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Stopwatch 

Measuring cylinders containing 
viscous shower gel 

Rulers 

Paper towels to wipe up 
shower gel 

Ball bearings of various sizes 

Digital calliper (for measuring the 
diameter of the ball bearings) 

Mass balance 
(minimum 0.01g) 

Magnets to help remove ball bearings 
from shower gel 

Equipment setup 

Store gel cylinders with 
cling film top to prevent gel 
evaporating and reacting with the air 



This practical is best done as a class, and then pooling results together. Students should 
record the terminal speed for a variety of different ball bearings, having firstly measured 
the radius and mass of each ball bearing (and hence calculate the density). 

Ball bearings will tend to roll off a 
mass balance, so make a paper towel 
‘nest’ first! 

Measure ball bearing diameter using 
a digital calliper. 

Ball bearing 



Ball bearing selection 

Removing ball bearing 
using a neodymium magnet 



It is fairly clear to observe that terminal velocity 
is attained very rapidly for all ball bearings. 
 
Hence terminal speed is simply a fixed distance 
travelled divided by the time taken. 
 
Work this out for each ball bearing, using three 
repeats. 
 
For the larger balls in particular, wait until the balls 
have dropped a few cm before timing, just to make 
sure terminal speed is attained. 
 
Balls inevitably strike the gel surface at a non-zero 
speed, so this precaution is sensible for all balls. 
 
You can also establish the motion before starting a 
stopwatch, which should reduce timing error. 

Start timing when 
ball reaches here 

Stop timing when 
ball reaches here 
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If ball bearing is falling at terminal speed 
then upthrust (the weight of fluid 
displaced) + drag must balance the weight 
of the ball bearing. 
 
A low Reynolds Numbers (i.e. low speed, 
‘viscous’ flow), the drag force can be 
modelled using Stokes’ law of viscous drag. 
 is the viscosity. 
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Reynolds number.  L 

is a characteristic 
dimension of the flow. 
In this case the ball 
bearing radius, but also 
the radius of the 
measuring cylinder. 
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See that the Reynolds 
number is a dimensionless 
quantity.  
 
For viscous drag, 
Re is typically  << 1 
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A sphere of density  

Equating upthrust + drag with weight: 
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So plot terminal speed  v  vs                                       and one should obtain a straight 
line through the origin of gradient equal to the viscosity .  
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As an extension, you might 
consider dynamic drag. But 
it doesn’t work very well! 
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Guess this 

Upper and lower bounds used 
to calculate error bars. 



Small radii 
ball bearings fit the 
model quite well 

Larger ball bearings 
correlate less well 
with a Stokes’ drag model 

Terminal speed 
of ball bearings 

Note uncertainties (indicated 
by the error bars) are small 
enough for us to state that the 
correlation is poor for physical 
reasons, not simply because 
our error bounds are large, 
and therefore a random effect. 
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Using the viscosity of shower gel as: 
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So the larger balls, with a radius of 6.36mm don’t  justify 
this approximation, of radius much less than 5.76mm. 
 
The larger balls are also not insignificant compared to 
the radius of the cylinder, so might expect the flow to be 
modified in a way that we can ignore for the smaller 
balls. 

Is viscous drag an appropriate model for the larger balls? 



A non viscous flow 
regime can perhaps 
be hinted at by the  
slightly bubbly trail left 
behind by the largest 
ball bearing. 


