SCIENCE BY SIMULATION

Volume 1: A Mezze of Mathematical Models

This is the first volume of **Science by Simulation**

World Scientific

As the title A Mezze of Mathematical Models suggests, it is a deliberate mixture of contextualized examples of systems that can be modelled using mathematics, and simulated using computers

Learn to build mathematical models

SCIENCE BY SIMULATION

Volume 1: A Mezze of Mathematical Models

ANDREW FRENCH

Learn to code dynamic <u>computer</u> <u>simulations</u>

1665. A bale of damp cloth is delivered to the Derbyshire village of **Eyam**... George Viccars, the tailor's assistant, dries the cloth and releases fleas infected with *Yersinia Pestis* bacteria – **Plague**

Rector William Mompesson *quarantines* Eyam and records Infected, Susceptible and Dead populations *as time progresses*

bles Infectives Recovered

Can we develop a mathematical model to predict I,S,D vs time? What does this tell us about *Epidemiology* in general? _______e.g Flu, Ebola

Calculus methods, differential equations numerical methods, line of best fit, iteration, loops ...

We performed the Eyam analysis in **Python**, then in **MATLAB**. You can also construct an Euler model via a spreadsheet (**Excel**).

	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R			
1																			_		
2		Black Deat	th Epidemic	logical mo	odel using t	he Eyam da	ta												_		
3		Andy French & John Cullerne. 24th February 2							Eyam population during 1666 plague outbreak												
4											C	т		1-4-	т.1	Ditt					
5		Initial population N0			249.5			-5 -1 -1 -1 -1 -1 -1 -1 -1													
6		Initial number of succeptables S0				235			250.0	250.0											
7		Initial number of infectives I0				14.5				*									_		
8		Transmission rate constant beta				0.017759													_		
9		Death rate constant alpha			2.9													_			
10									200.0		\checkmark								_		
11		timestep o	lt /months			0.1													_		
12		-																	_		
13		t /months	S	1	D	N	N+D = N0		_			\sim					+		_		
14		0	235.0	14.5	0.0	249.5	249.5		਼ੁਰੂ 150.0						-				_		
15		0.1	228.9	16.3	4.2	245.3	249.5		ula										_		
16		0.2	222.3	18.3	8.9	240.6	249.5		doc										_		
17		0.3	215.1	20.2	14.2	235.3	249.5		l u					_ +					_		
18		0.4	207.4	22.0	20.1	229.4	249.5		100.0 <u>ج</u> م						+				_		
19		0.5	199.3	23.7	26.5	223.0	249.5												_		
20		0.6	190.9	25.3	33.4	216.1	249.5										· · ·		_		
21		0.7	182.3	26.5	40.7	208.8	249.5												_		
22		0.8	173.7	27.4	48.4	201.1	249.5		50.0		/								_		
23		0.9	165.3	27.9	56.3	193.2	249.5											-	_		
24		1	157.1	28.0	64.4	185.1	249.5												_		
25		1.1	149.3	27.7	72.5	177.0	249.5							+					+		
26		1.2	141.9	27.0	80.6	168.9	249.5		0.0					1			+		+		
27		1.3	135.1	26.0	88.4	161.1	249.5			0	0.5	1	1.5	2	2.5	3	3.5	4	+		
28		1.4	128.9	24.7	95.9	153.6	249.5						tiı	ne/month	s				+		
29		1.5	123.3	23.2	103.1	146.4	249.5												+		
30		1.6	118.2	21.5	109.8	139.7	249.5														

 $\frac{dI}{dt} = \beta SI - \alpha I \quad \frac{dD}{dt} = \alpha I$ dS βSI dt

 $\frac{dS}{dt} =$ $-\beta SI$ $\frac{dI}{dt} = \beta SI - \alpha I$ dD $= \alpha I$ dt

Leonhard Euler 1707-1783 Euler numerical *iterative* solution scheme

$$\alpha = 2.894, \quad \beta = \frac{\alpha}{163.3}$$

$$t_0 = 0, \quad S_0 = 235, \quad I_0 = 14.5, \quad D_0 = 0$$

$$t_{n+1} = t_n + \Delta t$$

$$S_{n+1} = S_n - \beta S_n I_n \Delta t$$

$$I_{n+1} = I_n + (\beta S_n I_n - \alpha I_n) \Delta t$$

$$D_{n+1} = D_n + \alpha I_n \Delta t$$

Euler Eyam solver implemented in MATLAB with a Graphical User Interface (GUI). Change the inputs via the sliders or edit boxes, and the curves are computed automatically.

Eyam model: α =2.99, β =0.0183, Δ t=0.005

Probability map, computed from 50,000 iterations. Black circles are Mompesson data and black dashed lines correspond to the Euler model.

May's Chaotic Bunnies

l published this model in 1976

Robert May 1936-

Assume an ecosystem can support a maximum number of rabbits. Let x be the fraction of this maximum at year n.

To account for **reproduction**, next year's population is proportional to the previous.

To account for **starvation**, next year's population is *also proportional* to the fraction of the maximum population as yet unfilled.

$$x_{n+1} = rx_n \left(1 - x_n\right)$$

Growth parameter

The population next year is predicted using this **iterative** equation called a logistic map

The pattern of x values with n is not always simple

May Bifurcations Logistic map

Model breaks down for r > 4

May Bifurcations Logistic map

Lorenz and Rössler strange attractors

Edward Lorenz was using a Royal McBee LGP-30 computer in 1961 to model weather patterns. He accidentally fed in 3 digit precision numbers into the model from a printout rather than the 6 digits used by the computer. These tiny errors created a hugely different weather forecast....

Lorenz's weather model was very sensitive to initial conditions.

His equations looked a bit like these:

s = 10r = 28

 $\frac{dx}{dt} = s\left(y - x\right)$

 $b = \frac{8}{3}$

 $\frac{dy}{dt} = x(r-z) - y$

 $\frac{dz}{dt} = xy - bz$

Edward Lorenz 1917-2008

Although *x*, *y*, *z* trajectories are **chaotic**, they tend to *gravitate towards a particular region*.

This region is called a **Strange Attractor**

30

10

30

30

Applying the Lorenz equations, a cluster of initial x, y, z values separated by a *tiny* random deviation will eventually **spread out evenly throughout the strange attractor.**

Based upon Shaw *et al*; "Chaos", Scientific American 54:12 (1986) 46-57

https://en.wikipedia.org/wiki/Rainbow

Elevation of single and double rainbows

Mandlebrot transformations of complex numbers

(1+i)(1+i)= 1 + 2i + i² = 1 + 2i - 1 = 2i

julia.m plot option abs diverge Plot a surface with height h(x,y). This is the *iteration number* when |z| exceeds a certain value e.g. 4

In this case *colours* indicate height h(x,y). It is a 'colour-map'.

julia.m plot option plot z Plot a surface with height h(x,y)

 $x = \operatorname{Re}(z), \quad y = \operatorname{Im}(z)$

 $h(x, y) = e^{-\sqrt{x^2 + y^2}}$

Benoit Mandlebrot (1924-2010)

The light bulb

 $z_{n+1} = \log\left(z_n^2 + z_0\right)$

7 steps to enlightenment

 $z_{n+1} = \tan^{-1} \left(z_n^2 + z_0 \right)$

The Mandlerocket!

 $z_{n+1} = \sin^{-1} \left(z_n^2 + z_0 \right)$

Micro mandlebeast

 $z_{n+1} = \left(z_n^2 + z_0\right)^2$

Selection from *Day of Julia*. Mathematicon Exhibition, 2014

FTSE 100 historical record 01-01-1988 to 01-01-2020 Colour proportional to daily average stock price /pence

SCIENCE BY SIMULATION

Volume 1: A Mezze of Mathematical Models

