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Understanding the nature of light has been a motivator for the development of much of Physics. Indeed, visible light (and its 

larger and smaller wavelength variants) is in most cases the only viable means of gaining information about the Cosmos 

beyond our closest planetary neighbours. Light is an Electromagnetic (EM) wave, a disturbance in the electric and magnetic 

field that exists in space from, respectively, charges and moving charges. A charge in an electric field will feel a force. An 

additional force will be experienced if the charge is moving in a magnetic field. Unlike a sound wave or water wave, 

electromagnetic waves can travel through empty space. No ‘medium’ is required – it itself moves. In a vacuum, light travels 

at speed 
8 -12.998 10 ms .c    This is the speed limit for the conveyance of information in the Universe. Like other forms of 

waves, light will travel in straight lines unless the wave speed changes. If light passes through water or glass, the 

presence of charges in the atomic structure of these substances will impede its progress, making the path more tortuous, and 

longer. The effective speed of light 'c   will therefore reduce by factor n  i.e. 'c c n , where n  is the refractive index. 

For a vacuum, 1n  , for air 1.00n  , for water 1.34n   and for glass 1.50n  .     

 

Light can travel through any path between two points, but the most 

probable
1
 is the path which takes the least time. This is Fermat’s 

Principle. The result is that light refracts (bends) at a boundary of wave 

speeds (e.g. glass to air), or bends  continuously if the wave speed also 

varies. This also explains the law of refection i.e. the angle of incidence 

from the normal to a surface = the angle of reflection from this normal. 

 

Snell’s law of refraction:  
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Limiting case when refraction angle is 90
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. Total internal reflection for greater incident angles than the critical angle:
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The number of waves passing per second (i.e. the frequency f  ) must be a conserved quantity on both sides of the 

boundary, otherwise there must be some form of energy, and also information, input. Since the speed of waves is the 

frequency multiplied by the wavelength: 
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     . The total power of reflected and transmitted rays must equate to the incident power. 

The exact balance depends upon the angle of incidence, the ratio of refractive indices and the polarization of the light.
2
 Note 

power is proportional to the 
2 2A f  where A  is the amplitude of the EM wave. 

 

Variation of refractive index n  results in dispersion (i.e. a different angle of refraction) of light of different wavelengths. 

This explains why a glass prism can separate white light into a spectrum of colours, and how a rainbow is formed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 This idea is explored in the theory of Quantum Electrodynamics (QED). 

2
 The balance of transmitted and reflected power is determined by the Fresnel equations 



 

 

Light might be a thin laser beam, but it might also be a broad illumination from an extended source such as the Sun. In both 

extremes we can think of the direction that light propagates. We call this the wavevector, or more simply, a ray.  

 

Consideration of rays from extended sources (such as the Sun) explain the penumbra feature of eclipses. 

 

 

 

 

 

 

 

 

 

 

Geometric Optics is in essence the drawing of diagrams that represent the directions light rays take from source to 

observer. When multiple rays can be drawn between source and observer, the intersection of these different paths will 

predict where an image of a light source will form. 

 

In most geometric optics problems, consider the intersection of an undeviated ray, and one which starts horizontally and is 

refracted or reflected by a known amount. 

 

 

Question 1 

(i) Calculate the critical angles for: (a)  a glass to air interface and (b)  a glass to water interface. Assume 

 1.34
water

n   and 1.50
glass

n  .  

(ii) 520nm green light (in air) from the Aurora Borealis passes through ice of refractive index 1.31. The light 

 penetrates about 5cm into the ice before being undetectable. Calculate how many wavelengths this is in the ice. 

(iii) An ideal converging biconvex lens will cause all horizontal rays to converge to the focus   ,0f  of the lens, as 

 shown below. The centre of the lens is the origin of the coordinate system. Rays straight through the centre of the 

 lens are undeviated. By considering the intersection of horizontal and ‘straight through’ rays, show that light rays 

 from an object at displacement  ,a b  from the centre of the lens, will converge at  ', 'a b  where 
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 A projector has a focal length f  of 20.0mm.  An image of Christiaan Huygens of height 1.6m is projected on a 

 screen 5.0m away from the lens. Determine the height of the (probably LED) light source corresponding to Mr 

 Huygens, and also calculate how far away from the lens it is. 

 



(iv) A converging biconvex lens can be used as a magnifying glass if an object is placed within the focal length f  of 

 the lens. The human brain will interpret the diverging rays emerging from the lens as emanating from a virtual 

 image at  ', 'a b  as shown below. 

 

 

 

 

 

 

 (a) Show that the vertical magnification factor is: 
f
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M


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 (b) Sherlock Holmes investigates a curious mould on the floor of 221B Baker Street. His hand-held lens 

  offers 5.0x magnification if the stain is 8.0cm from the lens. What is the focal length? 

 

(v) The Moon is very slowly moving away from the Earth (about 3.8cm per year). Calculate the Earth-Moon distance 

 when the umbra (or ‘totality’) in a solar eclipse exists only at a single point on the surface of the Earth. The Earth-

 Sun distance (1Astronomical Unit, AU) is 
81.496 10 km , solar radius is 696,340km and lunar radius is 

 1,737.1km. The Earth radius is 6,371km. If the current Earth-Moon distance (between centers) has a minimum 

 (perigee) of 356,500km, approximately how many more years before total solar eclipses cannot be seen on Earth? 

 

(vi) Calculate the maximum Earth-Moon distance (between their centers) such that the moon is entirely within the 

 umbra region during a lunar eclipse. Use the Sun and Earth data in (v).  

 

(vii) The spacecraft Cassini acquired an extraordinary image of Saturn occulting (i.e. blocking out the Sun) on Sept 15th 

 2006. If the radius of Saturn is 58,232km and Saturn orbits the Sun at a radius of 9.957AU, calculate the maximum 

 distance from the Surface of Saturn that Cassini could be in order to take the photograph. 

 

(viii) An optic fiber consists of a core of pure silica glass, of radius 4.0μm , 

 surrounded by a cladding of doped silica glass.
3
 At a particular frequency, 

 the refractive indices of the core and cladding are, respectively, 1.4475 and 

 1.4440.  

 (a) Calculate the critical angle 
c

  for light to propagate with minimal transmission loss in the fiber.  

 (b) Show that if the light in the core travels 2r  between reflections, compared to 2x  of core length,  

  sinr x   , where   is the angle of internal reflection in the fiber. 

 (c) Hence determine the time it takes light to travel along a fiber that equals the circumference of the Earth. 

  (Don’t forget the speed is 
core

c n ).  The Earth radius is 6,371km.  

 (d) London to Sydney, Australia is about 16,983km. Bruce sends an email to his English brother-in-law. 

  Calculate the minimum time delay (‘latency’) in the fiber part of their communications link. 

 

(ix) If light is S-polarized (i.e. the electric field oscillates in a perpendicular direction  to a plane containing the 

 incident, reflected and transmitted rays),  the fraction of light power reflected 
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 Hence calculate the fraction of incident light power that is transmitted through an air, glass interface with 

 
o42

i
   , 

1 2
1.00, 1.50n n  .  
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 Beyond the core and cladding you have additional layers (the ‘buffer’ and ‘jacket’) which provide mechanical protection to the glass core and cladding of 

an optical fibre. 



Question 2 

(i) Show that rays from  ,a b  beyond the focus of an ideal 

 diverging biconcave lens will appear to originate from 

  ', 'a b  where:  
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(ii) Hence show the vertical magnification factor (well, 

 ‘demagnification factor!) is: 
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Question 3 

The diagram on the left is from the Wikipedia page for the 

stage illusion “Pepper’s Ghost”, which is a method for the 

creation of a realistic spectral figure on stage, as viewed by the 

audience. Draw a ray diagram to explain the effect, and also 

why it may not be immediately apparent that there is a glass 

sheet between the audience and the stage. 

 

 

Question 4 

A curious optical illusion occurs when you dangle an object close to the geometric centre of a concave mirror. As shown 

below, the convergence of direct and reflective rays from  ,a b  result in a real, inverted image at  ', 'a b  . The object 

appears to magically float in space. It is traditional in Physics laboratories to use a plastic animal, hence the demo is known 

as the ‘flying cow’ experiment. 

(i) If the circle which defines the mirror has radius R , show that the coordinates of the reflection point is: 
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 (ii) Hence show that, if tan2m   
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Question 5 The ray diagrams for internal reflection of a light beam inside a spherical raindrop are given below (for a 

  single reflection, and for two reflections). The can be used to explain the formation of rainbows. 

 

 (i) Show using Snell’s Law, that the angle of elevation of rays relative to the anti-solar direction
4
 are: 
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 reflection. where   is the angle of incidence and n  is the refractive index of water in the raindrop. 

 

(ii) Explain why 0d d    implies a maxima in light intensity, and why the elevation angle   when this true 

 corresponds to the elevation angle of the rainbow above the anti-solar direction. 

(iii) Prove 
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 from Snell’s law to help show that for a primary rainbow: 
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(iv) Use a spreadsheet such as Microsoft Excel (or better, a programming language like MATLAB or Python) to plot 

  vs   for single and double internal reflections, for a range of optical frequencies (colour these appropriately), 

 and also the rainbow elevation angles vs light frequency. Use a frequency range: 405THz 790THzf  . 

 

 The semi-empirical relationship for the refractive index of water over this range is: 
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 and this should be plotted against frequency too. 

 

 Colour for plots: 

Colour R,G,B Frequency range /THz 

Red 1,0,0 405 to 480 

Orange 1, 127/255, 0 480 to 510 

Yellow 1,1,0 510 to 530 

Green 0,1,0 530 to 600 

Cyan 0,1,1 600 to 620 

Blue 0,0,1 620 to 680 

Violet 137/255,  0,  1 680 to 790 
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 When the sun is high, the rainbow elevation may not make it above the horizon. So the best rainbows are viewed when the 

Sun is low i.e. at dawn or dusk. If you view a rainbow from an aircraft cockpit , you will see the complete circle! 



Question 6 

The Fresnel Equations define the proportions of transmitted and reflected power of polarized light at a boundary of 

different refractive indices 
1 2
,n n . In Q1 (ix) the equation for the proportion of reflected S-polarized light is given as: 

2

2 1 2

1 2

cos cos

cos cos

i t

i t

n n
r

n n

 

 


 
  

 
    which means the transmitted power fraction is: 
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Recall, S-polarized light is when the electric field oscillates perpendicular to the plane containing all the incident, reflected 

and transmitted rays. P-Polarized light is when the electric field only oscillates in the plane containing the rays.  

P-polarized light has a slightly different reflection coefficient: 
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(i) Use an Excel sheet and plot 
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(ii) Observe that 
2

r has a zero about 63.4
o
. What practical application might this effect have?  

 Sketch how the curves might alter if 
2 1
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(iii) Show that the angle (which is called the Brewster angle) when 
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Question 7 

A ray of light travelling in air strikes the surface of a triangular prism at angle of incidence 
i

 . n  is the refractive index of 

the prism and the prism has apex angle  .  

(i) Re-draw the diagram  and show that the deviation angle of the incident ray is: 
i t

      . 

 (ii) Prove that 
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t i i
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(iii) The refractive index of crown glass is given by the 

 Sellmeier empirical equations, where   is the 

 wavelength of light (in a vacuum) in μm .  
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And example set of coefficients (for ‘BK7 Crown glass’) is: 
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1.03961212, 0.231792344, 1.01146945

0.00600069867, 0.0200179144, 103.560653
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Use this information (and the colour values for visible light in Question 5 ) to 

construct an Excel, Python or MATLAB program to plot  vs 
i

 for various 

values of  . Use an average visible light frequency of 542.5THz.  

Better still, use the model to actually plot correctly coloured rays emerging 

from a computer generated prism, and implement a ‘keypress’ functionality 

which allows the rays (for say 500 colours within the range 405 to 790THz) 

to be automatically updated when 
i

 and   are modified by pressing specific 

keys.



Question 8 

Use the diagrams on the right, and Fermat’s principle, to prove the law of reflection, and Snell’s law of refraction. 

 

Hint: find travel time ( )
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Question 9 

A real biconvex lens, made from glass of refractive index n , is of thickness d and has curved surfaces which are arcs of 

circles with radii 
1

R  and 
2

R . 

If incident rays are close to the ‘optical axis’ (i.e. the horizontal x axis in the diagram) we can use a small angle 

approximation. 

i.e. sin tan     (and this is true for all angles , , , , ,a b     ). Note all angles are in radians! Rays like these are 

called paraxial. 

Also, given the lens is deemed ‘thin’:  
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, ,f R R d    and    
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h h   

By applying Snell’s law, and using the thin lens and small angle approximations above, show that the focal length of the 

lens can be determined via the following “Lensmaker’s formula” :
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Hint:  Explain why a      and a b    . Then express all angles in terms of  .  
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 A slightly more accurate formula, incorporating lens thickness d  is: 

 

1 2 1 2

11 1 1
( 1)

n d
n

f R R nR R

 
    

 
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is pretty hard to derive. It is not even in Optics by Hecht! Another major health warning is that conventionally 
2

R  is defined 

to be negative. So to match the formula in many references, change 
2 2

R R . But since this is in reality merely a double 

negative, it seems needlessly confusing in my view. The reason for this strangeness is probably to use the same formula for 

both convex and concave lenses. To swap between these, change the sign of the radii. 


