				
850	1.24	0.457	1.176E+06	6.63E-28	1.3	1 7.00E-28				
1.80E-27 1.60E-27 1.40E-27	'Just on'	LED voltag	1.053E+06 e x electror avelength r	$f(x) = \frac{1}{2}$	<u>1.1</u> / speed of l :-34x 9495	7 6.23E-28		+ 1 6.63+5-34 Js = h		
1.20E-27										
0 0 0 0 0 0 0 0 0 0 0 0 0 0					+	y = 5E-34 R ² = 0.937	Planck's	Conskut:		
4.00E-28 2.00E-28								110-1-34-50		

We can use the same equipment to determine a much more accurate value of Planck's constant by recording the **voltage vs current curves** for each LED.

Extrapolate the linear region to zero current, and take this as the voltage corresponding to:

Voltages using *I*, *V* curve extrapolation

using I,V curves

PLANCK'S CONSTANT FROM LEDs

LED

A. French. 10/10/2020. P5 Winchester College.

Record voltage V across LED when it just starts for illuminate. eV should equate to the energy hc/lambda of the emmitted photons.

speed of light /ms^-1	2.998E+08
electron charge e /C	1.602E-19

wavelength							
/nm	V /volts	I /mA	(m^-1)	eV/c	V /volts	eV/c	
425	2.57	0.0065	2.353E+06	1.37E-27		2.96	1.58E-27
505	1.98	0.0003	1.980E+06	1.06E-27		, 2.46	1.31E-27
565	1.72	0.0375	1.770E+06	9.19E-28		1.90	1.02E-27
615	1.47	0.0003	1.626E+06	7.86E-28		1.81	9.67E-28
660	1.44	0.0073	1.515E+06	7.69E-28		1.67	8.92E-28
850	1.24	0.457	1.176E+06	6.63E-28		1.31	7.00E-28
950	1.15	3.35	1.053E+06	6.15E-28		1.17	6.23E-28

e=1.602x6 pht JS Planchis

In this case the gradient of the graph is: $h = 6.26 \times 10^{-34} \, \mathrm{Js}$

This plot of predicted vs measured voltages is perhaps a more obvious contrast between model and measurement. Ideally the graphs should be y = x for a perfect correlation. You can clearly see the *I*, *V* curve method results in better agreement than the 'by eye' method.