Static method video Dynamic method video

# Static & Dynamic methods of

Dr Andrew French. March 2022.

Ð

**TEACHER NOTES** 



# PART 1: FIND A SPRING CONSTANT USING A STATIC METHOD

Suspend masses from a spring and measure equilibrium extension x vs weight of load. If the spring is *Hookean*, then load weight equates to the spring constant k multiplied by extension.



Weight *mg* and spring tension *kx* must balance in equilibrium.

Therefore a graph of **weight vs extension** should yield a straight line graph through the origin with gradient *k*.

Hookeen Sp My = kx K (those) Wagner 1 -inva Gostart





# Don't forget eye protection!

Record the position of the top (or bottom)
of the ring. Assume this doesn't deform under the load. i.e. the load causes only the spring to uncoil.

Get you eye level to match the spring-ring to avoid *parallax error* in the measurement via the vertically clamped ruler.

Use 50g steps between 100g and 650g



Use this balance for "Kettle on a Balance"

2000g 👩

g 200g

2000g 🌔

200g

g

607

CR . ......

.....

Take a sample of '100g' to see how accurate these actually are... 601

Use this balance for

"Kettle on a Balance'

Use this balance for "Kettle on a Balance" 2000g 🕤

2000g 🕤

g

1.0

. .

Use this balance for "Kettle on a Balance"

Oertling HC22

CALCULATING A SPRING CONSTANT STATIC METHOD

Strength of gravity

9.81

g /Nkg^-1

|         |              |             |          |           |              | Weight   | Weight   |
|---------|--------------|-------------|----------|-----------|--------------|----------|----------|
|         |              | Extension x | Extensio | Weight /N | Recalibrated | upper    | lower    |
| Mass /g | ring top /mm | /mm         | n x /m   | measured  | weight /N    | error /N | error /N |
| 0       | 625          | 0           | 0.000    | 0.00      | 0.00         | 0.00     | 0.00     |
| 100     | 585          | 40          | 0.040    | 0.98      | 0.96         | 0.01     | 0.01     |
| 150     | 563          | 62          | 0.062    | 1.47      | 1.45         | 0.01     | 0.01     |
| 200     | 540          | 85          | 0.085    | 1.96      | 1.93         | 0.02     | 0.02     |
| 250     | 518          | 107         | 0.107    | 2.45      | 2.41         | 0.02     | 0.02     |
| 300     | 497          | 128         | 0.128    | 2.94      | 2.89         | 0.03     | 0.03     |
| 350     | 475          | 150         | 0.150    | 3.43      | 3.37         | 0.03     | 0.03     |
| 400     | 450          | 175         | 0.175    | 3.92      | 3.85         | 0.04     | 0.04     |
| 450     | 429          | 196         | 0.196    | 4.41      | 4.34         | 0.04     | 0.04     |
| 500     | 407          | 218         | 0.218    | 4.91      | 4.82         | 0.04     | 0.04     |
| 550     | 385          | 240         | 0.240    | 5.40      | 5.30         | 0.05     | 0.05     |
| 600     | 360          | 265         | 0.265    | 5.89      | 5.78         | 0.05     | 0.05     |
| 650     | 340          | 285         | 0.285    | 6.38      | 6.26         | 0.06     | 0.06     |

Estimated measurement error (+/-) /m

0.002



Weight sample – use to calibrate weights (multiply by 0.9815) and have a fractional error of about 1%

So expect mass to be 0.982 of quoted mass, with fractional error of 0.93/98.15 =

0.009

## Spring constant calculation via static method



With a (symmetric) 1% error this means:

$$k = (21.7 \pm 0.2) \mathrm{Nm}^{-1}$$

# CALCULATING A SPRING CONSTANT Strength of gravity 9.81 STATIC METHOD g /Nkg^-1

|         |              |             |          |           |              | Weight   | Weight   |
|---------|--------------|-------------|----------|-----------|--------------|----------|----------|
|         |              | Extension x | Extensio | Weight /N | Recalibrated | upper    | lower    |
| Mass /g | ring top /mm | /mm         | n x /m   | measured  | weight /N    | error /N | error /N |
| 0       | 625          | 0           | 0.000    | 0.00      | 0.00         | 0.00     | 0.00     |
| 100     | 585          | 40          | 0.040    | 0.98      | 0.96         | 0.01     | 0.01     |
| 150     | 563          | 62          | 0.062    | 1.47      | 1.45         | 0.01     | 0.01     |
| 200     | 540          | 85          | 0.085    | 1.96      | 1.93         | 0.02     | 0.02     |
| 250     | 518          | 107         | 0.107    | 2.45      | 2.41         | 0.02     | 0.02     |
| 300     | 497          | 128         | 0.128    | 2.94      | 2.89         | 0.03     | 0.03     |
| 350     | 475          | 150         | 0.150    | 3.43      | 3.37         | 0.03     | 0.03     |
| 400     | 450          | 175         | 0.175    | 3.92      | 3.85         | 0.04     | 0.04     |
| 450     | 429          | 196         | 0.196    | 4.41      | 4.34         | 0.04     | 0.04     |
| 500     | 407          | 218         | 0.218    | 4.91      | 4.82         | 0.04     | 0.04     |
| 550     | 385          | 240         | 0.240    | 5.40      | 5.30         | 0.05     | 0.05     |
| 600     | 360          | 265         | 0.265    | 5.89      | 5.78         | 0.05     | 0.05     |
| 650     | 340          | 285         | 0.285    | 6.38      | 6.26         | 0.06     | 0.06     |



Sping

Jught

M

### Estimated measurement error (+/-) /m

0.002

#### 100g mass sample and estimated % error

| 98.3       | 97.2        | 99.6  | 97.5 |
|------------|-------------|-------|------|
|            |             |       |      |
| Mean aver  | age mass /g | 98.15 |      |
| Standard d | eviation /g | 0.93  |      |

So expect mass to be 0.982 of quoted mass, with fractional error of 0.93/98.15 = 0.009

## PART 2: FIND A SPRING CONSTANT VIA A DYNAMIC METHOD



Pull down weighted spring from equilibrium position, and let it oscillate. Amplitude of a few cm!

Start stopwatch from lowest position, and carefully time ten oscillations.

Get eye at level with lowest position of oscillating mass to minimise timing error for end of ten oscillations.

Divide by ten to get the period, and perform **three repeats** for each mass





mass

4\*piv2 \* 15.000

5.000

0.000

0.000

0.200

0.400

0.600

(Period/s)^2

0.800

1.000

1.200

MODEL

Mass /kg Period /s 0

0

|         | ING A SPRIN  | G CONSTAN    | т                                      |                              | k /Nm^-1     | 23.1       | ]            | <ul> <li>Use</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | standa       | rd devi    | ation of    | period    | ls                      |                       |                            |
|---------|--------------|--------------|----------------------------------------|------------------------------|--------------|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------|-----------|-------------------------|-----------------------|----------------------------|
|         |              |              |                                        |                              | K            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |            |             | Period A2 | /*ni/3*D-               | 1*ni^2*m              | 1*ni^2*ma                  |
| Mass /a | 10 periods   | 10 periods   | 10 periods                             | Period /s                    | error in T   | Mass /kg   | Recalibrated | mass<br>upper<br>error /kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mass lower   | Period A2  | Period^2    | upper     | 4*pi^2*Re<br>calibrated | 4*pi^2*mas<br>s upper | 4*pi^2*mass<br>lower error |
| 00      | /3           | 1 27         | /3                                     | 0.423                        | / 3          | 0.100      | 0.098        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 0.179      | 0.007       | 0.007     | 3 9/9                   | 0.054                 | 0.036                      |
| 50      | 5.1          | 4.27<br>5.06 | 5.22                                   | 0.423                        | 0.003        | 0.100      | 0.058        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001        | 0.175      | 0.007       | 0.007     | 5.922                   | 0.054                 | 0.053                      |
| 200     | 6.07         | 5.88         | 6                                      | 0.598                        | 0.008        | 0.200      | 0.196        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002        | 0.358      | 0.004       | 0.004     | 7 896                   | 0.054                 | 0.071                      |
| 250     | 6.58         | 6.62         | 6 54                                   | 0.558                        | 0.003        | 0.250      | 0.246        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002        | 0.330      | 0.004       | 0.004     | 9.870                   | 0.054                 | 0.089                      |
| 800     | 7.51         | 7.15         | 7 14                                   | 0.727                        | 0.017        | 0.300      | 0.295        | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.003        | 0.528      | 0.010       | 0.010     | 11 844                  | 0.054                 | 0.107                      |
| 350     | 7 74         | 7 72         | 7 59                                   | 0.768                        | 0.007        | 0.350      | 0.344        | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.003        | 0.590      | 0.021       | 0.021     | 13 817                  | 0.054                 | 0.124                      |
| 00      | 8.45         | 8.18         | 8.18                                   | 0.827                        | 0.013        | 0.400      | 0.393        | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.004        | 0.684      | 0.014       | 0.014     | 15,791                  | 0.054                 | 0.142                      |
| 50      | 8.71         | 8.91         | 8.8                                    | 0.881                        | 0.008        | 0.450      | 0.442        | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.004        | 0.776      | 0.015       | 0.016     | 17,765                  | 0.054                 | 0.160                      |
| 00      | 9.36         | 9.16         | 9.3                                    | 0.927                        | 0.008        | 0.500      | 0.491        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005        | 0.860      | 0.009       | 0.010     | 19,739                  | 0.054                 | 0.178                      |
| 50      | 9.65         | 9.7          | 9.58                                   | 0.964                        | 0.005        | 0.550      | 0.540        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005        | 0.930      | 0.020       | 0.020     | 21.713                  | 0.054                 | 0.195                      |
| 00      | 10.24        | 10.09        | 10                                     | 1 011                        | 0.010        | 0.600      | 0.589        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005        | 1 022      | 0.010       | 0.010     | 23 687                  | 0.054                 | 0.213                      |
| 50      | 10.24        | 10.03        | 10.55                                  | 1.011                        | 0.005        | 0.650      | 0.638        | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.006        | 1.022      | 0.000       | 0.000     | 25.661                  | 0.054                 | 0.231                      |
| 009     | mass to be 0 | .982 of quot | ed mass, with                          | ·   N M                      | error of 0.9 | 13/98.15 = | RM<br>Mk     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | ſ          | Shr<br>So   | ۶ :<br>۶۹ | = -(<br>= 411           | 2M                    | ે <b>ત્ર</b><br>           |
| 30.000  |              |              |                                        |                              |              | X          | 6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50           |            |             |           |                         |                       |                            |
|         |              | 4*pi^2       | * mass vs<br>y = 2<br>R <sup>2</sup> = | period^:<br>23.106x<br>0.999 | 2            |            |              | Sprin<br>1.200<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng oscillati | ion period | d vs mass o | on spring |                         |                       |                            |
| 5.000   |              | 4*pi^2       | * mass vs<br>y = 2<br>R <sup>2</sup> = | 23.106x                      | 2            |            |              | Sprin<br>1.200<br>1.000<br>1.000<br>0.600<br>0.600<br>-<br>0.600<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>0.400<br>-<br>- | ng oscillati | ion period | d vs mass o | on spring |                         |                       |                            |

0.200

0.000

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800

Spring mass /kg





Interestingly, the spring constant (using the same spring) as calculated via the dynamic method seems to be a little higher (23.1 Nm<sup>-1</sup> compared to 21.7 Nm<sup>-1</sup>) than k calculated via the static method. They are not quite the same, within the (approximately 1%) error bounds. Possible permanent strain of spring, increasing k, after the static experiment?