SIMPLE HARMONIC MOTION (SHM) AND SMALL OSCILLATIONS AF December 2019

SHM differential equation: X = —@’x with solution X(t) = Acos(a)t —¢). i.e. an oscillation of frequency f =+

and period T =1/f . i.e. @=27/T . A is the amplitude and ¢ is a constant phase shift. Note X =d*x/dt*>, % =dx/dt.

. dX . X . , L
Also: X=X So Xd—=—a)2X:>%X2=—%a)ZXZ+C:>X2=a)2(A2—X2). ie. X=tonA —X°
X X

Note also that:  X(t) = —wAsin(at—¢) and A’sin’ (ot —¢) = A* — A’cos’ (st —g) = A* —X°.

Example: mass on a spring (where x is the displacement from equilibrium)

.'.X‘z—kx. So SHM with @ = /£
m m
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Energy conservation: +mx® +2kx® = 1kA? = mxX + kxx = 0= x(x+—x =0 . X=——X.

Newton Il: mX = —kx

m m

Damped SHM:
opposition to movement. Newton Il1: mX = —kx —2ymx. Note each has two constants to be found from x(0) and Xx(0).

x(t) = Ae™" cos(tho2 —y% - d))

KO =e " (Ae VT 4 ae )

X+2yXx+w’x=0. e.g. mass on a spring with damping force proportional to velocity, but acts in

If o>y : ‘underdamped’ and solutions are oscillatory.

If o<y : ‘overdamped' and solutions don't oscillate.

If o=y : ‘critically damped' and solutions don't quite oscillate. ~ X(t) =e ™" (A + Apt)
The time variation of these exponentially decaying terms is known as the transient, or 'impulse response.’'

Driven SHM and resonance: X+ 2yX+ @ X = Ay sinat .

If underdamped, steady state solution (i.e. when the transient decays sufficiently to be neglected i.e. when yt>1)is:

X(t) = Asin(at ~g). Alw) = A)a)(f/\/(a)j _")2)2 +4y°a’ . P= tanl[ 227@ ZJ :
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Question 1 -
5, °
Q) A mass of 0.2kg undergoes oscillations of period E | y=0050,
1.2s on a vertically mounted spring. Determine the o2 VA ——y=010, |
. b
spring constant K . 5§ 1 =020,
v
3 1 g v=0.50, |
(i) If the mass-spring system in (i) is initially stretched 3 0 - e . ‘
by 0.1m from equilibrium and then released, £0 0.5 1 1.5

calculate the velocity of the mass after 2.0s. Sketch

X(t), X(t), X(t) on separate graphs with the same time scale.




(iii)

(iv)

v)

(vi)

(vii)

(viii)

(ix)

)

Determine expressions for the time variation of (a) kinetic energy and (b) potential energy for the mass-spring
system in (i),(ii). On the same graph, sketch kinetic energy, potential energy and total energy vs time for at least
two periods.

A rubber duck is placed in a bath. The duck has an in-built accelerometer with a USB stick memory for data
logging. Analysis of the bobbing motion of the duck results in a straight line correlation between acceleration X
(in cm/s?) and displacement X (in cm) of the form X = —223.8x . Determine the period of the oscillation in s.

A charged ping-pong ball can be made to oscillate between two metal plates, both carrying the same charge with
the same sign as the charge on the ping-pong ball. The ball has a displacement X of 2.0cm, a velocity of
—3.0cm/s and an acceleration of - 4.0cm/s at t =0.0s. Determine A, w,¢ and hence sketch x(t) for two

periods.

A long pendulum of length | undergoes small oscillations with period T =km*g®l®. m is the mass of the

pendulum bob and g is the strength of gravity. k is a dimensionless constant.

() Use dimensional analysis to find A,B,C and hence show that T = k«ﬂ/g :

(b) As you will prove later (Q2), k = 2. The First Church of Mars conducts commences Wednesday
services with a swing of a 3.14m pendulum, starting from rest at a maximum angle of 10° . Calculate the

period of the pendulum, and its maximum speed. Hence sketch &(t) and o(t) . Opore = 3-72M/S%.

The suspension in an old car is underdamped. When the car hits a bump, it oscillates with frequency 5Hz. A
particular bump causes a oscillation of initial amplitude 10cm, starting from rest. Assuming the damping constant

¥ =+ @, determine an equation for the subsequent motion, and sketch it. What is the amplitude and velocity after

1

0.15s? Note: x(t) = Ae™” cos(taya)2 —y° —¢) and w=2rf ><(1—(’U—22)7 .

A swing at a children's playground for danger-seeking nieces of Physicists is | = 4.2m long. It can be modeled as
a simple pendulum of period T = mel /g where g =9.81m/s’. The swing is driven by a sinusoidal driving
force of frequency f =t , such that he (angular) motion of the swing is described by the differential equation

0+ %49' + (ZT—”)2 0= (ZT—”)2 Zsinat . Use this information to sketch the amplitude and phase responses (i.e. vs @)
of the steady-state oscillation. Use the formulae for damped SHM on page 1 without proof.

If the children's swing in (vii) was critically damped, determine the equation of motion 4(t) , assuming that the

swing is released from rest at @ = % radians. Assume the sinusoidal driving force machine has been turned off.

Show that the transient responses x(t) for (a) underdamped; (b) overdamped; (c) critically damped SHM

systems described on page 1 are indeed solutions to X + 2y X + @’x = 0. Tedious calculus but good for you!

Question2 A pendulum of length | consists of a light inextensible string, supporting a small mass m . The top of the
string is fixed in position, and the only significant forces on the mass are gravity (with strength ¢ ) and the tension in the

string.

(i)

(i)

Draw a diagram to represent the situation and then write down Newton Il in radial and tangential directions. Show
that for small angles, where siné ~ @, the motion is SHM with period 7 = Zmﬂ /g.

What will a graph of 0 vs w6 look like for the (SHM) motion? What would happen if there was damping?
Assume the pendulum is released from rest i.e. &(t) =6, cosat.



(iii) Without using the small angle approximation, use energy conservation to derive an expression of how the speed of
the mass varies with @, and sketch this. Determine an equation for the @ variation of string tension T , and sketch
this too. Assume there is no damping and therefore no loss of energy.



Question 3 A charge of mass m is placed in the centre of a vacuum tube of length | . At either ends of the tube are
identically charged plates, of the same sign as the charge on the mass. The force on the charge due to the left plate is k/x2
where X is the distance from the left plate to the charge i.e. an inverse-square law.

(i) Explain why: ms =kx? —k(I-x)”

(i) If X=21+2z ,where z isasmall (|z| < | ) perturbation from equilibrium, show (using appropriate binomial

expansions) that 7 =~ —% Z.
m

Hence determine an expression for the frequency of oscillations of the charged mass m.

(iii) Evaluate the oscillation frequency (and equivalent EM wavelength in nm) using the following atomic-scale values.
2

e
| =1.23x10""m, m=1.67x10"kg , k= 2 where e =1.602x10°C, & =8.85x10"?Nm*C™.
E,
Question 4 A cylinder of radius I and height h It is placed in a liquid of density o , whereupon it partially

submerges to depth x =ah where 0 <« <1. What is the mass m of the cylinder in terms of p,r,h ?

If the cylinder is displaced by extra depth z(t =0) = Sh , where f < «, determine an expression for the period T of the
ensuing oscillations, i.e. the time variation of 'extra depth' z . Assume a uniform strength of gravity g .

Determine the period T of these oscillations (in s) for a cylindrical iceberg of radius 100m and height 200m. The density of
seawater is 1025kg/m? and the density of ice is 920kg/m®. g =9.81m/s’.

Question 5 de-Moivre's theorem states that €' = cos@+isin@, which means Acos(a)t N ¢) is the real part of
7=Ae'?  Consider a ‘complex’ version of the driven SHM equation: Z+2y7 + a)ozz = A)a)je""‘ . By assuming a steady

state solution z(t) = A" substitute into the SHM equation and hence prove:

2
A= Aba)g/\/(a)g -’ )2 +4y° and ¢= tanl( > o 5 j .
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2
Also prove that the maximum oscillation amplitude A, = _ A8 when @ = ~}a)(f -2y

2y -7

Question 6 (Adapted from a question in OCR Mechanics 4 textbook in the Small Oscillations & Stability chapter).

Arigid rod of mass m and length 2a is suspended from a frictionless hinge. When the rod is hung in equilibrium, the
bottom of the rod is a from the ground. At a point on the ground directly below the hinge is a small fixed ring. A light
elastic cord of unstretched length 2a and spring constant k =5mg/2a is threaded though the rod and securely attached to

the ring. The rod is displaced by a small angle, and oscillations of period T ensue.

(i Show that the moment of inertia of the rod rotating about the hinge is | = %ma2 .

(ii) Show that the extension of the elastic is X = a+/13—12cos@ , where @ is the angle of the rod from the vertical.

iii Show that the total energy of the system is: E =2ma’6? + mga (174 —16¢0s6).
3 7

(iv) If no energy is lost (i.e. E= 0)showthat T ~ 27 /% for small oscillations.
g

(v) Show that the period of the rod swinging without the elastic is exactly four times that with the elastic.



