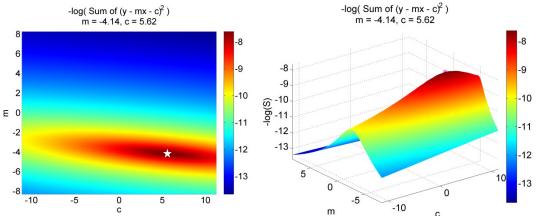
Correlation & Linear Regression

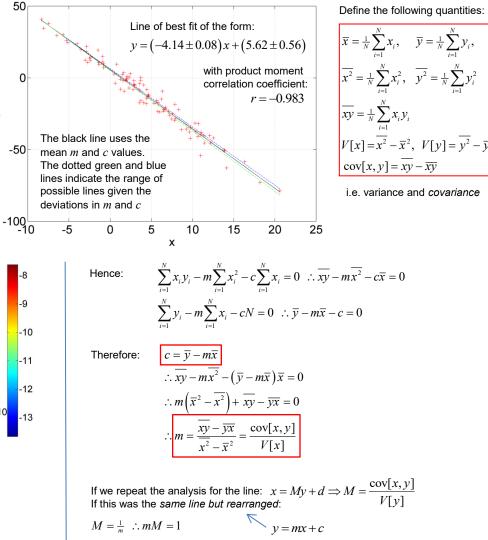
Perhaps the most important analytical tool in the physical sciences is the ability to quantify the validity of a model relating a set of measurable parameters. The idea is as follows:


- (1) Rearrange the model in such a way that it becomes a *linear equation* of the form y = mx + c
- (2) Plot experimental (x,y) data on a graph and determine the **line of best fit** through the data.
- (3) Determine gradient *m* and vertical intercept *c* from the line of best fit.
- (4) Determine the standard deviation of both gradient *m* and intercept *c*, and a quantitative measure of how good the fit is (this is called the **product moment correlation coefficient**).

To determine the line of best fit^{*}, let us sum the *squared* deviations of (x,y) from the line of best fit.

>

Using the (*negatively correlated*) data on the right, we can plot a surface of *S* vs *m* and *c* values We can see this has a **minimum** at a particular (*m*,*c*) coordinate. (Note for clarity the plots below are of $-\log S$, so the (*m*,*c*) coordinate corresponds to the peak, i.e. maximum, instead).



The minimum of S can be found by differentiating S with respect to m and c, and setting these expressions equal to zero. Since S is a function of two variables we must use *partial derivatives*.

$$S = \sum_{i=1}^{N} (y_i - mx_i - c)^2 \qquad S = \sum_{i=1}^{N} (y_i - mx_i - c)^2
\frac{\partial S}{\partial m} = 2\sum_{i=1}^{N} (y_i - mx_i - c)(-x_i) \qquad \frac{\partial S}{\partial c} = 2\sum_{i=1}^{N} (y_i - mx_i - c)(-1)
\therefore \frac{\partial S}{\partial m} = 0 \Rightarrow \sum_{i=1}^{N} x_i (y_i - mx_i - c) = 0 \qquad \therefore \frac{\partial S}{\partial c} = 0 \Rightarrow \sum_{i=1}^{N} (y_i - mx_i - c) = 0
\therefore \sum_{i=1}^{N} x_i y_i - m\sum_{i=1}^{N} x_i^2 - c\sum_{i=1}^{N} x_i = 0 \qquad \therefore \sum_{i=1}^{N} y_i - m\sum_{i=1}^{N} x_i - cN = 0$$

*We will use the *vertical* deviations. You can alternatively use horizontal deviations or indeed perpendicular deviations from the line of best fit.

Line of best fit y = -4.14x + 5.62 $\Delta m = 0.0783$, $\Delta c = 0.56$, r = -0.983

Hence define a product moment correlation coefficient:

$$r = \frac{\operatorname{cov}[x, y]}{\sqrt{V[x]V[y]}}$$

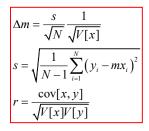
This will be +1 for a perfect positive correlation and -1 for a perfect negative correlation (i.e. S = 0 in both cases).

It is possible to show^{*} that the standard deviations (i.e. 'errors') in m and c are:

$$\Delta m = \frac{s}{\sqrt{N}} \frac{1}{\sqrt{V[x]}}$$
$$\Delta c = \frac{s}{\sqrt{N}} \sqrt{1 + \frac{\overline{x}^2}{V[x]}}$$
$$s = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_i - mx_i - c)^2}$$

This is very useful in the physical sciences, as the errors in m and c will often be the uncertainties in model parameters (e.g. the strength of gravity...)

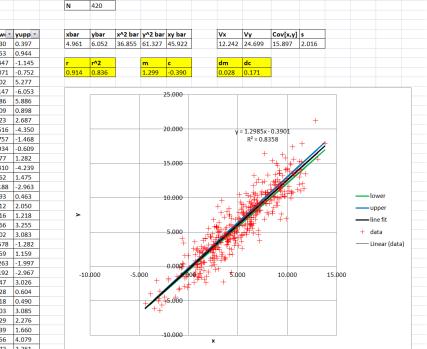
s is the *unbiased estimator* of the standard deviation in the *y* values from the line of best fit. The N-2 factor is due to two parameters (*m* and *c*) being used in the calculation, which are of course derived from the sample data themselves as shown above.


In many situations a **direct proportion** is asserted between y and x. The computation of the line of best fit (which passes through (0,0) follows a similar argument to the one above.

= 0

$$S = \sum_{i=1}^{N} (y_i - mx_i)^2$$

$$\frac{\partial S}{\partial m} = 2\sum_{i=1}^{N} (y_i - mx_i)(-x_i)$$
$$\therefore \frac{\partial S}{\partial m} = 0 \Longrightarrow \sum_{i=1}^{N} x_i (y_i - mx_i)$$
$$\therefore \sum_{i=1}^{N} x_i y_i - m \sum_{i=1}^{N} x_i^2 = 0$$
$$\therefore \overline{m = \frac{\overline{xy}}{\overline{x^2}}}$$
The product m as before but t

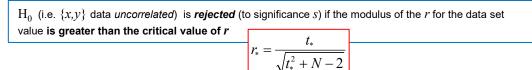

The product moment correlation coefficient is the same as before but the standard deviation in m is slightly different since only *one* parameter is used in the computation of s (i.e. m).

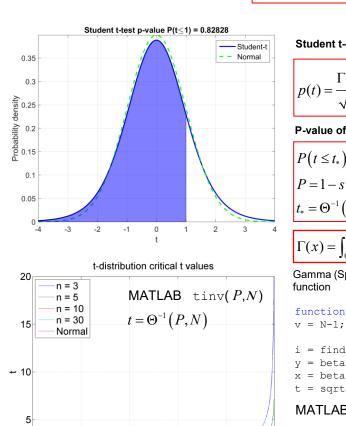
		А	В	С	D	E	F	G	н	- I	J	К
	1	LINE OF	BEST FIT	CALCUL	ATOR y =	mx + c						
	2	Dr Andy	French. I	March 20	19							
	3											
	4	paste as	values x	,y data he	re							
	5	x 💌	у 🝷	x^2 💌	y^2 💌	ху 🔽	xfit 💌	yfit 💌	(y-fit 💌	ylow	yupp	
	6	0.4647	2.6687	0.216	7.122	1.240	0.465	0.213	6.029	0.030	0.397	
	7	0.8766	2.3997	0.769	5.758	2.104	0.877	0.748	2.727	0.553	0.944	
	8	-0.698	4.1591	0.487	17.299	-2.903	-0.698	-1.296	29.762	-1.447	-1.145	
	9	-0.401	1.6333	0.161	2.668	-0.655	-0.401	-0.911	6.475	-1.071	-0.752	
	10	4.1428	7.4095	17.163	54.901	30.697	4.143	4.990	5.856	4.702	5.277	
	11	-4.397	-5.303	19.337	28.120	23.318	-4.397	-6.100	0.636	-6.147	-6.053	
	12	4.6021	3.0838	21.179	9.510	14.192	4.602	5.586	6.261	5.286	5.886	
	13	0.8422	0.2935	0.709	0.086	0.247	0.842	0.704	0.168	0.509	0.898	
	14	2.1911	1.1794	4.801	1.391	2.584	2.191	2.455	1.627	2.223	2.687	
	15	-3.114	-4.958	9.694	24.578	15.436	-3.114	-4.433	0.275	-4.516	-4.350	
g	16	-0.941	-0.048	0.886	0.002	0.045	-0.941	-1.613	2.449	-1.757	-1.468	
	17	-0.294	-1.475	0.086	2.175	0.433	-0.294	-0.771	0.495	-0.934	-0.609	
	18	1.1318	-0.398	1.281	0.158	-0.451	1.132	1.080	2.184	0.877	1.282	
	19	-3.03	-4.546	9.182	20.664	13.774	-3.030	-4.325	0.049	-4.410	-4.239	
	20	1.2774	1.2494	1.632	1.561	1.596	1.277	1.269	0.000	1.062	1.475	
	21	-2.068	-1.725	4.275	2.974	3.566	-2.068	-3.075	1.824	-3.188	-2.963	
	22	0.5142	-1.273	0.264	1.620	-0.655	0.514	0.278	2.404	0.093	0.463	
	23	1.7104	2.7385	2.926	7.499	4.684	1.710	1.831	0.824	1.612	2.050	
	24	1.0837	1.489	1.174	2.217	1.614	1.084	1.017	0.223	0.816	1.218	
	25	2.6187	5.8698	6.858	34.455	15.371	2.619	3.010	8.176	2.766	3.255	
	26	2.4895	2.6357	6.198	6.947	6.562	2.489	2.843	0.043	2.602	3.083	
	27	-0.801	-1.254	0.641	1.572	1.004	-0.801	-1.430	0.031	-1.578	-1.282	
	28	1.0392	-1.065	1.080	1.133	-1.106	1.039	0.959	4.096	0.759	1.159	
	29	-1.34	-4.419	1.795	19.523	5.920	-1.340	-2.130	5.238	-2.263	-1.997	
	30	-2.071	-1.926	4.288	3.710	3.988	-2.071	-3.079	1.330	-3.192	-2.967	
	31	2.4463	2.51	5.984	6.300	6.140	2.446	2.787	0.076	2.547	3.026	
	32	0.6206	1.7709	0.385	3.136	1.099	0.621	0.416	1.836	0.228	0.604	
	33	0.5346	-1.128	0.286	1.272	-0.603	0.535	0.304	2.050	0.118	0.490	
	34	2.4905	6.8804	6.203	47.339	17.136	2.491	2.844	16.293	2.603	3.085	
	35	1.8813	2.5584	3.539	6.546	4.813	1.881	2.053	0.256	1.829	2.276	
	36	1.4164	3.8362	2.006	14.717	5.434	1.416	1.449	5.698	1.239	1.660	
	37	3.2404	3.5318	10.500	12.474	11.444	3.240	3.818	0.082	3.556	4.079	
	38	2.6233	2.9017	6.882	8.420	7.612	2.623	3.016	0.013	2.772	3.261	
	39	1.2671	2.9387	1.606	8.636	3.724	1.267	1.255	2.834	1.049	1.462	
			_									

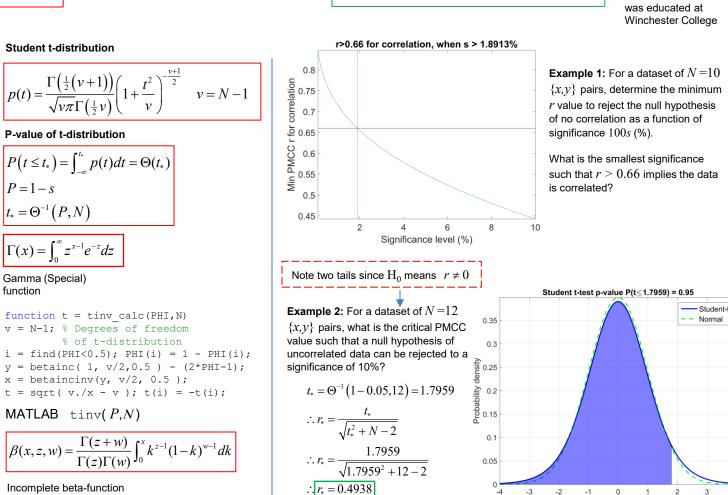
Line of best fit y = 1.26x $\Delta m = 0.0853, r = 0.916$

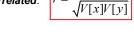
>

M

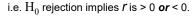

Line of best fit (or '**linear regression**') analysis can be clearly demonstrated using a computer spreadsheet package such as Microsoft Excel.


In the above example, the gradient and vertical intercept values are manually computed, and compared to the built-in *trendline* function.


Hypothesis testing of correlation using Student's t-test


We can define a **null hypothesis** H₀ that $\{x, y\}$ data, with N data points, with a particular product-moment correlation coefficient r is **uncorrelated**.

To assess whether the null hypothesis is rejected (i.e. the data is correlated, or 'not uncorrelated') to a significance s We can apply a **1-tail t-test** to determine a critical t value t_{*}, and then use the formula above to determine the critical r value.



cov[x, y]

If instead we go for r does not equal 0 Then we need a two tail test. In this case use 0.5s.

William "Student" Sealy Gosset 1876-1937 Worked for Guinness and

 $P(T \leq t)$

0.8

0.9

1

0.7

0.5

0.6

Mathematics topic handout: Statistics – Correlation & Linear Regression Dr Andrew French. www.eclecticon.info PAGE 3

CRITICAL VALUES OF THE PRODUCT MOMENT CORRELATION COEFFICIENT

	One tail significance (%)					
Sample size N	10%	5%	2.50%	1%	0.50%	
4	0.8000	0.9000	0.9500	0.9800	0.9900	
Ę	0.6870	0.8054	0.8783	0.9343	0.9587	
(0.6084	0.7293	0.8114	0.8822	0.9172	
7	0.5509	0.6694	0.7545	0.8329	0.8745	
٤	0.5067	0.6215	0.7067	0.7887	0.8343	
ę	0.4716	0.5822	0.6664	0.7498	0.7977	
10	0.4428	0.5494	0.6319	0.7155	0.7646	
11	0.4187	0.5214	0.6021	0.6851	0.7348	
12	0.3981	0.4973	0.5760	0.6581	0.7079	
13	0.3802	0.4762	0.5529	0.6339	0.6835	
14	0.3646	0.4575	0.5324	0.6120	0.6614	
15	0.3507	0.4409	0.5140	0.5923	0.6411	
16	0.3383	0.4259	0.4973	0.5742	0.6226	
17	0.3271	0.4124	0.4821	0.5577	0.6055	
18	0.3170	0.4000	0.4683	0.5425	0.5897	
19	0.3077	0.3887	0.4555	0.5285	0.5751	
20	0.2992	0.3783	0.4438	0.5155	0.5614	
21	0.2914	0.3687	0.4329	0.5034	0.5487	
22	0.2841	0.3598	0.4227	0.4921	0.5368	
23	0.2774	0.3515	0.4132	0.4815	0.5256	
24	0.2711	0.3438	0.4044	0.4716	0.5151	
25	0.2653	0.3365	0.3961	0.4622	0.5052	
26	0.2598	0.3297	0.3882	0.4534	0.4958	
27	0.2546	0.3233	0.3809	0.4451	0.4869	
28	0.2497	0.3172	0.3739	0.4372	0.4785	
29	0.2451	0.3115	0.3673	0.4297	0.4705	
30	0.2407	0.3061	0.3610	0.4226	0.4629	
31	0.2366	0.3009	0.3550	0.4158	0.4556	
32	0.2327	0.2960	0.3494	0.4093	0.4487	
33	0.2289	0.2913	0.3440	0.4032	0.4421	

	One tail significance (%)							
Sample size N	10 %	5%	2.50%	1%	0.50%			
34	0.2254	0.2869	0.3388	0.3972	0.4357			
35	0.2220	0.2826	0.3338	0.3916	0.4296			
36	0.2187	0.2785	0.3291	0.3862	0.4238			
37	0.2156	0.2746	0.3246	0.3810	0.4182			
38	0.2126	0.2709	0.3202	0.3760	0.4128			
39	0.2097	0.2673	0.3160	0.3712	0.4076			
40	0.2070	0.2638	0.3120	0.3665	0.4026			
41	0.2043	0.2605	0.3081	0.3621	0.3978			
42	0.2018	0.2573	0.3044	0.3578	0.3932			
43	0.1993	0.2542	0.3008	0.3536	0.3887			
44	0.1970	0.2512	0.2973	0.3496	0.3843			
45	0.1947	0.2483	0.2940	0.3457	0.3801			
46	0.1925	0.2455	0.2907	0.3420	0.3761			
47	0.1903	0.2429	0.2876	0.3384	0.3721			
48	0.1883	0.2403	0.2845	0.3348	0.3683			
49	0.1863	0.2377	0.2816	0.3314	0.3646			
50	0.1843	0.2353	0.2787	0.3281	0.3610			
60	0.1678	0.2144	0.2542	0.2997	0.3301			
70	0.1550	0.1982	0.2352	0.2776	0.3060			
80	0.1448	0.1852	0.2199	0.2597	0.2864			
90	0.1364	0.1745	0.2072	0.2449	0.2702			
100	0.1292	0.1654	0.1966	0.2324	0.2565			

If modulus of PMCC *r* is greater than these values, then **null hypothesis of no correlation** is *rejected*. i.e. 'data is potentially correlated.'