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Measurement in Quantum Mechanics (QM) 

 

The Copenhagen Interpretation of measurement in QM 

 (Niels Bohr, Werner Heisenberg 1925-1927). For the discussion below, ‘state’ might mean position, velocity, spin, polarization etc). 

 

• The state of all physical systems can be represented mathematically by a wavefunction. This is a solution to the Schrödinger Equation (the time 

dependent version if one predicts a system will change with time). This is essentially a combination of the wave equation with the conservation of 

energy. 

 

• The modulus squared of the wavefunction is related to the probability of a particular state existing. (Born interpretation). 

 

• Prior to measurement, a wavefunction can always be written as a superposition of eigenstates (i.e. possible outputs) of the measurement device. 

When a measurement is made the wavefunction ‘collapses’ to one of the possible eigenstates associated with the measurement device.  

 

• This could mean that realism is rejected. This means until it is measured the system does not exist in a particular state. It is genuinely a 

superposition of all possible states. This explains the ‘state lottery’ (!) when a system is measured. This is also what the famous Schrödinger’s Cat 

thought experiment is all about. A cat is placed in a box containing a poisonous gas which is released as a result of a (random) radioactive decay. 

Until the box is opened (i.e. the alive or dead state of the cat is ‘measured’) the cat is said to be a superposition of both alive and dead states. 

Alternatively, the original state (e.g the polarization of a photon) is fixed, but unknown prior to measurement by a measuring device. It is the 

measuring process itself which, probabilistically, selects one of its eigenstates (e.g. a polarization direction at an angle to the prior-to-measurement 

state). This state is now what exists following measurement. The latter interpretation shall be used later on in an example to explore the EPR paradox 

described below. In other words, we shall assume realism is true. e.g. a photon did indeed have a particular state prior to measurement. 

 

 

The EPR paradox 

Einstein, Boris Podolsky and Nathan Rosen wrote a paper in 1935 which stated that Quantum Mechanics might be non-local, and indeed violates one 

of the axioms of Relativity. It is possible to produce a system consisting of two entangled particles. For example a pair or particles with mutually 

opposite spin. Imagine the particles are produced at the centre of an enormous laboratory with detectors placed, possibly astronomical distances 

away. However, if one detector measures an ‘up’ spin then we immediately know that the other particle must be ‘down.’ This is obvious logic if (i) we 

assume the entanglement of the particles and (ii) assume the particle was indeed in one state or another before it was measured. In other words, 

realism is true.  

 

However, QM states that the particle heading to either detector is indeed in both spin eigenstates of the detector until it is measured. Once it has 

been measured, how is it possible for the other particle’s wavefunction to collapse to the opposite ‘eigenstate’ without faster-than-light instantaneous 

‘spooky action at a distance’ communication? This appears to be a violation of the Principle of Locality, which means an interaction between two 

particles is mediated via an interaction which must travel though the space between the particles. The Principle of Relativity means this cannot be 

performed faster than the speed of light. 

 

Experiments by Alain Aspect (1972) and many more recently have shown that entangled particles have the expected properties that are consistent 

with the QM hypothesis. This of course means if QM is true then QM violates locality. 

 

Why is realism a problem for Quantum Mechanics? At no point in standard probability theory do we assert a superposition of states until 

measurement. The inherent uncertainty of measurement (e.g. the roll of a dice, choice of a card etc) arises from the distribution of possible outcomes, 

and our incomplete knowledge of which of these outcomes has occurred until we measure it. When a deck of cards is properly shuffled, there is a 1/52 

chance that the top card is the Queen of Diamonds. If the Queen of Diamonds was indeed picked, it was clearly there before we chose to reveal it. 

Surely probability is a measure of the information known to an observer about a system before a measurement of the system state is made? It is 

nothing intrinsic to the actual state of the system. However ..... 

 

....The problem with this is how to explain the Double Slit experiment with a beam of particles. If you work out which slit a particle is heading towards 

you will not get the diffraction-style pattern that you get if you simply measure detections of a screen down-stream of the slit. When you don’t measure 

the trajectory of the particle pre-slit it retains its wave-like character and appears to travel through both slits, resulting in a diffraction-style pattern of 

detections over time. 

 

 
https://en.wikipedia.org/wiki/Principle_of_locality#Local_realism 

If you measure a down spin at 

the left detector, you will know that the 

right detector will have up spin. 

This is logical if indeed the particle had that 

spin before you measured it! 
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Worked example relating to the EPR paradox* -  A Classical approach 

*Based upon discussions with John Cullerne & Jeremy Douglas, Winchester College 

Imagine a pair of photons are produced at the centre of a large laboratory. 

Each photon has the same linear polarization, i.e. it consists of an electromagnetic 

wave of a particular frequency, whose electric field vector is orientated at a fixed 

angle. (But whose magnitude varies sinusoidally over time and space). 

 

It is assumed the process which creates the photons results in random linear 

polarizations. 

 

Two detectors are placed at opposite ends of the laboratory, equidistant from the 

photon source. Each detector has binary detection logic based on the power 

transmitted through a polarizer. The relative orientation f of the polarizers between 

detectors A and B is known, but the orientation of the photon polarization at source, 

relative to the polarizers, is not a priori. 

 

Let us use Malus’ Law to define the detection logic. The light received by each detector is 

split two ways and passed through polarizers with polarization ninety degrees apart. 
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Detection logic 

A detects X if power in X direction is larger than or equal to power in Y direction. 

B detects X if power in X direction is larger than or equal to power in Y direction. 

 

Hence by Malus’ Law: 
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Of course I have made 

an assumption of realism here! 

 

i.e. the photons actually do emerge  

from the source with a fixed (but unknown) 

polarization. 

 

Let’s proceed with this argument 

and compare it to what QM would predict. 

Polarization angle  is assumed to be a random variable, uniformly distributed throughout 360o. 

What is the probability of detectors A and B both measuring the same polarization? 
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The probability of a mismatch is therefore 1 – this value. 
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The probability of a matching output is therefore    (match) & &
A B A B

P P X X P Y Y 

This predicts a linear model 

for matching probabilities. When 

the polarizers are aligned there 

is a 100% chance of matching 

whereas at 90o angular separation 

a match is impossible. 
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Worked example relating to the EPR paradox – Quantum Mechanical model  

In this scenario assume a pair of entangled photons with the same vertical polarization 

are produced in the centre of a large laboratory. Detectors based upon linear polarizers 

are placed a significant distance from the source, such that communication at light-speed 

between the detectors will have a measurable time delay. 

 

The detectors are placed at angles  and f  from the vertical. A single photon will either be  

detected or not. Detection means the detected photon has an X polarization, not detected 

implies the photon has a Y polarization. X and Y directions are of course in general different 

for each detector. 

2 2

2 2

( ) cos , ( ) sin

( ) cos , ( ) sin

A A

B B

P X P Y

P X P Y

 

f f

 

 

Detector A 

XA 

YA 

Entangled 

photons 



Detector B 

XB 

YB 

f

We shall assign probabilities for each detector’s eigenstate to be based upon the statistics 

of the classical limit i.e. billions and billions of photons! In this case we expect Malus’ 

Law to hold i.e. the square of the projection of the polarization yields transmitted power. 

If there is no waveform collapse upon measurement (we shall call this the Classical 

scenario) then the measurements by each detector are independent. We can therefore 

construct the following tree diagram to work out the probability of match and hence 

mismatch in the outputs (XYXXYYX...) of each detector. 
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Alternatively, if we measure using detector A first, then QM says that the polarization will now be 

the measured eigenstate of detector A. This will change the statistics of measurement of B. This if 

course requires ‘spooky action at a distance’ between A and B.... 
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Classical scenario 

Quantum scenario 

Note we get the same match and mismatch probabilities if 

we measure B first. However, what happens if A and B 

detections are simultaneous? 
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Example: 

QM 

The difference between the probabilities 

is significant, and therefore readily 

measurable. For this scenario the QM 

prediction is that the fraction of mismatches 

between the detector strings 

XXXYYXXYXYYX... is double the classical 

prediction. 
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We can summarize the comparison between the models by plotting coloured surfaces of match and mismatch probabilities against detector angles. Note: ,
A B
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