Special Relativity is a theory of dynamics proposed by Albert Einstein in 1905. The key mathematical element is the use of the Lorentz Transform. This extends the equations of
Galilean Relativity, which relate the Cartesian X,y,z coordinates of an object to coordinates of the same object as viewed in a frame of reference moving at velocity V in the positive x
direction relative to the X,y,z system. Let S denote the X,y,z coordinate system and S’ denote the x’,y’,z” coordinates of the moving frame. The Lorentz transform incorporates the strange
(but seeming true!) fact that the speed of light is the same for both S and S’ frames. In other words, if a torch is shone from frame S, the speed of the light observed by S’ would be the same
speed as in S, and not the speed of light minus V. This is because Maxwell’s Equations, which describe electric and magnetic fields, predict that electromagnetic waves propagate at a
constant speed, independent of the (relative) velocity of any coordinate system. Einstein believed Maxwell’s result to be the more fundamental (i.e. ‘axiomatic’) truth. This was helped by the
experimental result of Michelson & Morely in 1887 which showed that there was no ‘luminiferous aether’ that light moved through. Light can propagate perfectly well through empty space (a
vacuum). The consequences of Special Relativity are profound. It results in length contraction, time dilation and time synchronisation changes between the S and S’ frames.

Galilean relativity
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Galilean relativity appears to work just fine in normal scenarios on Earth, i.e. when V << C where the speed of light € =2.998x10°ms™
The effects of Special relativity are only significant when V is close to C.

Now consider a spherical light pulse emitted when the origins of S and S’ coincide. Since it radiates out at speed C
in both S and S’ from their (respective) origins, we can compare the radii r, »’ of the pulse as observed from S and S’
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The Lorentz Transform is now revealed! 7 has the desired properties
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So time progresses differently in S and S’ unless y is unity.
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Derivation of Lorentz transformations using the wave equation*

Galilean relativity
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Consider the following candidate expressions for the
Lorentz transform of the spatial coordinates between
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Einstein’s postulate states that light propagates at speed ¢

in both S and S’ frames. We can therefore write down

the following wave equations for light waves propagating in

these frames.
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Galilean relativity appears to work just fine in normal scenarios on Earth, i.e. when V < C where the speed of light ¢ =2.998x10°ms™
The effects of Special relativity are only significant when V is close to C.
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The Lorentz Transform is now revealed!
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So lengths contract and time
dilates and shifts when V becomes
closetoC

*Idea from John Cullerne, Winchester College 2017.
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The Lorentz Transform can be applied to relate other dynamical parameters between the S and S’ frames

Velocity
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If the velocity of a photon of
light is defined in plane polars
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This is called
‘relativistic aberration’

Doppler shift

Consider a receding wave source of frequency f’in the S’
frame. It crosses the x axis of the S frame at angle 6. and
speed u. The velocity of waves emitted is w, in S.

The period T of waves received by an observer (in the X
direction) at the origin O of the S frame is:
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Hence frequency of radiation received at O is f =1/T where:
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Using the generalized Lorentz Transform At :7(At'+ -
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The Lorentz Transform
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We can generalize to an S~ velocity
which is not parallel to the X axis
of the S frame

r=(xy,z), r'=(x,y.z)
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Relativistic Doppler shift cont ....
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The classical formula can easily be recovered by
setting y =1
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Unlike the classical formula, we get a transverse Doppler
effect when 6=90° in the relativistic version
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The Doppler shift is also related to the ‘redshift’ z of a
moving, radiating source
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Momentum

We might expect ‘force = rate of change of momentum’ to be true

in a relativistic sense as well as in the classical. However, the

speed limit of ¢ would imply an upper limit on the amount of momentum
a given mass could have, if we use the classical momentum formula

p=mu

This would be counter to reality — we could easily devise a theoretical
system which applies a finite amount of power, indefinitely, to a fixed mass
system. e.g. a ball rolling down a infinitely long slope!

To get around this problem, let us redefine momentum such that it can
become infinite as velocity tends towards c. i.e. multiply by y....
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u-u)’ w Y
(45 -5

Some useful derivatives involving y
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‘Relativistic Newton’s Second Law’

Work done

W =If-dr=ff-udt

W = mj[ya-u +y3(a'quu2jdt
c

w =m_[y(a~u)(l+ ru

CZ

W:m_[;ﬁ(a-u)dt

W =mczj73wdt
c

W :mczj‘%dt

W =mc?["dy
70

w :(71_70)mC2

2

N
u
:1—"—]/ 2 _7/2:
L__C___]
[—————— -
d a-ul
A
L

So the total energy of a mass m is

E =ymc®

and when the mass is at rest

r=1

E, = mc?

Hence kinetic energy is

E, =(y—1)mc?

Now in classical limit
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Energy, momentum invariant
Consider the following quantity:
k=E*—|p|"¢?

k=(;/mcz)2 —(ymu)-(ymu)c?
k =y’m?c* — y*m’u’c?

u2
k =m?c*y? (1 czj
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This is clearly an invariant, regardless
of the frame of reference.

E’ —|p|2 c? =m’c*

Application: “A particle with rest
mass am strikes a stationary particle
with rest mass bm. The am particle had
kinetic energy kmc?, and the result was
an inelastic collision, with no total
energy release. Find the rest mass M
of the resulting particle in terms of m”

(7 —1) amc’ =kmc®  Kinetic energy
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u u 2
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y ( o z=7" =(¥%)
_ h_(a\n~_ Initial particle
u=y1 (a"k) ¢=at speed

Energy-momentum invariant

E’ —|p|2 ¢’ =M?c*
E =kmc? +amc? + bmc? = (k +a+b)mc?

p = yamu = &k amafl (%) ¢
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~M=my(k+a+b)’ —2ak—k’

Using conservation of momentum, we can also find the
velocity of the resulting particle
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Energy loss — which should be zero
since no energy release.

AE = (k +a+b)mc? —(1—%)_% Mc?

Classical result: Energy loss — not NOT zero in this case:

AE =tamu® — 1 Mv?
Mass ,
conservation 5 a ,
and momentum AE = amu —%(a+b)m(—J u
conservation:
a.2
AE =iamu®-1% mu

M =(a+b)m 2+
amu = Mv 5 a
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AE = Labmu
a+b
Classical version:
Worked example:
u=Lc
a=2b=3k=1 |y=% M =5m
a= 1-() =) =% v=gu=gfo
Ju==%¢ v=3%c~0.298c
AE =2msc® =imc?

M =my/(k+a+b)’ —2ak K’

M =my/(L+2+3) ~2(2)(1) ~1=3Im = 5.57m
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AE = (1+2+3)mc? - (1- £) * \/3Imc?
AE:GmCZ—(gé)f%\/_mc

AE =6mc? — (&) \/31mc?

AE =6mc® —6mc* =0
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Variant of calculation with no change of rest mass, but instead energy release as per Classical result.

M =(a+b)m
Using conservation of momentum Worked example: Classical version:
. 2 a=2b=3k=1 u=yc
a+ a = = =
yamu = 2kam,[1-(3%) ¢ = (a +b)mv : M = Em
4 = (&) = \1-(2) =
S(a+k)y1-(5%)c= (1-%) " (a+b)v ¢ \ll (%) (%) v=zu-25¢
Au=-5c v =-2-C~0.298C
2 2\1 3 =~
a+k (1— 2 )czz 1-%) v¥(a+b O
(a+k)* (1= (%) Je? = (1-%) v*(a+b) o2k 22001 AE —3mc? = ime?
2
(a+k)-a* , , ¢ (a+b) (2+3)
-~ 7 C°=
2 2 2
c" -V
(a+b) SV = s XCZ%CzOAOSC
2 1+
2ak +k
= 2 AE
(a+b) 2:k+a+b—j(a+b)z+2ak+k2
c
2 2 2
c°—Vvi)=v AE
pet-v') =1+2+3-(2+3) +2x2x1+1~[0.523
2 2 mc?
et =(1+B)v
1 ﬂ XC
+B This may sound like a strange result, the energy loss in the relativistic case is larger
and also the velocity of M is larger than in the Classical scenario.
Energy loss:
) However, the relativistic speed means the initial KE is larger in the relativistic case.
k+a+b)me®—(1-%) * (a+b)mc’
E=( ) ( c ) ( ) Classical KE E, :l(Zm)u2 = m(ﬁc)2 :z 0.56mc’
_ 2 _(1_ p\? 2
AE = (k ta+ b) me (l 1+ﬁ) (a+b)me Relativistic KE = (% - 2m)c —m
2 _% 2
AE =(k+a+b)me’ —(;) * (a+b)me
AE = (k +a+ b)m(;2 — (1+ ,3)% (a+ b)mc2 NOTE: In Classical mechanics we ignore any momentum associated with the energy loss. e.g. random motion of
) molecules with net zero momentum but net average KE. In the relativistic scenario here we have assumed the
(a n b)2 +2ak + k2 ? same. However in particle physics we consider single particles, so we might incorporate a release of a photon,
AE = (k +a+ b)m02 — > (a + b)m02 which will have momentum that will need to be incorporated in the conservation of momentum calculation:
(a+b)
AE p _h
2:k+a+b—\/(a+b)2+2ak+k2 proen
mc
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