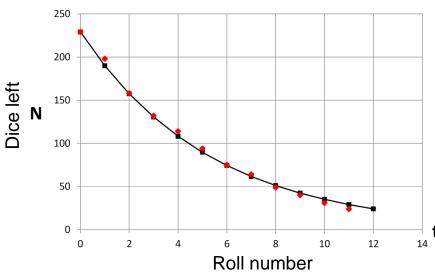

Andrew French

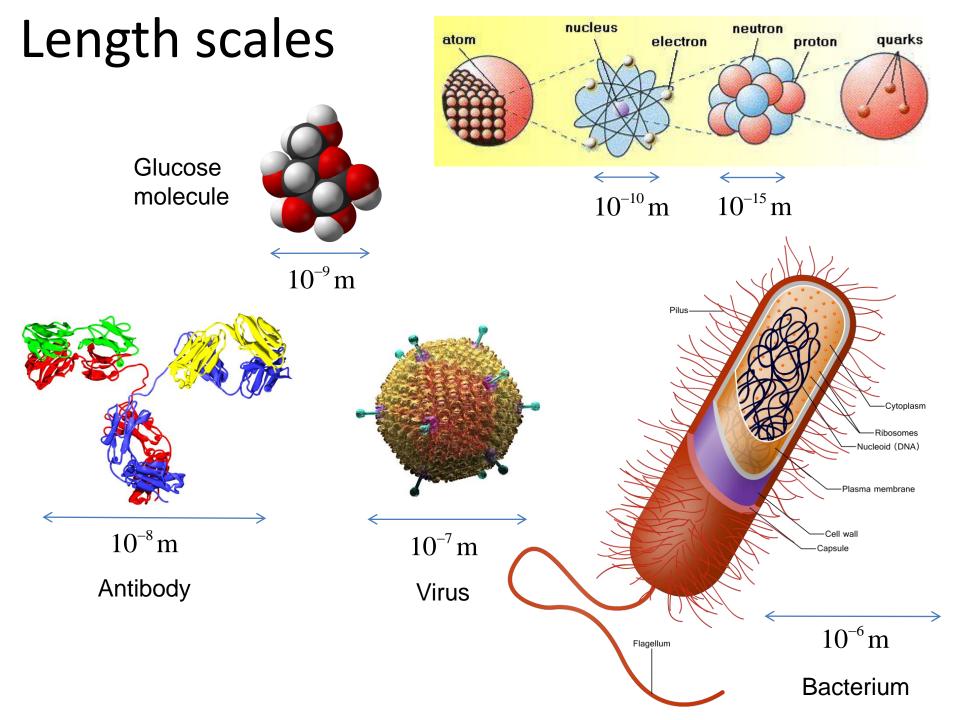
July 2017

.

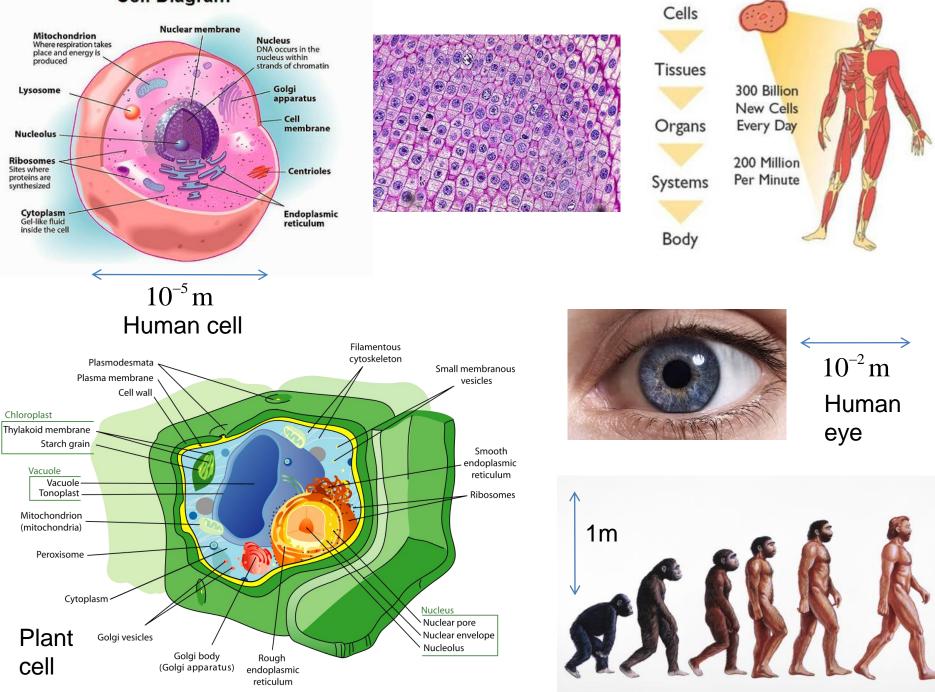
000

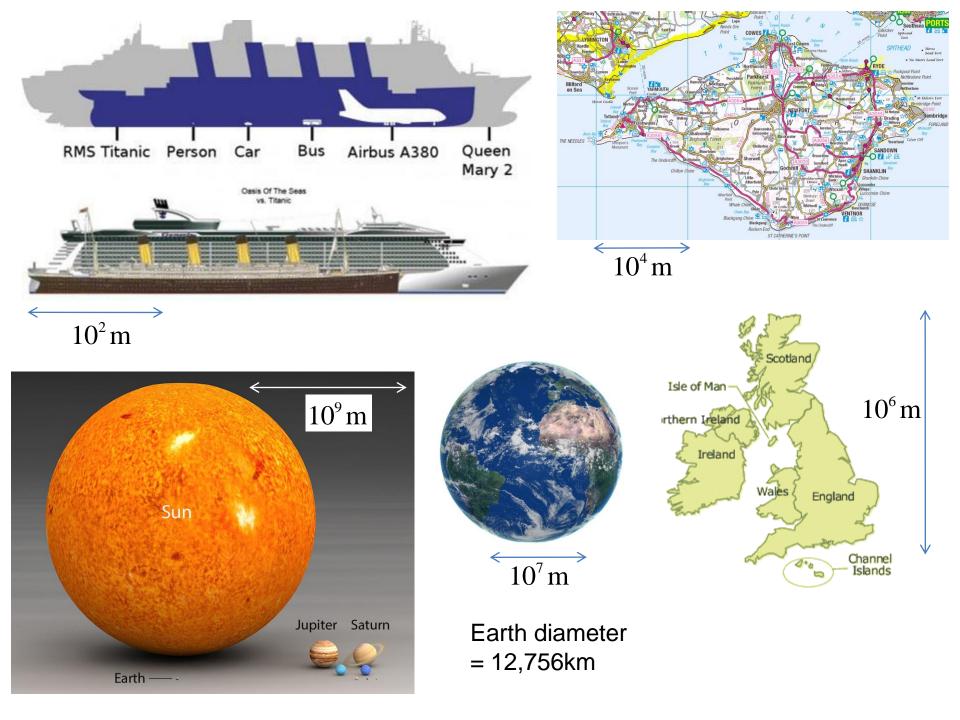


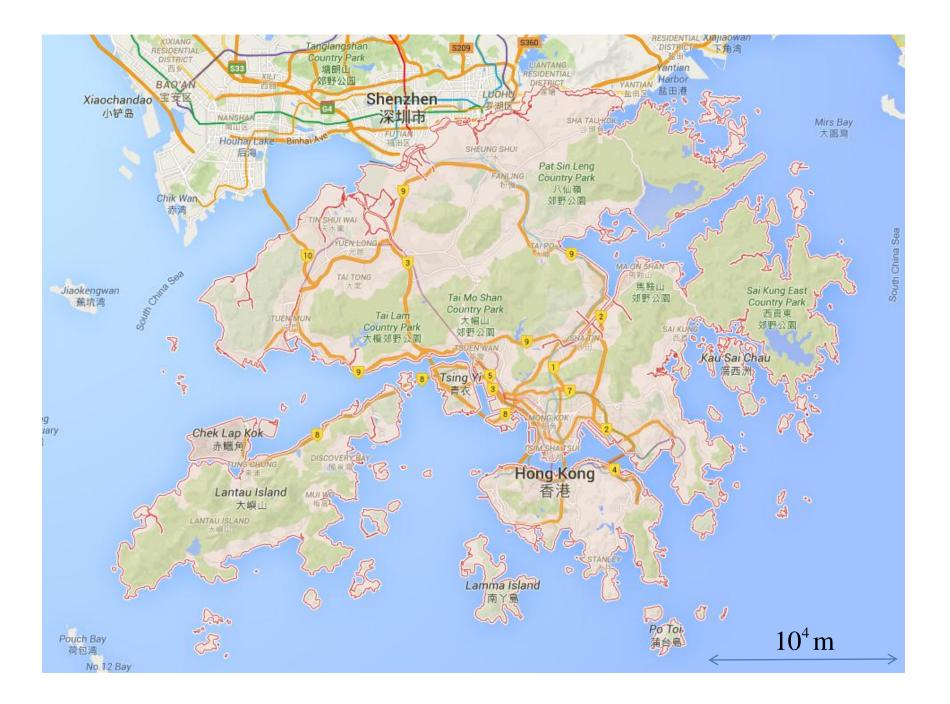
This experiment will get you thinking about **atoms** and **radioactivity** – which is the *random decay of atomic nuclei into smaller parts.*

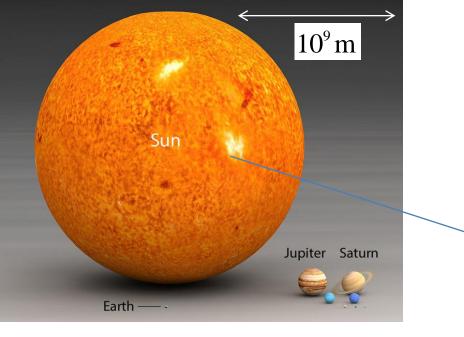

Radioactivity is a *high energy process* (about a million times more energetic than chemical reactions), so to keep things safe we will use **dice** instead! This is an example of a physical *model* of what we are trying to understand.

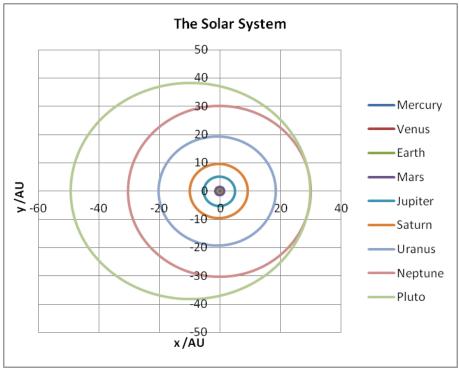
- We'll hand out lots of dice (over 200)
- An atomic decay shall be *modelled* by a **rolling of a six**
- We'll all roll the dice together and I'll collect in the sixes each time.
- For each round I'll record in Excel the total number of dice held by each person.
- We'll then plot the total number of dice left vs roll number.
- We should obtain an **exponential decay curve**, from which we can determine the **half-life** for the radioactive dice

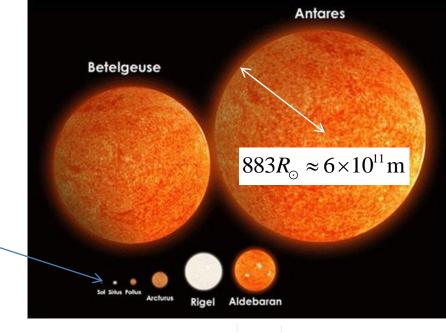


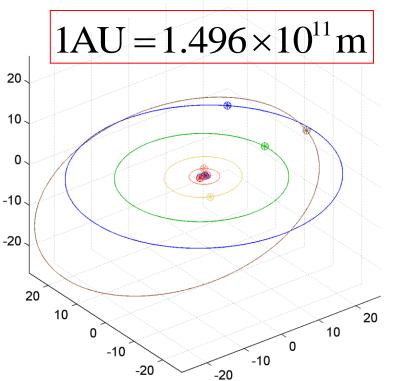



But first What are atoms? How big are they? How do we know they exist if we can't see them?




Cell Diagram





Gamma-ray emissions

X-ray emissions

270°

Milky Way

90°

Sun

 $4.7 \times 10^{20} \,\mathrm{m}$

50,000 light-years

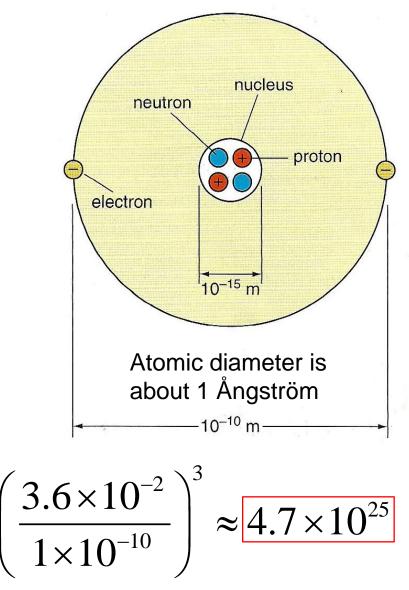
Sun

1 light year $9.461 \times 10^{15} \,\mathrm{m}$

1 light year $9.461 \times 10^{15} \,\mathrm{m}$

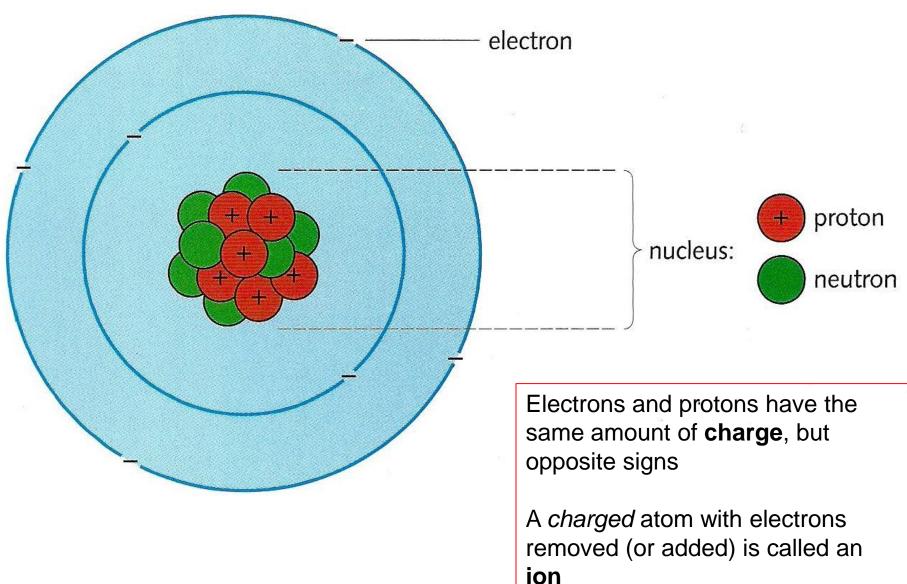
The size of an atom

Earth diameter = 12,756km

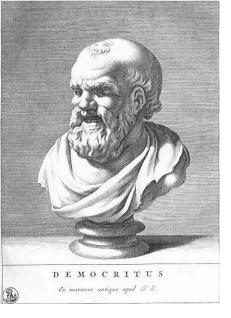


Marble diameter = 3.6cm

 $\left(\frac{1.2756 \times 10^7}{3.6 \times 10^{-2}}\right)^3 \approx 4.4 \times 10^{25}$


Volume of Earth in marbles

There are as many atoms in a marble as an Earth made of marbles!

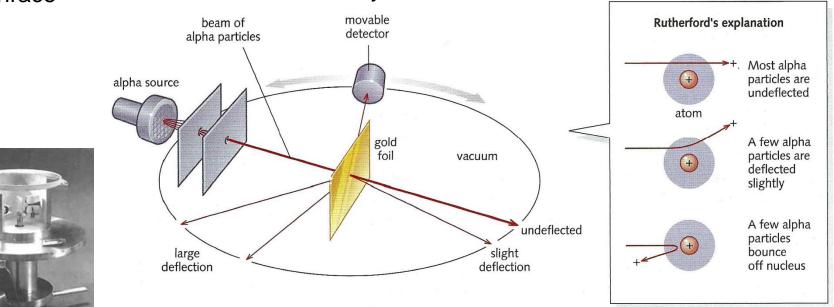


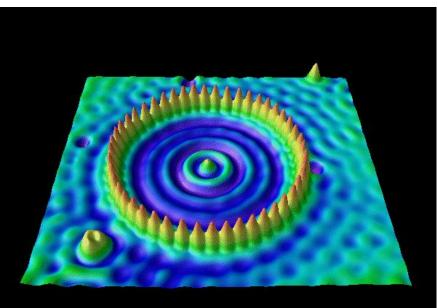
Number of atoms in a marble

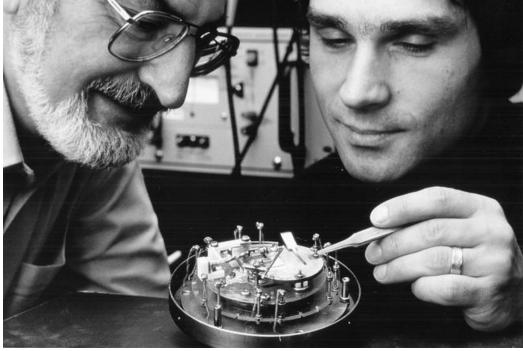
The Atomic model

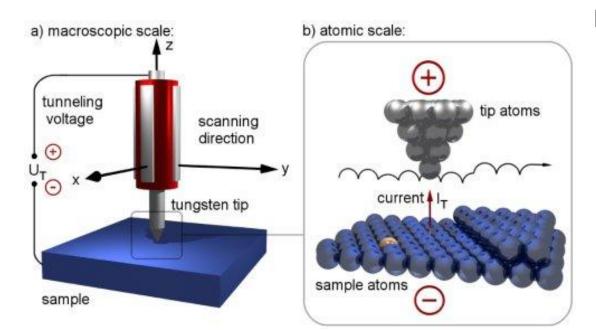
Charge on the electron is 1.6 x 10⁻¹⁹ coulombs

Democritus 460BC-370BC Abdera, Thrace

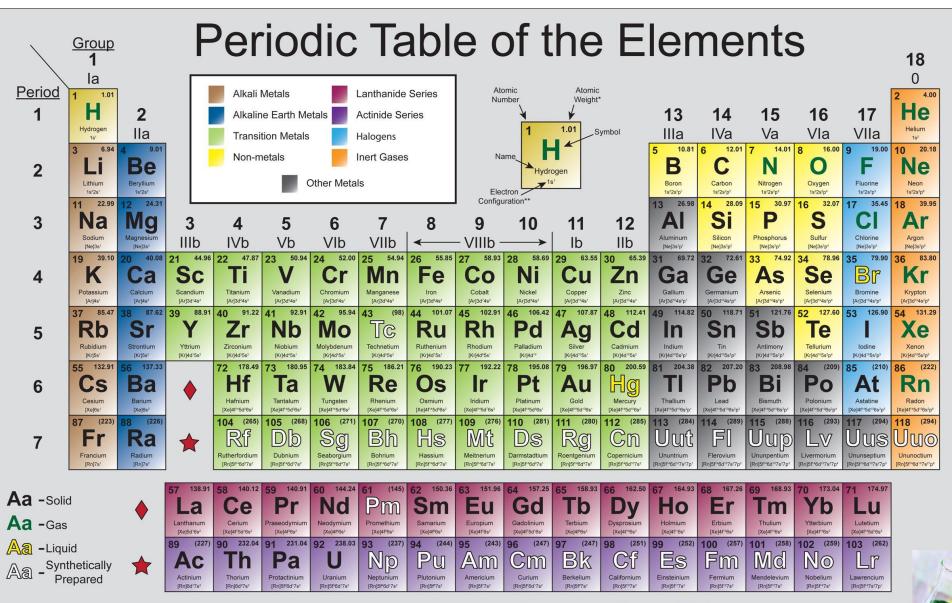

Ernest Rutherford


Hans Geiger


Ernest Marsden


Experiments performed 1908-1913 at the University of Manchester

'Seeing' atoms



Heinrich Rohrer and Gerd Binnig Nobel Prize winners 1986

Scanning Tunnelling Microscope (STM)

* Based on Carbon-12. (###) represents most stable or most stable expected isotope.

** Some electron configurations are based on theoretical expected arrangements.

© 2012 Aldon Corporation

"cutting edge science for the classroom"

Innovating Science[™] by Aldon Corporation

PRODUCED BY THE FOUNDATION FOR EDUCATION, SCIENCE AND TECHNOLOGY FOR NATIONAL SET WEEK 2003 СТАВ P

N

Rb

IIA 2

LI EARTH METALS

THER METALS

Man-made solid [synthetic]

3

Scandium 21

Lanthanide

Series

Hydrogen

1.01

AD.

Ta

Db

Tantalum 73

180.95

DMITRI MENDELEYEV (1834 - 1907)

The Russian chemist, Dmitri Mendeleyev, was the first to observe that if elements were listed in order of atomic mass, they showed regular (periodical) repeating properties. He formulated his discovery in a periodic table of elements, now regarded as the backbone of modern chemistry.

The crowning achievement of Mendeleyev's periodic table lay in his prophecy of then, undiscovered elements. In 1869, the year he published his periodic classification, the elements gallium, germanium and scandium were unknown. Mendelevey left spaces for them in his table and ever predicted their atomic masses and other chemical properties. Six years later, gallium was discovered and his predictions were found to be accurate. Other discoveries followed and their chemical behaviour matched that predicted by Mendeleyev.

Fe

This remarkable man, the youngest in a family of 17 children, has left the scientific community with a classification system so powerful that it became the cornerstone in chemistry teaching and the prediction of new elements ever since. In 1955, element 101 was named after him: Md, Mendelevium.

VIB 6 VIIB 7 VIII

Mn

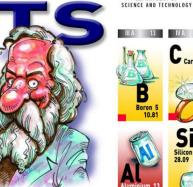
Re

86.21

3

Bh

Rhenium 75


Mo

Sq

Molybdenum 42

95.94

Manganese 25 54.94

DEPARTMENT OF

В

Boron

10.81

Carbon 6

Si

28.09

Sn

Silicon 14

12.01

Nitrogen

14.01

Þ

30.9

121.7

Bi

Bismuth

208.98

D

Cf

Phosphorus 15

le

Tellurium 52

Po

Er

Es Fm Md

Tm

HO

127.60

U

S

Sulphur 16 32.06

16.00

VIII A 18

He Helium 2 4.00

Ne

Ar

20.18

F

Fluorine 9

19.00

Lu

Lr

YD

No

Sr

Strontium 38

Ba

Hf

Rf

0s

Hs

Mt

 \square FEST

La

Ac

ce

Th

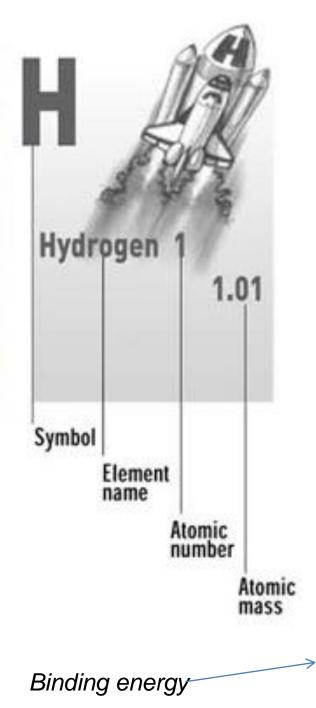
Gold 79 196.97

Pa

Sm

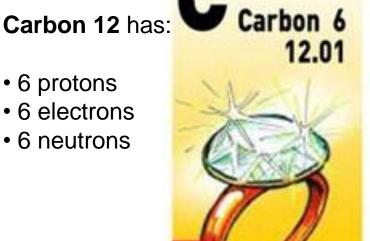
Eu

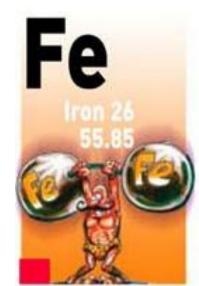
Gd


Pu Am Cm Bk

Pm

ND


Nd


In

Each different type of atom is called a nuclide

- 6 protons
- 6 electrons
- 6 neutrons

= number of protons. This defines an element

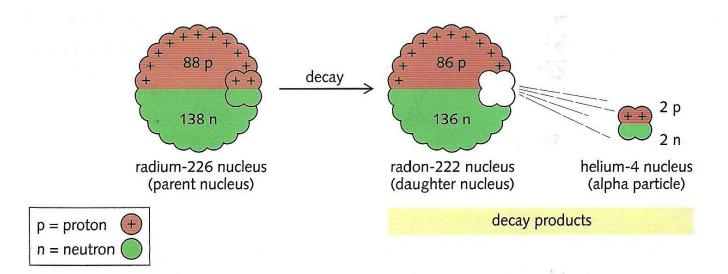
Atomic number (Z)

The number of neutrons defines an isotope of an element

The atomic mass (A) is approximately the number of protons + the number of neutrons but not exactly....

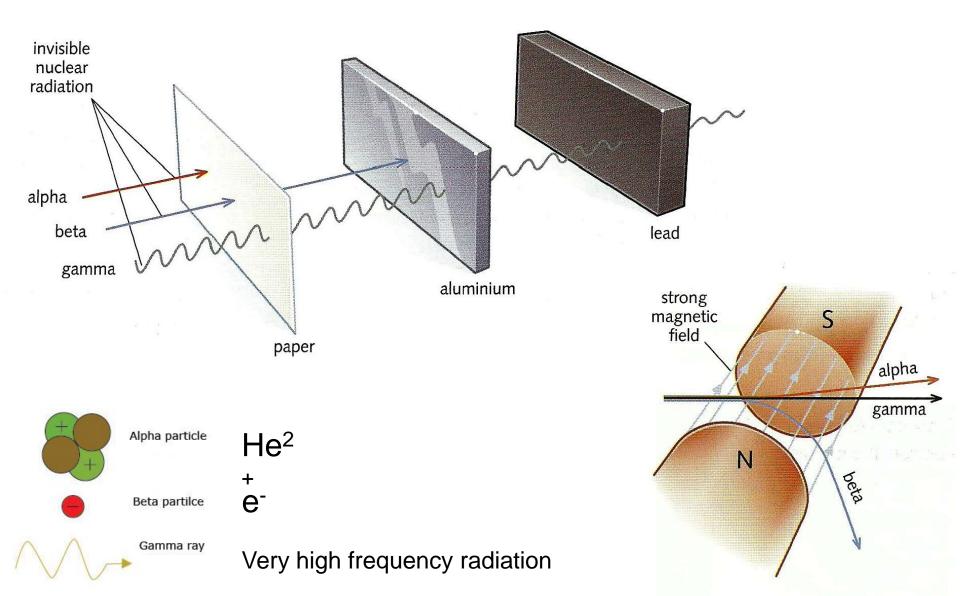
Iron 56 has:

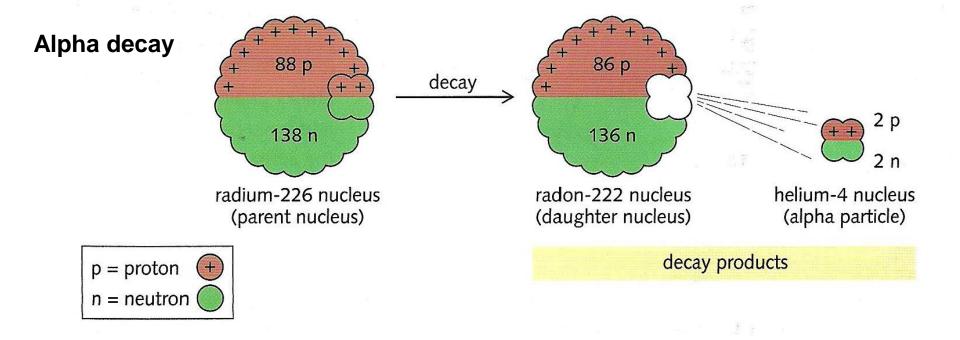
- 26 protons
- 26 electrons
- 30 neutrons

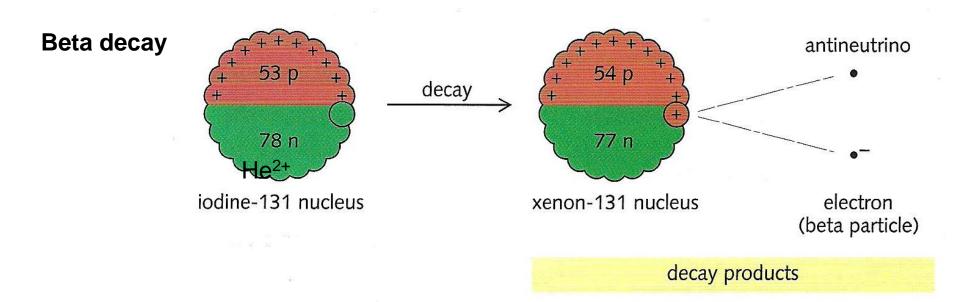


Antoine Henri Becquerel 1852-1908 Spontaneous radioactivity in Uranium salts

Radioactive decay

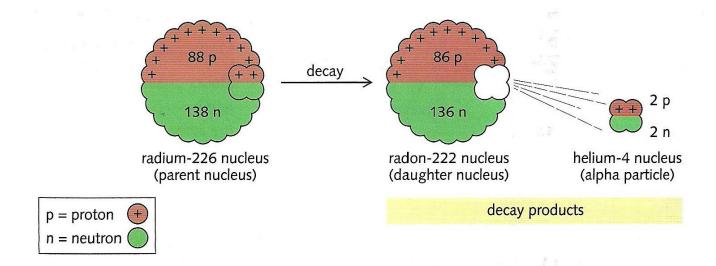



Marie Curie 1867-1934 Theory of radioactivity Isolation of isotopes



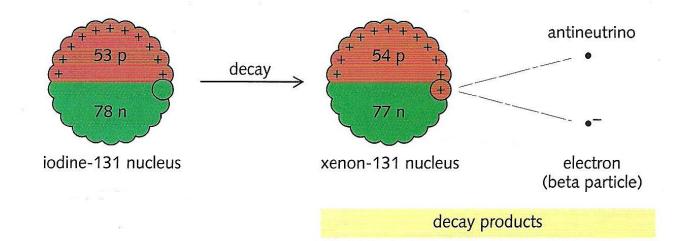
Alpha, beta, and gamma radiation

There are three main types of nuclear radiation: **alpha particles**, **beta particles**, and **gamma rays**. Gamma rays are the most penetrating and alpha particles the least, as shown below:



 Z^{+N} $Z^{+N-4}_{Z-2}\mathbf{Y} + \boldsymbol{\alpha}$ Alpha decay

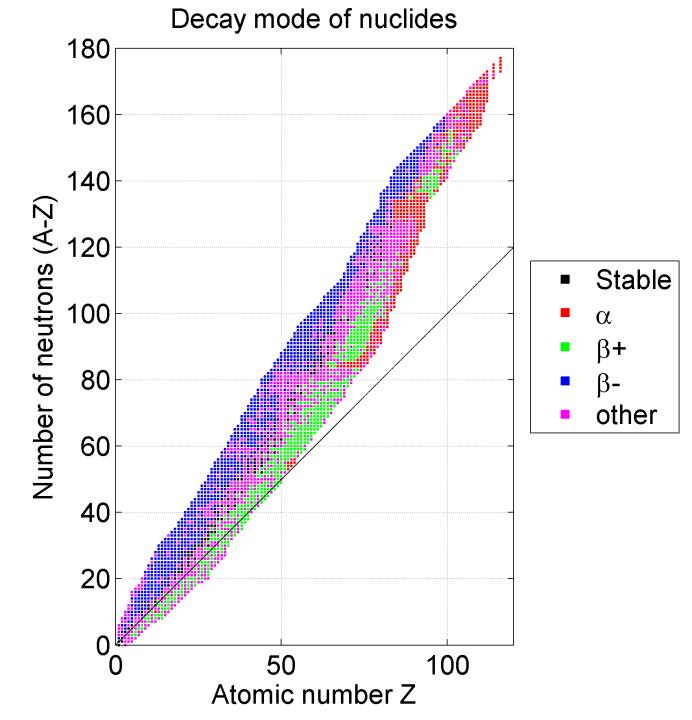
e.g. $^{229}_{90}\text{Th} \rightarrow ^{225}_{88}\text{Ra} + \alpha$

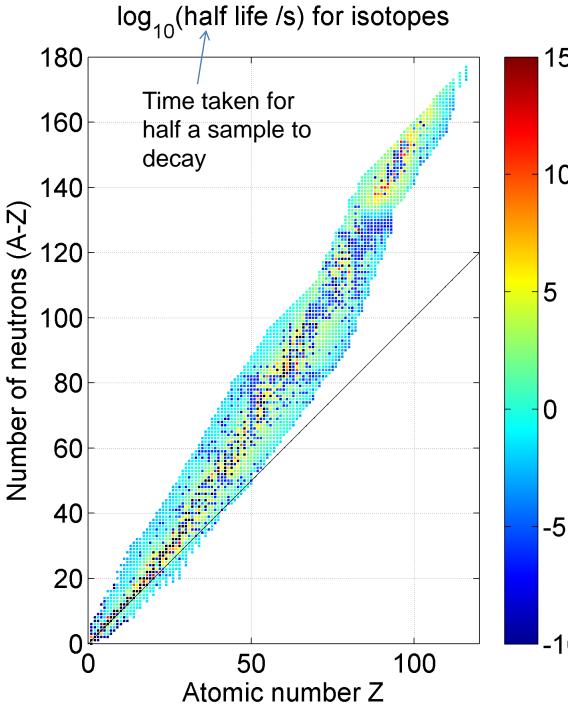

Atomic number (Z) *reduces* by 2 Mass number *reduces* by 4

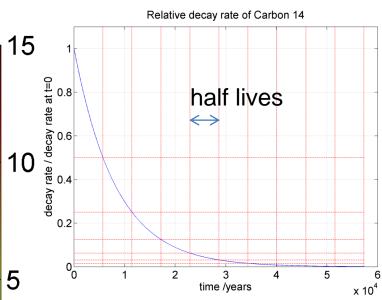
$\begin{array}{ccc} \operatorname{Beta} & & Z^{+N} \\ \operatorname{decay} & & Z \end{array} \xrightarrow{X \to Z^{+N}} Y + \beta \end{array}$

e.g. ${}^{14}_{6}\mathrm{C} \rightarrow {}^{14}_{7}\mathrm{N} + \beta$

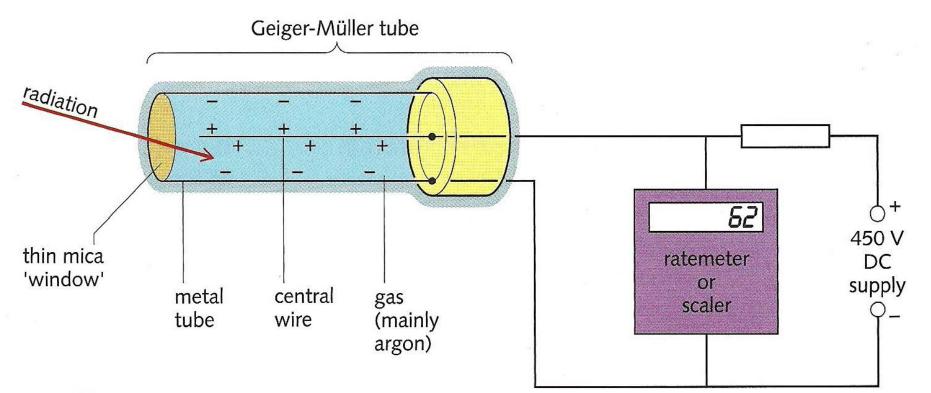
Atomic number (Z) *increases* by 1 Mass number *stays the same*



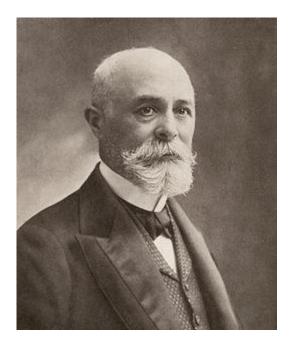



Antoine Henri Becquerel 1852-1908 Spontaneous radioactivity in Uranium salts

Marie Curie 1867-1934 Theory of radioactivity Isolation of isotopes


The decay of atomic nuclei is a random process

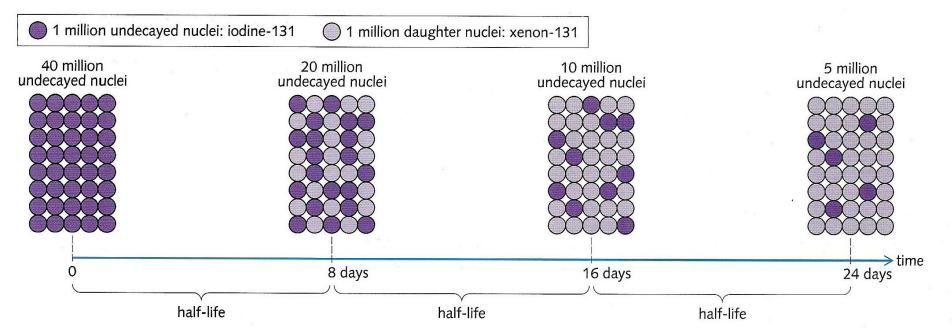
The decay rate is proportional to the number of radioactive elements in a sample

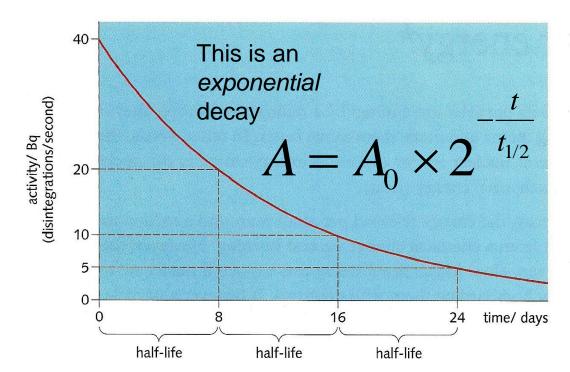

10

Detecting radiation

Quantifying radioactivity

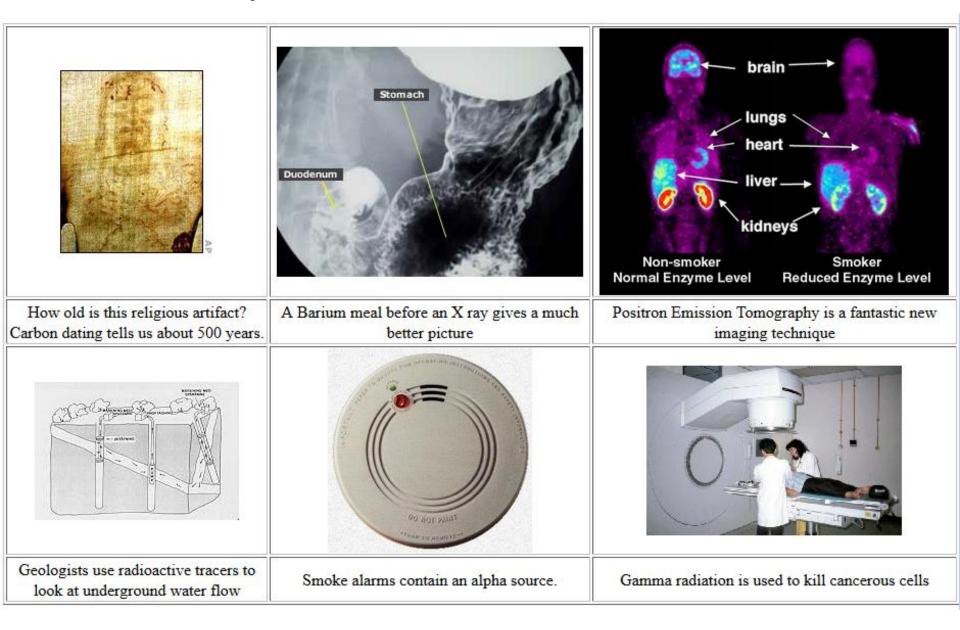
Antoine Henri Becquerel 1852-1908


1 Becqueral (Bq) is 1 radioactive decay per second


Marie Curie 1867-1934

1 Curie (Ci) = 37GBq

$$1 \text{Ci} = 3.7 \times 10^{10} \text{Bc}$$


232Th1.405 × 1010 years1.1 × 10-7238U4.471 × 109 years3.4 × 10-740K1.25 × 109 years7.1 × 10-6235U7.038 × 108 years2.1 × 10-6235U7.038 × 106 years0.0001899Tc211 × 103 years0.0017239Pu24.11 × 103 years0.063240Pu6563 years0.24226Ra1601 years0.99241Am432.6 years3.4914C5730 years4.5238Pu88 years18.5137Cs30.17 years8390Sr28.8 years139241Pu14 years121.260Co1925 days1132210Po138 days44843H12.32 years9708131L8.02 days125000123L13 hours200000	Isotope	Half life	Ci /gram
⁴⁰ K 1.25 × 10 ⁹ years 7.1 × 10 ⁻⁶ ²³⁵ U 7.038 × 10 ⁸ years 2.1 × 10 ⁻⁶ ¹²⁹ I 15.7 × 10 ⁶ years 0.00018 ⁹⁹ Tc 211 × 10 ³ years 0.017 ²³⁹ Pu 24.11 × 10 ³ years 0.063 ²⁴⁰ Pu 6563 years 0.24 ²²⁶ Ra 1601 years 0.99 ²⁴¹ Am 432.6 years 3.49 ¹⁴ C 5730 years 4.5 ²³⁸ Pu 88 years 18.5 ¹³⁷ Cs 30.17 years 83 ⁹⁰ Sr 28.8 years 139 ²⁴¹ Pu 14 years 121.2 ⁶⁰ Co 1925 days 1132 ²¹⁰ Po 138 days 4484 ³ H 12.32 years 9708 ¹³¹ I 8.02 days 125000	²³² Th	1.405 × 10 ¹⁰ years	1.1 × 10 ⁻⁷
235U 7.038 × 10 ⁸ years 2.1 × 10 ⁻⁶ 129I 15.7 × 10 ⁶ years 0.00018 99Tc 211 × 10 ³ years 0.017 239Pu 24.11 × 10 ³ years 0.063 240Pu 6563 years 0.24 226Ra 1601 years 0.99 241Am 432.6 years 3.49 14C 5730 years 4.5 238Pu 88 years 18.5 137Cs 30.17 years 83 90Sr 28.8 years 139 241Pu 14 years 121.2 60Co 1925 days 4484 3H 12.32 years 9708 131I 8.02 days 125000	²³⁸ U	4.471 × 10 ⁹ years	3.4 × 10 ⁻⁷
129 15.7 × 10 ⁶ years 0.00018 99Tc 211 × 10 ³ years 0.017 239Pu 24.11 × 10 ³ years 0.063 240Pu 6563 years 0.24 226Ra 1601 years 0.99 241Am 432.6 years 3.49 14C 5730 years 4.5 238Pu 88 years 18.5 137Cs 30.17 years 83 90Sr 28.8 years 139 241Pu 14 years 121.2 60Co 1925 days 1132 210Po 138 days 4484 3H 12.32 years 9708 131 8.02 days 125000	⁴⁰ K	1.25 × 10 ⁹ years	7.1 ×10 ^{−6}
Performed point Performed point 99 Tc 211 × 10 ³ years 0.017 239 Pu 24.11 × 10 ³ years 0.063 240 Pu 6563 years 0.24 226 Ra 1601 years 0.99 241 Am 432.6 years 3.49 14 C 5730 years 4.5 238 Pu 88 years 18.5 137 Cs 30.17 years 83 90 Sr 28.8 years 139 241 Pu 14 years 121.2 60 Co 1925 days 1132 210 Po 138 days 4484 3 H 12.32 years 9708 131 I 8.02 days 125000	²³⁵ U	7.038 × 10 ⁸ years	2.1 × 10 ^{−6}
239 Pu24.11 × 103 years0.063240 Pu6563 years0.24226 Ra1601 years0.99241 Am432.6 years3.4914 C5730 years4.5238 Pu88 years18.5137 Cs30.17 years8390 Sr28.8 years139241 Pu14 years121.260 Co1925 days1132210 Po138 days44843 H12.32 years9708131 I8.02 days125000	129	15.7 × 10 ⁶ years	0.00018
240Pu 6563 years 0.24 226Ra 1601 years 0.99 241Am 432.6 years 3.49 14C 5730 years 4.5 238Pu 88 years 18.5 137Cs 30.17 years 83 90Sr 28.8 years 139 241Pu 14 years 121.2 60Co 1925 days 1132 210Po 138 days 4484 3H 12.32 years 9708 131 8.02 days 125000	⁹⁹ Tc	211 × 10 ³ years	0.017
226 Ra 1601 years 0.99 241 Am 432.6 years 3.49 14 C 5730 years 4.5 238 Pu 88 years 18.5 137 Cs 30.17 years 83 90 Sr 28.8 years 139 241 Pu 14 years 121.2 60 Co 1925 days 1132 210 Po 138 days 4484 3H 12.32 years 9708 131 8.02 days 125000	²³⁹ Pu	24.11 × 10 ³ years	0.063
²⁴¹ Am 432.6 years 3.49 ¹⁴ C 5730 years 4.5 ²³⁸ Pu 88 years 18.5 ¹³⁷ Cs 30.17 years 83 ⁹⁰ Sr 28.8 years 139 ²⁴¹ Pu 14 years 121.2 ⁶⁰ Co 1925 days 1132 ²¹⁰ Po 138 days 4484 ³ H 12.32 years 9708 ¹³¹ I 8.02 days 125000	²⁴⁰ Pu	6563 years	0.24
¹⁴ C 5730 years 4.5 ²³⁸ Pu 88 years 18.5 ¹³⁷ Cs 30.17 years 83 ⁹⁰ Sr 28.8 years 139 ²⁴¹ Pu 14 years 121.2 ⁶⁰ Co 1925 days 1132 ²¹⁰ Po 138 days 4484 ³ H 12.32 years 9708 ¹³¹ I 8.02 days 125000	²²⁶ Ra	1601 years	0.99
238 Pu 88 years 18.5 137 Cs 30.17 years 83 90 Sr 28.8 years 139 241 Pu 14 years 121.2 60 Co 1925 days 1132 210 Po 138 days 4484 3H 12.32 years 9708 131 8.02 days 125000		432.6 years	3.49
137Cs 30.17 years 83 90Sr 28.8 years 139 241Pu 14 years 121.2 60Co 1925 days 1132 210Po 138 days 4484 3H 12.32 years 9708 131I 8.02 days 125000	¹⁴ C	5730 years	4.5
90 Sr 28.8 years 139 241 Pu 14 years 121.2 60 Co 1925 days 1132 210 Po 138 days 4484 3H 12.32 years 9708 131 I 8.02 days 125000	²³⁸ Pu	88 years	18.5
241 Pu 14 years 121.2 60 Co 1925 days 1132 210 Po 138 days 4484 ³ H 12.32 years 9708 131 I 8.02 days 125000	¹³⁷ Cs	30.17 years	83
⁶⁰ Co 1925 days 1132 ²¹⁰ Po 138 days 4484 ³ H 12.32 years 9708 ¹³¹ I 8.02 days 125000	⁹⁰ Sr	28.8 years	139
210Po 138 days 4484 ³ H 12.32 years 9708 ¹³¹ I 8.02 days 125000	²⁴¹ Pu	14 years	121.2
³ H 12.32 years 9708 ¹³¹ I 8.02 days 125000		1925 days	1132
¹³¹ I 8.02 days 125000	²¹⁰ Po	138 days	4484
123	³ Н	12.32 years	9708
¹²³ I 13 hours 2000000	¹³¹	8.02 days	125000
	123	13 hours	2000000

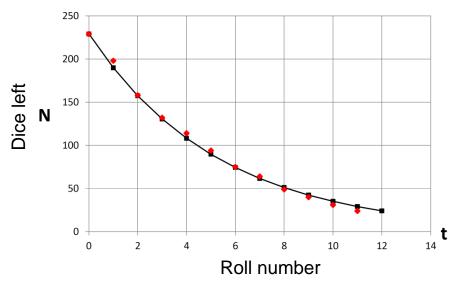
radioactive isotope	half-life
boron-12	0.02 seconds
radon-220	52 seconds
iodine-128	25 minutes
radon-222	3.8 days
strontium-90	28 years
radium-226	1602 years
carbon-14	5730 years
plutonium-239	24400 years
uranium-235	7.1×10^8 years
uranium-238	4.5×10^9 years

Uses of radioactivity

http://www.stokesleyscience.org/A level Physics/Radioactivity/uses_of_radioactivity.htm

RADIOACTIVE (6 sided) DICE

Total number of dice left

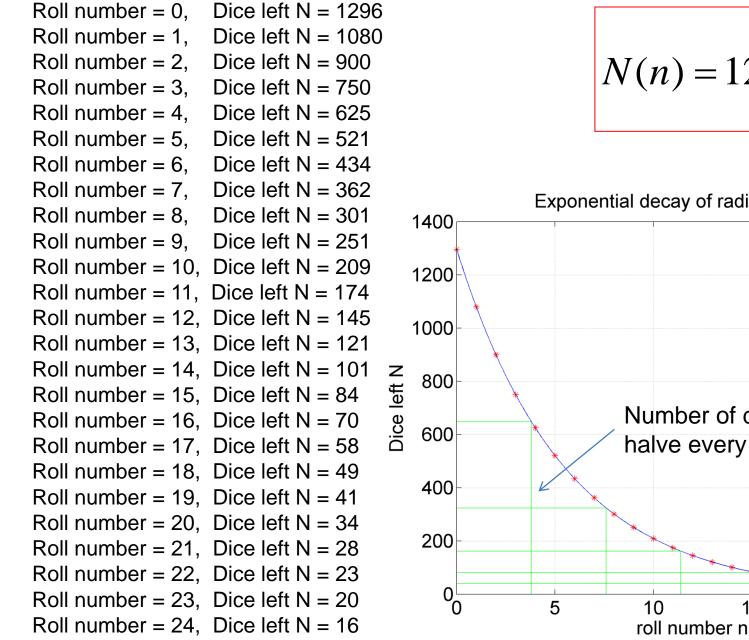

t	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N total	N model
0	22	22	20	24	19	18	23	18	19	23	21	229	229
1	18	18	16	21	17	14	20	15	19	21	19	198	190
2	12	12	13	18	13	11	17	12	14	20	16	158	157
3	9	8	10	14	12	11	16	10	11	17	14	132	131
4	9	7	9	10	7	11	15	9	10	14	13	114	108
5	6	6	6	7	4	9	12	8	10	13	13	94	90
6	5	4	6	6	3	5	9	7	7	11	12	75	74
7	5	3	5	6	3	4	8	6	5	9	10	64	62
8	5	3	4	5	3	0	7	5	3	8	6	49	51
9	4	2	4	3	3	0	6	4	1	7	6	40	42
10	3	2	2	3	3	0	5	3	0	6	4	31	35
11	1	1	1	2	3	0	4	3	0	6	3	24	29
12	1	1	1	2	1	0	4	3	0	5	3	21	24
	-												

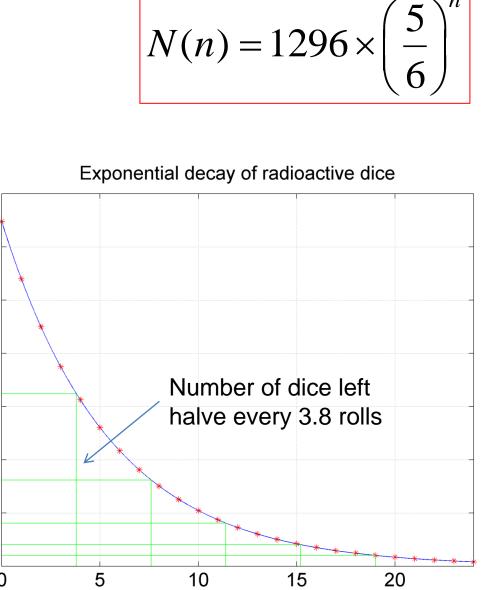
Roll number (this is our model of **time** passing)

Dice left for each roll for each person

We expect an **exponential decay** of dice left with roll number.

Why? We expect a constant probability (chance) of decay at any point in time for a given atom. Therefore the rate of decay is proportional to the number of atoms left.




Let's explore this for our dice. The chance of a six is 1/6 for each roll.

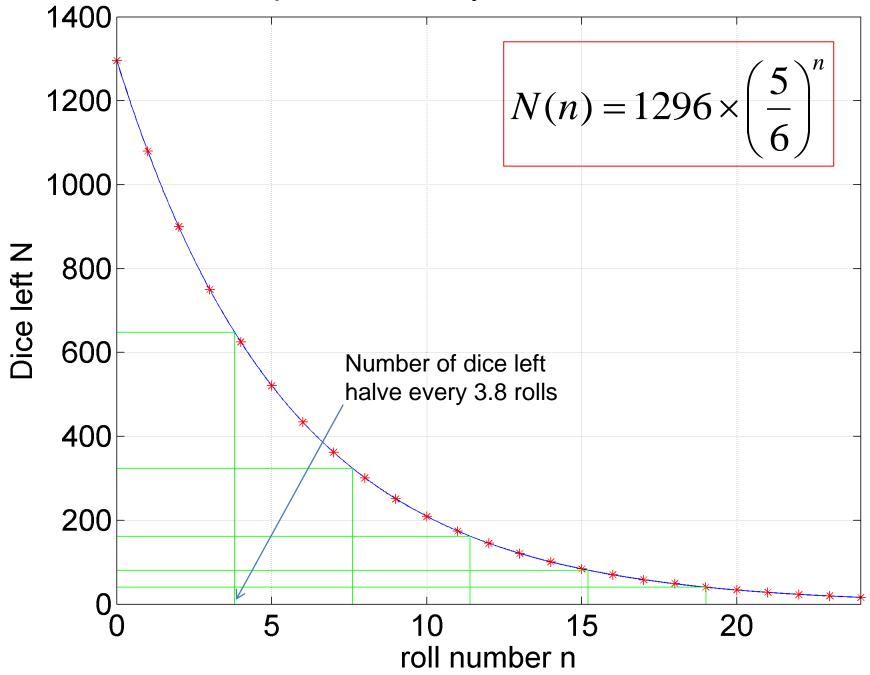
Therefore we expect 5/6 of the dice to remain each roll. If we started with 216 dice:

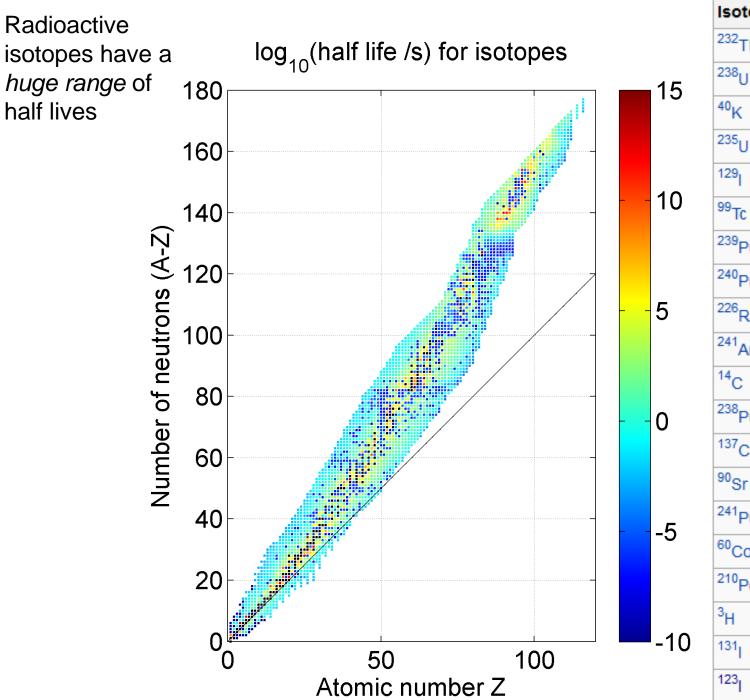
Expected number of dice left	Roll number
216	0
216 x 5/6 = 180	1
216 x 5/6 x 5/6 = 150	2
216 x 5/6 x 5/6 x 5/6 = 125	3
216 x 5/6 x 5/6 x 5/6 = 104.17	$(\boldsymbol{\varsigma})^n$ 4
216 x 5/6 x 5/6 x 5/6 x $N(r)$	$n) = 216 \times \left(\frac{5}{6}\right)^n \qquad \begin{array}{c} 4\\ n \end{array}$
	$\left(6 \right)$

RADIOACTIVE DICE MODEL N = $1296 \times (5/6)^n$

Half Life

For radioactive decay this is **the amount of time it takes for the activity to halve.** Since the decay curve is *exponential*, this is a **fixed time** regardless of the starting activity^{*}.


To explain this we can express the number of dice left as a **power of two** instead of 5/6.


$$N(n) = 1296 \times \left(\frac{5}{6}\right)^n = \frac{1296}{2^{\frac{n}{n_{1/2}}}}$$
 i.e. when roll number is a multiple
of 3.8, we divide the number of dice
left by a whole number power of 2
$$\therefore \frac{5}{6} = \frac{1}{2^{\frac{1}{n_{1/2}}}}$$
$$N(n) = 1296 \times \left(\frac{5}{6}\right)^n \approx \frac{1296}{2^{\frac{n}{3.8}}}$$
$$\frac{1}{n_{1/2}} \log 2 = \log \frac{6}{5}$$
$$\frac{\log 2}{\log \frac{6}{5}} = n_{1/2}$$

*As long as the activity is a large number! The exponential curve is not such a good model when we get down to a handful of atoms, since we can only have a whole number of decays per second.

 $3.80 = n_{1/2}$

Exponential decay of radioactive dice

Isotope	Half life
²³² Th	1.405 × 10 ¹⁰ years
²³⁸ U	4.471 × 10 ⁹ years
⁴⁰ K	1.25 × 10 ⁹ years
²³⁵ U	7.038 × 10 ⁸ years
129	15.7 × 10 ⁶ years
⁹⁹ Tc	211 × 10 ³ years
²³⁹ Pu	24.11 × 10 ³ years
²⁴⁰ Pu	6563 years
²²⁶ Ra	1601 years
²⁴¹ Am	432.6 years
¹⁴ C	5730 years
²³⁸ Pu	88 years
¹³⁷ Cs	30.17 years
⁹⁰ Sr	28.8 years
²⁴¹ Pu	14 years
⁶⁰ Co	1925 days
²¹⁰ Po	138 days
³ Н	12.32 years
¹³¹	8.02 days
123	13 hours