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Correlation & Linear Regression

Perhaps the most important analytical tool in the physical sciences is the ability to

quantify the validity of a model relating a set of measurable parameters. The idea is as follows:

(1) Rearrange the model in such a way that it becomes a linear equation of the form  y = mx + c

(2) Plot experimental (x,y) data on a graph and determine the line of best fit through the data.

(3) Determine gradient m and vertical intercept c from the line of best fit.

(4) Determine the standard deviation of both gradient m and intercept c, and a quantitative measure

 of how good the fit is (this is called the product moment correlation coefficient).

To determine the line of best fit*, let us sum the squared deviations of (x,y)  from the line of best fit.

*We will use the vertical deviations. You can alternatively use horizontal deviations or 

indeed perpendicular deviations from the line of best fit.

( )
2

1

N

i i

i

S y mx c
=

= − −

Line of best fit of the form:
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with product moment 

correlation coefficient:

0.983r = −

The black line uses the 

mean m and c values.

The dotted green and blue 

lines indicate the range of 

possible lines given the 

deviations in m and c

Using the (negatively correlated) data on the right, we can plot a surface of S vs m and c values

We can see this has a minimum at a particular (m,c) coordinate. (Note for clarity the plots below

are of –logS, so the (m,c) coordinate corresponds to the peak, i.e. maximum, instead).

The minimum of S can be found by differentiating S with respect to m and c, and setting

these expressions equal to zero. Since S is a function of two variables we must use partial derivatives.
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Define the following quantities:
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i.e. variance and covariance
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Therefore:

If we repeat the analysis for the line:

If this was the same line but rearranged:
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Hence define a product moment correlation coefficient:
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= This will be +1 for a perfect positive correlation

and -1 for a perfect negative correlation (i.e. S = 0 in both cases).

y mx c= +
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It is possible to show* that the standard deviations (i.e. ‘errors’) in m and c are: 

* http://mathworld.wolfram.com/LeastSquaresFitting.html
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s is the unbiased estimator of the standard deviation in the y values from

the line of best fit. The N-2 factor is due to two parameters (m and c) being

used in the calculation, which are of course derived from the sample data 

themselves as shown above.

In many situations a direct proportion is asserted between y and x. The 

computation of the line of best fit (which passes through (0,0) follows a 

similar argument to the one above.
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The product moment correlation coefficient is the same 

as before but the standard deviation in m is slightly 

different since only one parameter is used in the 

computation of s (i.e. m).
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Line of best fit (or ‘linear regression’) analysis

can be clearly demonstrated using a computer

spreadsheet package such as Microsoft Excel.

In the above example, the gradient and vertical intercept

values are manually computed, and compared to the

built-in trendline function.

This is very useful in the

physical sciences, as the

errors in m and c will often be 

the uncertainties in model 

parameters (e.g. the strength 

of gravity...)
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Hypothesis testing of correlation using Student’s t-test

We can define a null hypothesis H0 that {x,y} data, with N data points, with a particular product-moment correlation coefficient r is uncorrelated.
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To assess whether the null hypothesis is rejected (i.e. the data is correlated, or ‘not uncorrelated’) to a significance s

We can apply a 1-tail t-test to determine a critical t value t*, and then use the formula above to determine the critical r value.
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MATLAB   tinv( P, )

William “Student” 

Sealy Gosset 1876-1937

Worked for Guinness and 

was educated at 

Winchester College

Student t-distribution

P-value of t-distribution

Gamma (Special)

function

function t = tinv_calc(PHI,N)

v = N-1; % Degrees of freedom 

         % of t-distribution

i = find(PHI<0.5); PHI(i) = 1 - PHI(i);

y = betainc( 1, v/2,0.5 ) - (2*PHI-1);

x = betaincinv(y, v/2, 0.5 );

t = sqrt( v./x - v ); t(i) = -t(i);
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Incomplete beta-function

Example 1: For a dataset of N =10 

{x,y} pairs, determine the minimum 

r value to reject the null hypothesis 

of no correlation as a function of 

significance 100s (%).

What is the smallest significance 

such that r > 0.66 implies the data 

is correlated?  

( )1 ,t P N−= 

MATLAB   tinv( P, )

i.e. H0 rejection implies r is > 0 or < 0.

If instead we go for r does not equal 0

Then we need a two tail test. In this case use 0.5s.

H0  (i.e. {x,y} data uncorrelated)  is rejected (to significance s) if the modulus of the r for the data set 

value is greater than the critical value of r
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Example 2: For a dataset of N =12 

{x,y} pairs, what is the critical PMCC 

value such that a null hypothesis of 

uncorrelated data can be rejected to a 

significance of 10%?
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Note two tails since H0 means 0r 
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If modulus of PMCC r  is greater than these values, then null hypothesis of

no correlation is rejected. i.e. ‘data is potentially correlated.’ 
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