
Physics topic handout – Quantum Theory  - Schrödinger Equation   Dr Andrew French. www.eclecticon.info  PAGE 1 

2 2

2 2 2

1

x c t

  


 

Erwin Schrödinger published the Schrödinger Equation in January 1926. This is one of the most important relationships in Quantum Theory as it enables one to calculate the 

probability of a particle being at a particular location in space and time if the mathematical form of possible energies is known. Its development was influenced by the work of Louis 

de Broglie, who proposed that all particles have an associated wave expression, whose wavelength is related to the momentum of the particle. 
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We can ‘derive’ the Schrödinger Equation by combining (1) the wave equation (2) the de Broglie relation and (3) the law of conservation of energy.  We will assume 

it applies to particles moving much less than the speed of light i.e. a relativistic treatment is not need. (For a full relativistic treatment, the Klein-Gordon or Dirac Equation 

are needed, the latter for ‘spin-half’ particles such as the electron). 

The wave equation describes the amplitude of a wave moving at speed c 
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Classical expression of energy: 
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Combining energy and the de Broglie relation 

Substituting back into the wave equation: 

This is the time independent Schrödinger Equation i.e. you will 

be able to make analytical progress if solutions are of the form  
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A more general time dependent equation can be ‘derived’ by noting the energy of a 

photon, and by analogy, a ‘wave-like particle’ (!)  is: 
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For a plane wave: 
Hence: 

So what does the wavefunction mean? In 1926 

Max Born proposed that it relates to the probability 

of finding a particle.  So although the Schrödinger 

Equation is deterministic, the exact  location of a 

particle is probabilistic. Only the ‘odds’ can be 

inferred with definite precision. 
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,x t dx is the probability of 

a particle being at location 

between x and x + dx 

For a two or three dimensional problem (like the position of an electron in  Hydrogen atom) 

we will need to consider x,y and z Schrödinger Equations, or the equivalent expressions 

using a more appropriate coordinate system which reflects the symmetry of the system 

such as spherical polars in the case of the Hydrogen atom. 
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Solution to the Schrödinger Equation example #1: 

Particle in a box  

 

The potential energy associated with our box is given by: 
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Let us assume the wavefunction of the particle is separable 

and the total energy E is constant 
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Time independent Schrödinger Equation  

Now it is clear that the wavefunction must vanish 

at the boundaries of the box to satisfy the Schrödinger 

Equation. A sine function will have such a property, and is 

also the basic mathematical form of a wave of a fixed 

wavelength.  
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In order to make 

(0) ( ) 0a  

n is an integer 

So the boundary condition resulting from 

‘sine waves fitting into the box’ means the 

particle energies are quantized. i.e. only 

integer values of n are allowed, and 

therefore the particle energies are 

discrete values rather than a continuum.  

What about the time dependency? 
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Let us therefore write the (nth) wave 

equation solution as: 
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To find the constant, let us apply the 

Born interpretation, and note that the 

probability of the particle being 

somewhere within the box must be unity 
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If we assume the wavefunction spatial 

amplitude A to be real 
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In summary: 

*which could be a simple model of some form of ‘atomic trap’  
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Particle in a box and the Uncertainty Principle 

Define the uncertainties in position 

and momentum as 
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Now to find the expectation of p we will need 

to find the momentum wavefunction, which is not  ( , )x t

p kFrom the de Broglie relation 

So the momentum wavefunction must relate to 

wavenumber, not position. To interrelate these 

quantities we need a Fourier Transform. We can 

therefore define the momentum wavefunction as: 
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Now we can use the position wavefunctions 

to find the positional uncertainty 
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Quote standard integrals for the above calculation: 
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This is an example of the Heisenberg 

Uncertainty Principle, which states 

1

2
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In other words, we have a limit upon how precisely we 

can measure position and momentum of a particle 

from the conservation of energy 

Putting the above results together: 
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