SCIENCE BY SIMULATION

Volume 1: A Mezze of Mathematical Models

$\|$ World Scientific

Who?

Dr Andy French. Physics teacher at Winchester College, UK.
ge, UK.

When?

ASE International Day 12/01/22

SCIENCE What?
Book / website / educational concept
/ new BPhO course educational concept
/ new BPhO course § SCIEN SIMULATION

Dr Andrew French andy.french@physics.org www.eclecticon.info/scibysim.htm

How?
A selection of example models and contexts

Why?

- Many (perhaps most) future jobs will be performed by robots / artificial intelligence and not humans. I'd like my students to have a good chance to become the programmers. The alternative doesn't sound nearly so interesting.
- But we have a widening skills gap. For both students and teachers. Mathematical content of ALevel Physics has been steadily removed (in the UK) in the past few decades. IT, and access to IT, is mostly pervasive, but creative IT, model building, experimental experience, data analysis, datalogging and numerical methods are often outside the scope of an increasingly examfocussed, paired down syllabus.

SNMSUNG

Microsoft
And yet these skills are highly desirable to modern industry

Learn to build mathematical models

SCIENCE
 BY SIMULATION

Volume 1: A Mezze of Mathematical Models

The power of context

Science by storytelling!

Learn to code dynamic computer simulations

ELECTION PHYSICS PRACTICAL 2020 ELECTION CUPS
A.French \& A. Chesters 21/9/2019

WITH DETERGENT

Snails of pursuit around a 3-gon.
$\mathrm{T}=8 \mathrm{mins}, \mathrm{v}=5 \mathrm{~cm} / \mathrm{min}, \mathrm{s}=60 \mathrm{~cm}$.

(a)

Snails of pursuit around a 7-gon. $\mathrm{T}=31.9 \mathrm{mins}, \mathrm{v}=5 \mathrm{~cm} / \mathrm{min}, \mathrm{s}=60 \mathrm{~cm}$.

(c)

Snails of pursuit around a 5-gon. $\mathrm{T}=17.4 \mathrm{mins}, \mathrm{v}=5 \mathrm{~cm} / \mathrm{min}, \mathrm{s}=60 \mathrm{~cm}$.

(b)

Snails of pursuit around a 9-gon. $T=51.3 \mathrm{mins}, v=5 \mathrm{~cm} / \mathrm{min}, \mathrm{s}=60 \mathrm{~cm}$.

(d)
1665. A bale of damp cloth is delivered to the Derbyshire village of Eyam... George Viccars, the tailor's assistant, dries the cloth and releases fleas infected with Yersinia Pestis bacteria - Plague

Rector William Mompesson quarantines Eyam and records Infected, Susceptible and Dead populations as time progresses

Can we develop a mathematical model to predict I,S,D vs time? What does this tell us about Epidemiology in general? \qquad e.g Flu, Ebola

Calculus methods, differential equations numerical methods, line of best fit, iteration, loops ...
$\frac{d S}{d t}=-\beta S I$
$\frac{d I}{d t}=\beta S I-\alpha I$
$\frac{d D}{d t}=\alpha I$

Euler numerical iterative solution scheme

$$
\begin{aligned}
& \alpha=2.894, \quad \beta=\frac{\alpha}{163.3} \\
& t_{0}=0, S_{0}=235, I_{0}=14.5, \quad D_{0}=0 \\
& t_{n+1}=t_{n}+\Delta t \\
& S_{n+1}=S_{n}-\beta S_{n} I_{n} \Delta t \\
& I_{n+1}=I_{n}+\left(\beta S_{n} I_{n}-\alpha I_{n}\right) \Delta t \\
& D_{n+1}=D_{n}+\alpha I_{n} \Delta t
\end{aligned}
$$

Leonhard Euler 1707-1783

We performed the Eyam analysis in Python, then in MATLAB.
You can also construct an Euler model via a spreadsheet (Excel).
\square
D
E
F
G
H
K
L M

Eyam population during 1666 plague outbreak
Andy French \& John Cullerne. 24th February 2018.

| Initial population NO | 249.5 |
| :--- | :--- | :--- |
| Initial number of succeptables SO | $\mathbf{2 3 5}$ |
| Initial number of infectives IO | $\mathbf{1 4 . 5}$ |
| Transmission rate constant beta | 0.017759 |
| Death rate constant alpha | $\mathbf{2 . 9}$ |
| timestep dt /months | |
| | $\mathbf{0 . 1}$ |

$\mathbf{t} /$ months	\mathbf{S}	\mathbf{I}	\mathbf{D}	\mathbf{N}	$\mathbf{N}+\mathrm{D}=\mathbf{N 0}$
0	235.0	14.5	0.0	249.5	249.5
0.1	228.9	16.3	4.2	245.3	249.5
0.2	222.3	18.3	8.9	240.6	249.5
0.3	215.1	20.2	14.2	235.3	249.5
0.4	207.4	22.0	20.1	229.4	249.5
0.5	199.3	23.7	26.5	223.0	249.5
0.6	190.9	25.3	33.4	216.1	249.5
0.7	182.3	26.5	40.7	208.8	249.5
0.8	173.7	27.4	48.4	201.1	249.5
0.9	165.3	27.9	56.3	193.2	249.5
1	157.1	28.0	64.4	185.1	249.5
1.1	149.3	27.7	72.5	177.0	249.5
1.2	141.9	27.0	80.6	168.9	249.5
1.3	135.1	26.0	88.4	161.1	249.5
1.4	128.9	24.7	95.9	153.6	249.5
1.5	123.3	23.2	103.1	146.4	249.5
1.6	118.2	21.5	109.8	139.7	249.5

$$
\frac{d S}{d t}=-\beta S I \quad \frac{d I}{d t}=\beta S I-\alpha I \quad \frac{d D}{d t}=\alpha I
$$

Euler Eyam solver implemented in MATLAB with a Graphical User Interface (GUI). Change the inputs via the sliders or edit boxes, and the curves are computed automatically.

Liberia Jul-Oct 2014

World Health
Organization

EBOLA RESPONSE ROADMAP SITUATION REPORT

Eyam model: $\alpha=2.99, \beta=0.0183, \Delta t=0.005$

$\log (P(D, t)): \alpha=2.99, \beta=0.0183, \Delta t=0.005$

$\log (P(I, t)): \alpha=2.99, \beta=0.0183, \Delta t=0.005$

Probability map, computed from 50,000 iterations. Black circles are Mompesson data and black dashed lines correspond to the Euler model.

Cumulative UK CV-19 deaths /thousands 05/03/2020-15/12/2021

Find the gradient and scale by:

$$
k \alpha=0.01 \times \frac{1}{9.32} \text { days }^{-1}
$$

Note mortality fraction k and disease
time constant α may vary considerably within a population and indeed post-vaccination - so treat with caution!

Note: as per the 'daily death rate' graphs in World in Data, we also apply a seven-day moving average to smooth the numerical derivative.

One can estimate the number of CV-19 infectives from the cumulative deaths:

$$
I_{n}=\frac{1}{k \alpha} \frac{d D}{d t} \approx \frac{1}{k \alpha} \frac{D_{n+1}-D_{n-1}}{t_{n+1}-t_{n-1}}
$$

Estimated UK COVID-19 infectives 05/03/2020-15/12/2021

The logistic map and population modelling

I published this model in 1976

Assume an ecosystem can support a maximum number of rabbits. Let x be the fraction of this maximum at year n.

To account for reproduction, next year's population is proportional to the previous.

To account for starvation, next year's population is also proportional to the fraction of the maximum population as yet unfilled.

Growth
parameter

The population next year is predicted using this iterative equation called a logistic map

The pattern of x values with n is not always simple

$x(\mathrm{n})$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.0475	0.045244	0.043197	0.041331	0.039623	0.038053	0.036605	0.035265	0.034021	0.032864	0.031784	0.030773	0.029826	0.028937	0.028099	0.02731	0.026564	0.025858
	0.1	0.09	0.0819	0.075192	0.069538	0.064703	0.060516	0.056854	0.053622	0.050746	0.048171	0.045851	0.043749	0.041835	0.040084	0.038478	0.036997	0.035628	0.034359
	0.15	0.1275	0.111244	0.098869	0.089094	0.081156	0.07457	0.069009	0.064247	0.060119	0.056505	0.053312	0.05047	0.047923	0.045626	0.043544	0.041648	0.039914	0.038321
	0.2	0.16	0.1344	0.116337	0.102802	0.092234	0.083727	0.076717	0.070831	0.065814	0.061483	0.057703	0.054373	0.051417	0.048773	0.046394	0.044242	0.042284	0.040496
	0.25	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715	0.041804
	0.3	0.21	0.1659	0.138377	0.119229	0.105013	0.093986	0.085152	0.077901	0.071833	0.066673	0.062228	0.058355	0.05495	0.05193	0.049234	0.04681	0.044619	0.042628
	0.35	0.2275	0.175744	0.144858	0.123874	0.108529	0.096751	0.08739	0.079753	0.073392	0.068006	0.063381	0.059364	0.05584	0.052722	0.049942	0.047448	0.045197	0.043154
	0.4	0.24	0.1824	0.14913	0.12689	0.110789	0.098515	0.08881	0.080923	0.074374	0.068843	0.064103	0.059994	0.056395	0.053214	0.050383	0.047844	0.045555	0.04348
	0.45	0.2475	0.186244	0.151557	0.128587	0.112053	0.099497	0.089597	0.08157	0.074916	0.069304	0.064501	0.06034	0.056699	0.053485	0.050624	0.048061	0.045751	0.043658
	0.5	0.25	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715
	0.55	0.2475	0.186244	0.151557	0.128587	0.112053	0.099497	0.089597	0.08157	0.074916	0.069304	0.064501	0.06034	0.056699	0.053485	0.050624	0.048061	0.045751	0.043658
	0.6	0.24	0.1824	0.14913	0.12689	0.110789	0.098515	0.08881	0.080923	0.074374	0.068843	0.064103	0.059994	0.056395	0.053214	0.050383	0.047844	0.045555	0.04348
	0.65	0.2275	0.175744	0.144858	0.123874	0.108529	0.096751	0.08739	0.079753	0.073392	0.068006	0.063381	0.059364	0.05584	0.052722	0.049942	0.047448	0.045197	0.043154
	0.7	0.21	0.1659	0.138377	0.119229	0.105013	0.093986	0.085152	0.077901	0.071833	0.066673	0.062228	0.058355	0.05495	0.05193	0.049234	0.04681	0.044619	0.042628
	0.75	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715	0.041804
	0.8	0.16	0.1344	0.116337	0.102802	0.092234	0.083727	0.076717	0.070831	0.065814	0.061483	0.057703	0.054373	0.051417	0.048773	0.046394	0.044242	0.042284	0.040496
	0.85	0.1275	0.111244	0.098869	0.089094	0.081156	0.07457	0.069009	0.064247	0.060119	0.056505	0.053312	0.05047	0.047923	0.045626	0.043544	0.041648	0.039914	0.038321
	0.9	0.09	0.0819	0.075192	0.069538	0.064703	0.060516	0.056854	0.053622	0.050746	0.048171	0.045851	0.043749	0.041835	0.040084	0.038478	0.036997	0.035628	0.034359
	0.95	0.0475	0.045244	0.043197	0.041331	0.039623	0.038053	0.036605	0.035265	0.034021	0.032864	0.031784	0.030773	0.029826	0.028937	0.028099	0.02731	0.026564	0.025858
	1	-2.2E-16																	

$r=2 \quad x_{n+1}=r x_{n}\left(1-x_{n}\right)$

$x(\mathrm{n})$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.095	0.17195	0.284766	0.407349	0.482832	0.49941	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.1	0.18	0.2952	0.416114	0.485926	0.499604	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.15	0.255	0.37995	0.471176	0.498338	0.499994	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.2	0.32	0.4352	0.491602	0.499859	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.25	0.375	0.46875	0.498047	0.499992	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.3	0.42	0.4872	0.499672	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.35	0.455	0.49595	0.499967	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.4	0.48	0.4992	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.45	0.495	0.49995	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.55	0.495	0.49995	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.6	0.48	0.4992	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.65	0.455	0.49595	0.499967	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.7	0.42	0.4872	0.499672	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.75	0.375	0.46875	0.498047	0.499992	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.8	0.32	0.4352	0.491602	0.499859	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.85	0.255	0.37995	0.471176	0.498338	0.499994	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.9	0.18	0.2952	0.416114	0.485926	0.499604	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.95	0.095	0.17195	0.284766	0.407349	0.482832	0.49941	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	-4.4E-16	-8.9E-16	-1.8E-15	-3.6E-15	-7.1E-15	-1.4E-14	-2.8E-14	-5.7E-14	-1.1E-13	-2.3E-13	-4.5E-13	-9.1E-13	-1.8E-12	-3.6E-12	-7.3E-12	-1.5E-11	-2.9E-11	-5.8E-11

$r=3 \quad x_{n+1}=r x_{n}\left(1-x_{n}\right)$

$\mathrm{x}(\mathrm{n})$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.1425	0.366581	0.696598	0.634047	0.696094	0.634641	0.695615	0.635204	0.695159	0.635738	0.694725	0.636246	0.694311	0.63673	0.693915	0.637191	0.693536	0.637632
	0.1	0.27	0.5913	0.724993	0.598135	0.721109	0.603333	0.717967	0.607471	0.71535	0.610873	0.713121	0.613738	0.711191	0.616195	0.709496	0.618334	0.707991	0.620219
	0.15	0.3825	0.708581	0.619482	0.707172	0.621239	0.705904	0.622811	0.704752	0.62423	0.703701	0.625518	0.702736	0.626694	0.701846	0.627775	0.701021	0.628772	0.700253
	0.2	0.48	0.7488	0.564296	0.737598	0.580641	0.730491	0.590622	0.725363	0.597634	0.721403	0.602943	0.718208	0.607155	0.715553	0.61061	0.713296	0.613514	0.711343
	0.25	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582	0.709757
	0.3	0.63	0.6993	0.630839	0.698644	0.631622	0.698027	0.632356	0.697446	0.633046	0.696897	0.633695	0.696377	0.634308	0.695884	0.634889	0.695415	0.635439	0.694969
	0.35	0.6825	0.650081	0.682427	0.650161	0.682355	0.65024	0.682284	0.650318	0.682213	0.650395	0.682144	0.65047	0.682076	0.650545	0.682009	0.650619	0.681942	0.650691
	0.4	0.72	0.6048	0.717051	0.608667	0.714575	0.611873	0.712453	0.614591	0.710607	0.616934	0.708979	0.618983	0.707529	0.620795	0.706226	0.622413	0.705045	0.62387
	0.45	0.7425	0.573581	0.733757	0.586072	0.727775	0.594356	0.723291	0.600424	0.719745	0.605136	0.716839	0.608942	0.714395	0.612105	0.712298	0.614789	0.71047	0.617107
	0.5	0.75	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582
	0.55	0.7425	0.573581	0.733757	0.586072	0.727775	0.594356	0.723291	0.600424	0.719745	0.605136	0.716839	0.608942	0.714395	0.612105	0.712298	0.614789	0.71047	0.617107
	0.6	0.72	0.6048	0.717051	0.608667	0.714575	0.611873	0.712453	0.614591	0.710607	0.616934	0.708979	0.618983	0.707529	0.620795	0.706226	0.622413	0.705045	0.62387
	0.65	0.6825	0.650081	0.682427	0.650161	0.682355	0.65024	0.682284	0.650318	0.682213	0.650395	0.682144	0.65047	0.682076	0.650545	0.682009	0.650619	0.681942	0.650691
	0.7	0.63	0.6993	0.630839	0.698644	0.631622	0.698027	0.632356	0.697446	0.633046	0.696897	0.633695	0.696377	0.634308	0.695884	0.634889	0.695415	0.635439	0.694969
	0.75	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582	0.709757
	0.8	0.48	0.7488	0.564296	0.737598	0.580641	0.730491	0.590622	0.725363	0.597634	0.721403	0.602943	0.718208	0.607155	0.715553	0.61061	0.713296	0.613514	0.711343
	0.85	0.3825	0.708581	0.619482	0.707172	0.621239	0.705904	0.622811	0.704752	0.62423	0.703701	0.625518	0.702736	0.626694	0.701846	0.627775	0.701021	0.628772	0.700253
	0.9	0.27	0.5913	0.724993	0.598135	0.721109	0.603333	0.717967	0.607471	0.71535	0.610873	0.713121	0.613738	0.711191	0.616195	0.709496	0.618334	0.707991	0.620219
	0.95	0.1425	0.366581	0.696598	0.634047	0.696094	0.634641	0.695615	0.635204	0.695159	0.635738	0.694725	0.636246	0.694311	0.63673	0.693915	0.637191	0.693536	0.637632
	1	-6.7E-16	-2E-15	-6E-15	-1.8E-14	-5.4E-14	-1.6E-13	-4.9E-13	-1.5E-12	-4.4E-12	-1.3E-11	-3.9E-11	-1.2E-10	-3.5E-10	-1.1E-09	-3.2E-09	-9.6E-09	-2.9E-08	-8.6E-08

$r=4$
 $x_{n+1}=r x_{n}\left(1-x_{n}\right)$
 n

$\mathrm{x}(\mathrm{n})$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0.05	0.19	0.6156	0.946547	0.202385	0.6457	0.915085	0.310816	0.856838	0.490667	0.999652	0.001393	0.005565	0.022137	0.086589	0.316366	0.865114	0.466766	. 995582
	0.1	0.36	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.15	0.51	0.9996	0.001599	0.006387	0.025386	0.098965	0.356683	0.917841	0.301635	0.842605	0.530488	0.996282	0.014817	0.058389	0.219918	0.686217	0.861293	0.47787
	0.2	0.64	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.25	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.7
	0.3	0.84	0.5376	0.994345	0.022492	0.087945	0.320844	0.871612	0.447617	0.989024	0.043422	0.166146	0.554165	0.988265	0.046391	0.176954	0.582565	0.972732	0.106097
	0.35	0.91	0.3276	0.881113	0.419012	0.973764	0.102192	0.366996	0.92924	0.263011	0.775345	0.69674	0.845174	0.523421	0.997806	0.008757	0.034722	0.134065	0.464367
	0.4	0.96	0.1536	0.520028	0.998395	0.006408	0.025467	0.099273	0.35767	0.918969	0.29786	0.836557	0.546917	0.991195	0.034909	0.134761	0.466403	0.995485	0.017978
	0.45	0.99	0.0396	0.152127	0.515939	0.998984	0.00406	0.016176	0.063657	0.238418	0.7263	0.795154	0.651537	0.908147	0.333665	0.889331	0.393686	0.954789	0.172666
	0.5	1	4.44E-16	$1.78 \mathrm{E}-15$	7.11E-15	$2.84 \mathrm{E}-14$	$1.14 \mathrm{E}-13$	$4.55 \mathrm{E}-13$	$1.82 \mathrm{E}-12$	$7.28 \mathrm{E}-12$	$2.91 \mathrm{E}-11$	$1.16 \mathrm{E}-10$	$4.66 \mathrm{E}-10$	$1.86 \mathrm{E}-09$	$7.45 \mathrm{E}-09$	$2.98 \mathrm{E}-08$	$1.19 \mathrm{E}-07$	4.77E-07	1.91E-06
	0.55	0.99	0.0396	0.152127	0.515939	0.998984	0.00406	0.016176	0.063657	0.238418	0.7263	0.795154	0.651537	0.908147	0.333665	0.889331	0.393686	0.954789	0.172666
	0.6	0.96	0.1536	0.520028	0.998395	0.006408	0.025467	0.099273	0.35767	0.918969	0.29786	0.836557	0.546917	0.991195	0.034909	0.134761	0.466403	0.995485	0.017978
	0.65	0.91	0.3276	0.881113	0.419012	0.973764	0.102192	0.366996	0.92924	0.263011	0.775345	0.69674	0.845174	0.523421	0.997806	0.008757	0.034722	0.134065	0.464367
	0.7	0.84	0.5376	0.994345	0.022492	0.087945	0.320844	0.871612	0.447617	0.989024	0.043422	0.166146	0.554165	0.988265	0.046391	0.176954	0.582565	0.972732	0.106097
	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	0.8	0.64	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.85	0.51	0.9996	0.001599	0.006387	0.025386	0.098965	0.356683	0.917841	0.301635	0.842605	0.530488	0.996282	0.014817	0.058389	0.219918	0.686217	0.861293	0.47787
	0.9	0.36	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.95	0.19	0.6156	0.946547	0.202385	0.6457	0.915085	0.310816	0.856838	0.490667	0.999652	0.001393	0.005565	0.022137	0.086589	0.316366	0.865114	0.466766	0.995582
	1	-8.9E-16	-3.6E-15	-1.4E-14	-5.7E-14	-2.3E-13	-9.1E-13	-3.6E-12	-1.5E-11	-5.8E-11	-2.3E-10	-9.3E-10	-3.7E-09	-1.5E-08	-6E-08	-2.4E-07	-9.5E-07	-3.8E-06	-1.5E-

May Bifurcations Logistic map

May Bifurcations Logistic map

BAYES-O-METER

$\mathrm{P}(\mathrm{H} \mid \mathrm{T})$
Probability of hypothesis true given pass of test
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{T}^{\prime}\right)$ (False negative)
Probability of hypothesis true given fail of test
0.161
0.000531

P(H'|T')
Probability of hypothesis false $\quad 0.999$
0.839

Probability of hypothesis false given pass of test given fail of test

Lorenz and Rössler strange attractors

Edward Lorenz was using a Royal McBee LGP-30 computer in 1961 to model weather patterns. He accidentally fed in 3 digit precision numbers into the model from a printout rather than the 6 digits used by the computer. These tiny errors created a hugely different weather forecast....

Lorenz's weather model was very sensitive to initial conditions.

Although x, y, z trajectories are chaotic, they tend to gravitate towards a particular region.

This region is called a strange attractor.

$$
\begin{aligned}
& \frac{d x}{d t}=s(y-x) \\
& \frac{d y}{d t}=x(r-z)-y \\
& \frac{d z}{d t}=x y-b z
\end{aligned}
$$

$$
s=10 \quad r=28 \quad b=\frac{8}{3}
$$

Lorenz attractor

Lorenz attractor: iteration 2800

Lorenz attractor: iteration 5000

Lorenz attractor: iteration 2400

Lorenz attractor: iteration 3000

Lorenz attractor: iteration 6000

Applying the Lorenz equations, a cluster of initial x, y, z values separated by a tiny random deviation will eventually spread out evenly throughout the strange attractor.

Based upon Shaw et al; "Chaos", Scientific American 54:12 (1986) 46-57

Mandlebrot transformations of complex numbers

$$
\begin{aligned}
& i^{2}=-1 \\
& z=x+i y \\
& x=\operatorname{Re}(z) \\
& y=\operatorname{Im}(z) \\
& |z|=\sqrt{x^{2}+y^{2}} \\
& \hline
\end{aligned}
$$

$$
(1+i)(1+i)
$$

$$
=1+2 i+i^{2}
$$

$$
=1+2 i-1
$$

$$
=2 i
$$

Gaston Julia

 (1893-1978)
julia

julia.m plotoption abs diverge Plot a surface with height $h(x, y)$. This is the iteration number when $|z|$ exceeds a certain value e.g. 4

In this case colours indicate height $h(x, y)$. It is a 'colour-map'.
julia.m plot option plot z
Plot a surface with height $h(x, y)$

$$
\begin{aligned}
& x=\operatorname{Re}(z), \quad y=\operatorname{Im}(z) \\
& h(x, y)=e^{-\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

The light bulb

$$
z_{n+1}=\log \left(z_{n}^{2}+z_{0}\right)
$$

7 steps to enlightenment $\quad z_{n+1}=\tan ^{-1}\left(z_{n}^{2}+z_{0}\right)$

The Mandlerocket!

$$
z_{n+1}=\sin ^{-1}\left(z_{n}^{2}+z_{0}\right)
$$

The profusion of power

$$
z_{n+1}=\left(z_{n}^{2}+z_{0}\right)^{z_{n}}
$$

Remember $h(x, y)$ is a surface

$$
z_{n+1}=z_{n}^{2}+z_{0}
$$

$$
z_{n+1}=z_{n}^{2}+z_{0}
$$

Mandlebrot surface: iteration 8

$$
z_{n+1}=z_{n}^{2}+z_{0}
$$

Mandlebrot surface: iteration 64

$$
\begin{aligned}
& x=\operatorname{Re}(z), \quad y=\operatorname{Im}(z) \\
& h(x, y)=e^{-\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

7 steps to enlightenment

$$
z_{n+1}=\tan ^{-1}\left(z_{n}^{2}+z_{0}\right)
$$

The Mandlerocket

$$
z_{n+1}=\sin ^{-1}\left(z_{n}^{2}+z_{0}\right)
$$

Mandlebrot surface: iteration 25

$$
\begin{aligned}
& x=\operatorname{Re}(z), \quad y=\operatorname{Im}(z) \\
& h(x, y)=e^{-\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Angular deviations of ray in radians

$$
\underset{\text { startutofinish }}{\pi-\varepsilon}=\theta-\phi+\underbrace{\pi-2 \phi}_{B}+\theta-\phi
$$

Observer
$\therefore \varepsilon=4 \phi-2 \theta$

Alexander's dark band

Secondary rainbow

 \square

Elevation of deflected beam /deg
Primary $\varepsilon=40.9^{\circ}$ to 42.5°, Secondary $\varepsilon=50.2^{\circ}$ to 53°

Elevation of single and double rainbows

Reflection in a concave mirror

Reflection in a convex mirror

$$
\begin{aligned}
& \alpha=\frac{1}{2} \tan ^{-1}\left(\frac{y}{x}\right) \\
& k=\frac{x}{\cos (2 \alpha)} \\
& y^{\prime}=\frac{k \sin \alpha}{\frac{k}{R}-\cos \alpha+\frac{x}{y} \sin \alpha} \\
& x^{\prime}=x \frac{y^{\prime}}{y} \\
& \begin{array}{l}
\text { Virtual } \\
\begin{array}{l}
\text { image from } \\
\text { object } \\
\text { coordinates }
\end{array}
\end{array} \\
&
\end{aligned}
$$

We see an upright, distorted virtual image in a cylindrical mirror.
i.e. the apparent source of (diverging) light rays from the mirror

A MATLAB program anamorph.m fits any bitmap image into a unit circle, and then calculates an anamorphic projection based upon a mapping of a rectangular grid inside the black circle to a circle sector beyond.

If you load the image onto a flat tablet screen and zoom until a polished cylinder fits into the black circle, the virtual image is of the correct proportions! You also don't have to print...

A 2.5 cm diameter curtain rail section

Alexandria
Rays from
Sun at angle θ from a vertical pole

Eratosthenes of Cyrene

Syene \star
Rays from Sun directly overhead so the well casts no shadow

$\mathbf{A}=\mathbf{G} \cos \phi+\mathbf{E} \sin \phi$
(c)

Sphere circle: $\alpha=30^{\circ}$, lat $=42^{\circ}$, long $=102^{\circ}$

Death Star: $\alpha=15^{\circ}$, lat $=-219^{\circ}$, long $=195^{\circ}, k=-0.75$

(d)

X
all solar system

inner solar system

mercury venus spirograp

mars jupiter spirograph

jupiter saturn spirograph

saturn uranus spirograph

uranus neptune spirograph

neptune pluto spirograph

Solar system spirograph!

x	y	$\mathrm{x}^{\wedge} 2$	$\mathrm{y}^{\wedge} 2$	xy	xfit	yfit	(y -fit)^2	ylower	yupper
0.111	0.336	0.012	0.113	0.037	0.111	0.331	0.000	0.330	0.331
0.188	0.558	0.035	0.312	0.105	0.188	0.561	0.000	0.560	0.562
0.442	1.329	0.196	1.766	0.588	0.442	1.324	0.000	1.322	1.326
0.225	0.685	0.051	0.470	0.154	0.225	0.674	0.000	0.673	0.675
0.591	1.980	0.349	3.922	1.171	0.591	1.768	0.045	1.766	1.771
0.125	0.375	0.016	0.140	0.047	0.125	0.373	0.000	0.373	0.374
0.318	0.955	0.101	0.911	0.304	0.318	0.952	0.000	0.950	0.953
0.462	1.380	0.213	1.904	0.637	0.462	1.382	0.000	1.380	1.384
-0.036	-0.108	0.001	0.012	0.004	-0.036	-0.108	0.000	-0.108	-0.109
0.548	1.602	0.300	2.567	0.878	0.548	1.639	0.001	1.637	1.641
0.651	1.953	0.424	3.814	1.272	0.651	1.949	0.000	1.946	1.951
-0.002	0.015	0.000	0.000	0.000	-0.002	-0.007	0.000	-0.007	-0.007
-0.060	-0.171	0.004	0.029	0.010	-0.060	-0.181	0.000	-0.181	-0.181
0.076	0.229	0.006	0.052	0.017	0.076	0.226	0.000	0.226	0.226
0.322	0.954	0.104	0.910	0.307	0.322	0.964	0.000	0.963	0.965
0.556	1.645	0.309	2.706	0.915	0.556	1.664	0.000	1.662	1.667
1.064	3.181	1.133	10.117	3.386	1.064	3.185	0.000	3.180	3.189
-0.945	-2.836	0.894	8.045	2.682	-0.945	-2.829	0.000	-2.824	-2.833
-0.619	-1.875	0.383	3.515	1.161	-0.619	-1.853	0.000	-1.850	-1.855
0.760	2.268	0.578	5.145	1.725	0.760	2.275	0.000	2.272	2.278
-1.807	-5.434	3.265	29.530	9.819	-1.807	-5.406	0.001	-5.398	-5.414
-0.107	-0.336	0.012	0.113	0.036	-0.107	-0.321	0.000	-0.321	-0.322
-1.299	-3.898	1.688	15.193	5.064	-1.299	-3.887	0.000	-3.882	-3.893
-0.663	-1.987	0.439	3.950	1.317	-0.663	-1.982	0.000	-1.979	-1.985
-0.322	-0.968	0.104	0.936	0.312	-0.322	-0.965	0.000	-0.963	-0.966
0.279	0.822	0.078	0.676	0.229	0.279	0.834	0.000	0.833	0.835
0.623	1.884	0.388	3.548	1.174	0.623	1.865	0.000	1.862	1.867
-1.369	-4.104	1.873	16.843	5.617	-1.369	-4.095	0.000	-4.089	-4.101
-0.362	-1.080	0.131	1.166	0.390	-0.362	-1.082	0.000	-1.080	-1.083
-1.252	-3.760	1.567	14.134	4.706	-1.252	-3.745	0.000	-3.740	-3.751
-0.167	-0.504	0.028	0.254	0.084	-0.167	-0.501	0.000	-0.500	-0.502
0.358	1.076	0.128	1.157	0.385	0.358	1.071	0.000	1.069	1.072
0.127	0.380	0.016	0.145	0.048	0.127	0.380	0.000	0.380	0.381
0.415	1.684	0.172	2.835	0.699	0.415	1.242	0.195	1.240	1.243
-1.595	-4.790	2.545	22.941	7.640	-1.595	-4.773	0.000	-4.766	-4.780
-0.977	-2.931	0.954	8.589	2.863	-0.977	-2.922	0.000	-2.918	-2.927
-1.361	-3.979	1.853	15.831	5.417	-1.361	-4.073	0.009	-4.067	-4.079
-1.396	-4.189	1.949	17.550	5.849	-1.396	-4.177	0.000	-4.171	-4.183
-1.292	-3.876	1.670	15.020	5.009	-1.292	-3.867	0.000	-3.861	-3.873
-1.569	-4.710	2.461	22.185	7.388	-1.569	-4.693	0.000	-4.686	-4.700
-1.209	-3.627	1.462	13.157	4.385	-1.209	-3.617	0.000	-3.612	-3.623
-1.336	-3.955	1.786	15.641	5.285	-1.336	-3.998	0.002	-3.992	-4.004
-1.530	-4.588	2.341	21.053	7.021	-1.530	-4.578	0.000	-4.572	-4.585
-1.286	-3.861	1.653	14.904	4.963	-1.286	-3.847	0.000	-3.841	-3.852
-1.551	-4.654	2.407	21.663	7.220	-1.551	-4.641	0.000	-4.635	-4.648

$y=2 \log \left(\frac{T}{\mathrm{Yr}}\right)+\log \left(\frac{M}{M_{\odot}}+\frac{m}{M_{\odot}}\right), \quad x=\log \left(\frac{a}{\mathrm{AU}}\right)$
$y=(2.992 \pm 0.004) x$

648 Exoplanets T vs a

648 Exoplanets T^{2} vs $\left(\mathrm{a}^{3}\right) /(\mathrm{m}+\mathrm{M})$
 $y=0.9455 x$

$$
\begin{aligned}
& \mathbf{a}_{n}=f\left(t_{n}, \mathbf{r}_{n}, \mathbf{v}_{n}\right) \\
& t_{n+1}=t_{n}+\Delta t \\
& \mathbf{r}_{n+1}=\mathbf{r}_{n}+\mathbf{v}_{n} \Delta t+\frac{1}{2} \mathbf{a}_{n} \Delta t^{2} \\
& \mathbf{V}=\mathbf{v}_{n}+\mathbf{a}_{n} \Delta t \\
& \mathbf{A}=f\left(t_{n+1}, \mathbf{r}_{n+1}, \mathbf{V}\right) \\
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\frac{1}{2}\left(\mathbf{a}_{n}+\mathbf{A}\right) \Delta t
\end{aligned}
$$

Newton's Law of Gravitation

$$
\mathbf{a}_{n, i}=-G \sum_{j \neq i}^{N} M_{j} \frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{3}}
$$

$$
\begin{aligned}
& \mathbf{r}=\mathbf{r}_{M}-\mathbf{r}_{m} \\
& r=|\mathbf{r}|
\end{aligned}
$$

$M_{1}=3 M_{\odot}$
In this simulation: $\quad M_{2}=2 M_{\odot}$
$M_{3} \ll M_{\odot}$
$M 1=3, M 2=2 T=2.32$ years, $a=3 A U, k=1.1, a_{p}=0.965 A U$.

$M 1=5, M 2=3, T=14.7, t=0$

$M 1=5, M 2=3, T=14.7, t=4.01$

$M 1=5, M 2=3, T=14.7, t=8.01$

$M 1=5, M 2=3, T=14.7, t=2$

$\mathrm{M} 1=5, \mathrm{M} 2=3, \mathrm{~T}=14.7, \mathrm{t}=10$

$\mathrm{M} 1=5, \mathrm{M} 2=3, \mathrm{~T}=14.7, \mathrm{t}=11$

A possible explanation for common spiral galactic forms

> SCIENCE BY SIMULATION

Volume 1: A Mezze of Mathematical Methods Volume 2: Models of Classical Physics

www.eclecticon.info

Eist created July 2012000
Last updated Dec 2021 웅 BPhO - BAAO

Experiments Questions Publications

Simulations
SCIENCE BY SIMULATION

Volume 3: Models of Modern Physics
order book $=\underset{\text { Connecting Great Minds }}{\text { World Scientific }}$

http://www.eclecticon.info/scibysim vol1.htm

http://www.eclecticon.info/scibysim vol2.htm

Volume 3: Models of Modern Physics

Nuclear \& Quantum (Atoms, Rutherford scattering, Planck spectrum, Photoelectric effect, Electron diffraction, Bohr's quantum atom, Schrodinger Equation and Particle in a Box, Uncertainty Principle, Measurement and Malus, Radioactive decay, Nuclear binding energy) Special Relativity (Time dilation, Length contraction, Loss of simultaneity, Lorentz transform, Twins paradox, Minkowski spacetime, Velocity transforms, Doppler effect, E=mc2, Relativistic dynamics, Compton scattering) Orbits of stars, planets and moons (Gravitational fields, Escape velocity and Black Holes, Kepler's Laws, Orbit simulations, Tidal forces, Hubble's law and the Big Bang)

Download all the code for the book | A Course in |
| :--- |
| Coding |

http://www.eclecticon.info/programming.htm

SCIENCE BY SIMULATION

Volume 1: A Mezze of Mathematical Models

$\|$ World Scientific

