Unbiased estimators

In statistics we often endeavour to infer a parameter of a overall population from a sample i.e. a finite selection of data. This is the basis of experimental science (we make a measurement and then try and compare it to theoretical or agreed values) and indeed the concept of opinion polling.

We shall restrict ourselves to two important statistical parameters: the population mean μ and standard deviation

σ.

Set of data in a sample. $\{x_i\}$

The sample has n elements

Sample mean

 $S^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2$

Let us firstly consider the expected value of the sample mean

 $E[\bar{x}] = \frac{1}{n} \sum_{i=1}^{n} E[x_i] = \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{1}{n} n\mu = \mu$

The sample mean is therefore an unbiased estimator of the true population mean.

 $E[\overline{x}] = \mu$

Now consider the sample variance

$$\therefore E\left[S^2\right] = \frac{1}{n} \sum_{i=1}^n E\left[x_i^2\right] - E\left[\overline{x}^2\right]$$

 $V[\mathbf{x}_i] = E[\mathbf{x}_i^2] - (E[\mathbf{x}_i])^2$ From the definition of variance: $\therefore E[x_i^2] = V[x_i] + (E[x_i])^2 = \sigma^2 + \mu^2$

$$\therefore E\left[\overline{x}^{2}\right] = V\left[\overline{x}\right] + \left(E\left[\overline{x}\right]\right)^{2} = V\left[\overline{x}\right] + \mu^{2}$$

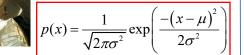
$$\therefore E\left[\overline{x}^{2}\right] = V\left[\frac{1}{n}\sum_{i=1}^{n}x_{i}\right] + \mu^{2} = V\left[\sum_{i=1}^{n}\frac{1}{n}x_{i}\right] + \mu^{2}$$

$$\therefore E\left[\overline{x}^{2}\right] = \sum_{i=1}^{n}\frac{1}{n^{2}}V[x_{i}] + \mu^{2} = \sum_{i=1}^{n}\frac{1}{n^{2}}\sigma^{2} + \mu^{2}$$

$$\therefore E\left[\overline{x}^{2}\right] = \frac{\sigma^{2}}{n} + \mu^{2}$$

$$\bigvee [Ax + By + ...] = A^{2}V[x] + B^{2}V[y] + ...$$

If $x \sim N(\mu, \sigma^2)$ the probability of a random variable having value between x and x+dx is given by p(x)dx, where:



Johann Carl Friedrich Gauss 1777-1855

Hence:

$$E\left[S^{2}\right] = \frac{1}{n} \sum_{i=1}^{n} E\left[x_{i}^{2}\right] - E\left[\overline{x}^{2}\right]$$

$$E\left[S^{2}\right] = \frac{1}{n} \sum_{i=1}^{n} (\sigma^{2} + \mu^{2}) - \frac{\sigma^{2}}{n} - \mu^{2}$$

$$E\left[S^{2}\right] = \sigma^{2} + \mu^{2} - \frac{\sigma^{2}}{n} - \mu^{2}$$

$$E\left[S^{2}\right] = \sigma^{2} \left(1 - \frac{1}{n}\right) = \frac{n - 1}{n} \sigma^{2}$$

$$\therefore E\left[\frac{n}{n - 1}S^{2}\right] = \sigma^{2}$$

So an unbiased estimator of th population variance is:

$$s^{2} = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2} \right)$$

Note this can also be written as:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

The Central Limit Theorem* states that, if the number of elements *n* in a sample are large enough, the distribution of sample means will tend to a *Normal distribution* $\bar{x} \sim N$

Note the form of the population distribution doesn't matter! For large n (typically 30 seems to be the agreed minimum) we can determine a **confidence interval** for population mean μ based upon sample data.

First we define a random variable which will be distributed by N(0,1)i.e. variance s^2 / n

$$z = \frac{\mu - \overline{x}}{\sqrt{s^2/n}}$$

dt

We then find the *z* limits such that $P(-z_* \le z \le z_*) = a$ *a* is the 'significance level' e.g. 0.95.

Note this is called a 'two tail test' as the sample mean could be either side of the true mean. A one-tail test would be $P(z \le z_*) = a$ or $P(z \ge z_*) = a$

$$P(z \le z_*) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_*} e^{-\frac{1}{2}z^2} dz$$

$$P(z \le z_*) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}}z_*\right)$$

$$\therefore z_* = \sqrt{2} \operatorname{erf}^{-1}(2A-1)$$

$$A = a + \frac{1-a}{2} = \frac{1}{2}(a+1)$$

$$\therefore z_* = \sqrt{2} \times \operatorname{erf}^{-1}a$$

$$\therefore z_* = \sqrt{2} \times \operatorname{erf}^{-1}a$$

Confidence
limits for the
population mean are
therefore:

$$\sum_{n}^{3.5}$$

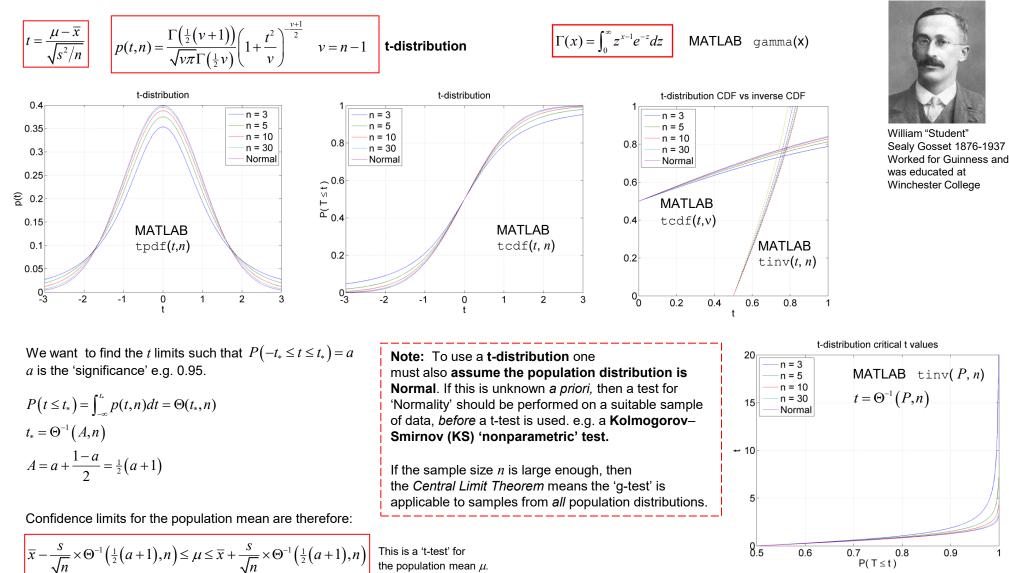
$$\overline{x} - \frac{s\sqrt{2}}{\sqrt{n}} \times \operatorname{erf}^{-1}a \le \mu \le \overline{x} + \frac{s\sqrt{2}}{\sqrt{n}} \times \operatorname{erf}^{-1}a$$

This is a 'g-test' for
the population mean μ .
'g' meaning 'Gaussian.'

* http://www.eclecticon.info/index htm files/stirling and poisson.pdf

Mathematics topic handout: Probability & Statistics – Estimators, Confidence intervals & Student's t-Distribution Dr Andrew French. www.eclecticon.info PAGE 1

Of course it may not be possible to obtain thirty or more samples. What then? William "Student" Sealy Gosset developed the **t-test**. It follows a very similar recipe to the 'g-test', but involves a generalization to the standard Normal distribution. The **t-distribution** actually tends to N(0,1) when *n* becomes large. This is where the practical limit of n = 30 is determined. Beyond this number it is difficult to distinguish the distributions.



Worked example:

Data generated from a Normal distribution with mean $\mu = 42$ and standard deviation $\sigma = 5$

37.6817 42.3868 35.9294 36.4325 41.9658 49.6632 38.1517 43.8569 40.8721 47.5868

Unbiased mean estimate

$$\overline{x} = \frac{1}{10} \sum_{i=1}^{10} x_i = 41.4527$$

Unbiased standard deviation estimate

$s = \sqrt{\frac{1}{10-1} \sum_{i=1}^{10} (x_i - \overline{x})^2} = 4.632$	22
--	----

Significance level a = 0.95

The idea of the confidence interval is essentially: "Based upon a data sample, what range of values to we expect the population mean to be within?

If we **hypothesize a value for the population mean** (e.g. from some theoretical calculation or prior knowledge) then our confidence interval forms the basis of a **test of the hypothesis**.

'g-test' confidence limits $\overline{x} - \frac{s\sqrt{2}}{\sqrt{10}} \times \operatorname{erf}^{-1} 0.95 \le \mu \le \overline{x} + \frac{s\sqrt{2}}{\sqrt{10}} \times \operatorname{erf}^{-1} 0.95$ $41.4527 - \frac{4.6322}{\sqrt{10}} \times 1.96 \le \mu \le 41.4527 + \frac{4.6322}{\sqrt{10}} \times 1.96$ $38.582 \le \mu \le 44.324$

Hence *hypothesis* that population mean is $\mu = 42$ passes the 'g-test'

Note the t-distribution has 'fatter tails' than the standard Normal distribution

Data sample consists of n = 10 elements

't-test' confidence limits **Note**: Population distribution is assumed to be Normal

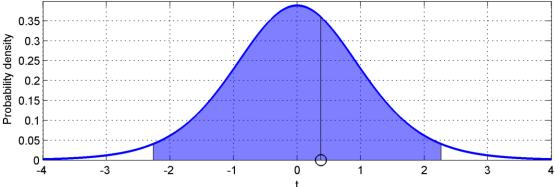
$$\overline{x} - \frac{s}{\sqrt{n}} \times \Theta^{-1}\left(\frac{1}{2}(a+1), 10\right) \le \mu \le \overline{x} + \frac{s}{\sqrt{n}} \times \Theta^{-1}\left(\frac{1}{2}(a+1), 10\right)$$

$$41.4527 - \frac{4.6322}{\sqrt{10}} \times 2.2622 \le \mu \le 41.4527 + \frac{4.6322}{\sqrt{10}} \times 2.2622$$

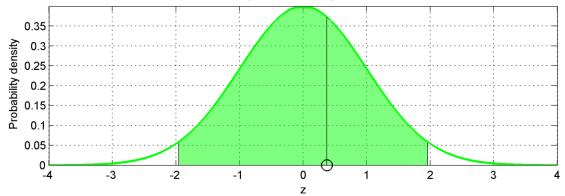
$$38.139 \le \mu \le 44.767$$

Hence *hypothesis* that population mean is $\mu = 42$ passes the t-test

t-test for population with mean=42, STD=5, mean estimate=41.4527, STD estimate=4.6322 P($-2.2622 \le t < 2.2622$) = 0.95



g-test for population with mean=42, STD=5, mean estimate=41.4527, STD estimate=4.6322 P(-1.96 \leq z < 1.96) = 0.95



Mathematics topic handout: Probability & Statistics – Estimators, Confidence intervals & Student's t-Distribution Dr Andrew French. www.eclecticon.info PAGE 3

 $t_* = \Theta^{-1}(P)$ Critical t values of Student t distribution

119 0.676557 0.844652

1.04097 1.288706 1.657759

						I Vulues						
v = n-1	0.75	0.8	0.85	0.9	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995	-1 $\sum_{n=1}^{n}$ 2 1 $\sum_{n=1}^{n}$ $(-)^{2}$
1	1	1.376382	1.962611	3.077684	6.313752	12.7062	31.82052	63.65674	127.3213	318.3088	636.6192	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$
2	0.816497	1.06066	1.386207	1.885618	2.919986	4.302653	6.964557	9.924843	14.08905	22.32712	31.59905	
3	0.764892	0.978472	1.249778	1.637744	2.353363	3.182446	4.540703	5.840909	7.453319	10.21453	12.92398	
4	0.740697	0.940965	1.189567	1.533206	2.131847	2.776445	3.746947	4.604095	5.597568	7.173182	8.610302	$t = \frac{\mu - \overline{x}}{\sqrt{s^2/n}}$
5	0.726687	0.919544	1.155767	1.475884	2.015048	2.570582	3.36493	4.032143	4.773341	5.89343	6.868827	$\sqrt{s^2/n}$
6	0.717558	0.905703	1.134157	1.439756	1.94318	2.446912	3.142668	3.707428	4.316827	5.207626	5.958816	
7	0.711142	0.89603	1.119159	1.414924	1.894579	2.364624	2.997952	3.499483	4.029337	4.78529	5.407883	$T(1(-1))(-2)^{-\frac{\nu+1}{2}}$
8	0.706387	0.88889	1.108145	1.396815	1.859548	2.306004	2.896459	3.355387	3.832519	4.500791	5.041305	$n(t) = \frac{\Gamma(\frac{1}{2}(v+1))}{1+t^2} \left(1+t^2\right)^2$ $v=n-1$
9	0.702722	0.883404	1.099716	1.383029	1.833113	2.262157	2.821438	3.249836	3.689662	4.296806	4.780913	$p(t) = \frac{\Gamma(\frac{1}{2}(v+1))}{\sqrt{v\pi}\Gamma(\frac{1}{2}v)} \left(1 + \frac{t^2}{v}\right)^{-\frac{v+1}{2}} v = n-1$
10	0.699812	0.879058	1.093058	1.372184	1.812461	2.228139	2.763769	3.169273	3.581406	4.1437	4.586894	
11	0.697445	0.87553	1.087666	1.36343	1.795885	2.200985	2.718079	3.105807	3.496614	4.024701	4.436979	$\Gamma(x) = \int_0^\infty z^{x-1} e^{-z} dz$
12	0.695483	0.872609	1.083211	1.356217	1.782288	2.178813	2.680998	3.05454	3.428444	3.929633	4.317791	$f(x) = \int_0^x 2x e^{-x} dx$
13	0.693829	0.870152	1.079469	1.350171	1.770933	2.160369	2.650309	3.012276	3.372468	3.851982	4.220832	
14	0.692417	0.868055	1.07628	1.34503	1.76131	2.144787	2.624494	2.976843	3.325696	3.78739	4.140454	$P(t \le t_*) = \int_{-\infty}^{t_*} p(t) dt = \Theta(t_*)$
15	0.691197	0.866245	1.073531	1.340606	1.75305	2.13145	2.60248	2.946713	3.286039	3.732834	4.072765	
16	0.690132	0.864667	1.071137	1.336757	1.745884	2.119905	2.583487	2.920782	3.251993	3.686155	4.014996	$t_* = \Theta^{-1}\big(P,n\big)$
17	0.689195	0.863279	1.069033	1.333379	1.739607	2.109816	2.566934	2.898231	3.22245	3.645767	3.965126	$P = \frac{1}{2}(a+1)$
18	0.688364	0.862049	1.06717	1.330391	1.734064	2.100922	2.55238	2.87844	3.196574	3.610485	3.921646	2()
19	0.687621	0.860951	1.065507	1.327728	1.729133	2.093024	2.539483	2.860935	3.173725	3.5794	3.883406	
20	0.686954	0.859964	1.064016	1.325341	1.724718	2.085963	2.527977	2.84534	3.153401	3.551808	3.849516	$t_* = \Theta^{-1}(P, n)$
21	0.686352	0.859074	1.06267	1.323188	1.720743	2.079614	2.517648	2.83136	3.135206	3.527154	3.819277	
22	0.685805	0.858266	1.061449	1.321237	1.717144	2.073873	2.508325	2.818756	3.118824	3.504992	3.792131	MATLAB tinv(P,N)
23	0.685306	0.85753	1.060337	1.31946	1.713872	2.068658	2.499867	2.807336	3.103997	3.484964	3.767627	
24	0.68485	0.856855	1.059319	1.317836	1.710882	2.063899	2.492159	2.79694	3.090514	3.466777	3.745399	<pre>function t = tinv_calc(PHI,N)</pre>
25	0.68443	0.856236	1.058384	1.316345	1.708141	2.059539	2.485107	2.787436	3.078199	3.450189	3.725144	<pre>v = N-1; %Degrees of freedom of % t-distribution</pre>
26	0.684043	0.855665	1.057523	1.314972	1.705618	2.055529	2.47863	2.778715	3.066909	3.434997	3.706612	i = find(PHI<0.5); PHI(i) = 1 - PHI(i);
27	0.683685	0.855137	1.056727	1.313703	1.703288	2.051831	2.47266	2.770683	3.05652	3.421034	3.689592	y = betainc(1, v/2, 0.5) - (2*PHI-1);
28	0.683353	0.854647	1.055989	1.312527	1.701131	2.048407	2.46714	2.763262	3.046929	3.408155	3.673906	<pre>x = betaincinv(y, v/2, 0.5); t = sqrt(v./x - v); t(i) = -t(i);</pre>
29	0.683044	0.854192	1.055302	1.311434	1.699127	2.04523	2.462021	2.756386	3.038047	3.39624	3.659405	
39	0.680833	0.850935	1.050399	1.303639	1.684875	2.022691	2.425841	2.707913	2.975609	3.312788	3.55812	
49	0.67953	0.849018	1.047519	1.299069	1.676551	2.009575	2.404892	2.679952	2.93973	3.265079	3.500443	
59	0.678671	0.847756	1.045623	1.296066	1.671093	2.000995	2.391229	2.661759	2.91644	3.234207	3.46321	$\Gamma(z+w) e^{x} = 1$
79	0.677608	0.846195	1.043282	1.29236	1.664371	1.99045	2.374482	2.639505	2.888011	3.196628	3.417985	$\beta(x,z,w) = \frac{\Gamma(z+w)}{\Gamma(z)\Gamma(w)} \int_0^x k^{z-1} (1-k)^{w-1} dk$
99	0.676976	0.845267	1.041891	1.290161	1.660391	1.984217	2.364606	2.626405	2.871308	3.174604	3.391529	1 (2)1 (W)

1.9801 2.358093

2.617776 2.860317

P values

Incomplete beta function

3.160133 3.374167