Erwin Schrédinger published the Schrodinger Equation in January 1926. This is one of the most important relationships in Quantum Theory as it enables one to calculate the
probability of a particle being at a particular location in space and time if the mathematical form of possible energies is known. Its development was influenced by the work of Louis
de Broglie, who proposed that all particles have an associated wave expression, whose wavelength is related to the momentum of the particle.

. wavelength h <~ Planck’s constant 6.63 x 10-3* m2kgs? h 2
de Broglie associated with —2|A4=— L Kk =<" :> de Broglie
relationship particle P<| momentum of particle 27z’ A relationship
‘hbar’ wavenumber

We can ‘derive’ the Schrdédinger Equation by combining (1) the wave equation (2) the de Broglie relation and (3) the law of conservation of energy. We will assume :
it applies to particles moving much less than the speed of light i.e. a relativistic treatment is not need. (For a full relativistic treatment, the Klein-Gordon or Dirac Equation \

Erwin Schrodinger

are needed, the latter for ‘spin-half’ particles such as the electron).
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The wave equation describes the amplitude of a wave moving at speed C y_Ltovy _ _ _
= c=FfA, w=2xf, w=ck Frequency f
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Classical expression of energy: E_1 2 — _ p E_ p 2 _
=imv° +V Momentum =mv|=>v=— " E=—+V =p°=2m(E-V
(Total energy E. potential energy V) 2 m m P ( )
Combining energy and the de Broglie relation . ) e .
A more general time dependent equation can be ‘derived’ by noting the energy of a
photon, and by analogy, a ‘wave-like particle’ (!) is: Mo B
ax Born
SRk =2m(E-V) E=hf =ho w(x1) 1882 — 1970
Hence: is known as the Nobel Prize 1954
k2 = 2m (E —V) For a plane wave: . wavefunction \
: T 32
) - = So what does the wavefunction mean? In 1926
h i(ke-at) W oy +Vy =Ey hat d h functi
o _ _ l//(X,t) =y,e 2m ox? Max Born proposed that it relates to the probability
Substituting back into the wave equation: 0 of finding a particle. So although the Schrédinger
82 .oy — —ia)l// Equation is deterministic, the exact location of a
v ——k ZW o ot K2 521// 8!// particle is probabilistic. Only the ‘odds’ can be
GXZ 5 R —— +Vwv =ih—=— inferred with definite precision.
Loy 2m Ox
o’y 2m = el 014 : .
27 __Z (E-V ot Born interpretation
ox? h? ( )W P Time dependent 5
FrRp i = hoy Schradinger Equation |W(X,t)| dx is the probability of
. 4 +VW — E‘// ot a particle being at location
2m ox? oy between X and X + dX
Jih—=Ey
This is the time independent Schrdodinger Equation i.e. you will ot . ) . » .
be able to make analytical progress if solutions are of the form For atwo or three dlmen5|onal problem__(ll_ke the position of an electrc_m in Hydrogen_ atom)
we will need to consider x,y and z Schrédinger Equations, or the equivalent expressions
l//(X,t) =X (X)T (t) i.e. ‘separable’ using a more appropriate coordinate system which reflects the symmetry of the system
such as spherical polars in the case of the Hydrogen atom.
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Solution to the Schrddinger Equation example #1: What about the time dependency? Af aSinz nzx dx=1
Particle in a box 5 0 a
_indv
The potential energy associated with our box is given by: E‘// =1h ot 2 (23 2Nz X
A %I 1-cos dx=1
Ve {oo x<0,x>a w=XT 0
X) =
0 O<x<a o, dT ¢
< EXT =ihX — AL x- 2 sin(znﬂx) -1
Let us assume the wavefunction of the particle is separable dt nz a 0
and the total energy E is constant i dT 21 _
ET—lhE A15(a)—1
w(xt) = X(X)T (1) £ d 5
—dt=— A=yZ
Time independent Schrédinger Equation ih T a
.E dT
h 0w +Vy =Ey —I;t =J'?= InT + const In summary:
2m ox B 2 B (nzx
L n® d?X T —EXT nToce ? v, (1) = e d sin(Tj
2m dx?
2 Let us therefore write the (nt) wave mPr*n?
. d_X Zm_E X =0 equation solution as: E.=——
x> A 2ma
iEt
-— . [ NzX
Xx,)=Ae " sin| —
Now it is clear that the wavefunction must vanish l//( ) A’ [ a j
at the boundaries of the box to satisfy the Schrodinger
Equation. A sine function will have such a property, and is
also the basic mathematical form of a wave of a fixed i
wavelength. To find the constant, let us apply the
Born interpretation, and note that the
X (x) = Asinkx, ka=nz < In order to make probability of the particle being
O =w(a)=0 somewhere within the box must be unity
d’X 2mE i i
.-.?+7X =0 N is an integer a Zd 1
' 2 Jol () ax =
. mE , .
2 _ a
—k*Asinkx + Y Asinkx =0 L py *dx =1
) ) )
~E=—K* |m—————————————————— J.HA]e_%sin nzX xﬁe%sin X ax =1
2m So the boundary condition resulting from | 0 a
|
hrn? | ‘sine waves fitting into the box’ means the :
‘|E =—— | particle energies are quantized. i.e. only | . .
n 2 | - If we assume the wavefunction spatial
2ma | integer values of N are allowed, and | .
) ! | amplitude A to be real
| therefore the particle energies are
| discrete values rather than a continuum. :
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Particle in a box and the Uncertainty Principle

Define the uncertainties in position
and momentum as

AX = <x2> —<x>2
Ap=[(p*)~(p)’
i.e. these quantities are the standard

deviations (or square roots of the
variance) of variables X and p

2

E-P Lv
2m

from the conservation of energy

Therefore since within the box V =0

p° =2mE
W r’n?
2oom2 2
P 2ma’
, W’
A
' , e rin?
) < >=T

Now to find the expectation of p we will need
to find the momentum wavefunction, which is not l//(X,t)

From the de Broglie relation

So the momentum wavefunction must relate to
wavenumber, not position. To interrelate these
quantities we need a Fourier Transform. We can
therefore define the momentum wavefunction as:

¢( p,t) = ¢(hk) = %J‘:l//(x,t)e—ipx/hdx

—

p)=0

One can use this result to show that

ip = ()= (p) =22

Now we can use the position wavefunctions
to find the positional uncertainty

iEt
v, (x,1)= ge h sin(mJ
a a

(x)= x|y ox

() =[xl o

202 , . N7 X
<x2> =5I0 xzsmz(%jdx

(x) ersinz(—nﬁxjdx 2
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<x>—2 1y Xsin2ax  €os2ax a o o .
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(x)=1a < > : ( 2n*z?
Putting the above results together: 5 n
zn
2 _ /2 2_ 1.2 3 142 _ 172 12 AXAp=a-L, [1- X
AX —<X >—<X> —aa 1—7 —Za —Ea 4—T—3 p Nm nzﬂ_z a
2n°rx 2n°r
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2.2
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3
Quote standard integrals for the above calculation:
. Xsin2ax cos2ax This is an example of the Heisenb
2 142 ple of the Heisenberg
Ixsm aXdX_EX - 4 - 8a2 +C Uncertainty Principle, which states
2,2 : AXAp=Lih
X’ sin? xdx—lx3—xcoszax—(2a X —1)sm2ax+c -~
o 6 4o 8a° In other words, we have a limit upon how precisely we

can measure position and momentum of a particle

<X>EE[X] <X2>—<X>z =V[x]
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