

TOPF ACCE

Resistivity

 $R = \frac{\rho l}{A}$

Helix®

000

BOFF ACCE

Dr Andrew French. October 2020.

Black plastic sack (insulating material)

Measure length and width of foil strip with a ruler

Measure thickness (of 2⁶ sheets, i.e. strip folded six times) using a digital calliper

Note contact resistance of crocodile clips is likely to *not be negligible*, so use a *pair* of electrodes rather than one wired to the negative terminal of the cell. Push these electrodes onto the foil at 1cm intervals. Record the voltage for each position. Also use a small (10 to 20 ohm) fixed resistor to prevent dangerously large currents being drawn from the 2V cell

Measure length and width of foil strip with a ruler.

Measure thickness using a digital calliper.

0.58mm

Combine width and thickness to calculate cross sectional area of – aluminium strip.

$$= \frac{9.22 \times 10^{-6} \text{ m} \times 3.18 \times 10^{-2} \text{ m}}{2.93 \times 10^{-7} \text{ m}^2}$$

R= 3/A

V=IR V=ISL

Note contact resistance of crocodile clips is likely to *not be negligible*, so use a *pair* of electrodes rather than one wired to the negative terminal of the cell.

$\rho = \frac{\text{gradient of graph} \times A}{I}$

Calculation of resistivity of aluminium from measurements taken.

RESISTIVITY OF ALUMINIUM

A. French. Wincheter College P5. 20/10/2020

Current I /A

0.314

Aluminium foil strip (measured round a 30cm ruler)

total length /cm	30.00
width /cm	3.18
thickness of six folds /mm	0.59

cross sectional area A /m^2

	_
0.59	
2.93E-07	

voltage /mV	V /volts	L /cm	L/m
0.3	0.0003	1	0.01
0.6	0.0006	2	0.02
0.9	0.0009	3	0.03
1.2	0.0012	4	0.04
1.5	0.0015	5	0.05
1.8	0.0018	6	0.06
2.1	0.0021	7	0.07
2.5	0.0025	8	0.08
2.8	0.0028	9	0.09
3.1	0.0031	10	0.1
3.4	0.0034	11	0.11
3.7	0.0037	12	0.12
4	0.0040	13	0.13
4.4	0.0044	14	0.14
4.7	0.0047	15	0.15
5	0.0050	16	0.16
5.3	0.0053	17	0.17
5.7	0.0057	18	0.18
6	0.0060	19	0.19
6.3	0.0063	20	0.2
6.6	0.0066	21	0.21
6.9	0.0069	22	0.22
7.2	0.0072	23	0.23
7.5	0.0075	24	0.24
7.8	0.0078	25	0.25

$$U = IR$$

$$R = \frac{pL}{A}$$

$$V = \frac{IpL}{A}$$

$$V = \frac{IpL}{A}$$

$$V = \frac{IpL}{A}$$

$$V = \frac{IpL}{A}$$

$$V = \frac{pL}{A}$$

$$V = \frac{$$

 $\rho = \frac{\text{gradient of graph} \times A}{I}$