$$
\begin{aligned}
& \text { The Art of } \\
& \text { Computer } \\
& \text { Programming }
\end{aligned}
$$

"I'd like to welcome you to this course on Computer Science. Actually, that's a terrible way to start. Computer Science is a terrible name for this business. First of all, it's not a science. It might be engineering, or it might be art, or we'll actually see that computer so-called science actually has a lot in common with magic"

Harold Abelson, MIT (1986)

"Science is what we understand well enough to explain to a computer. Art is everything else we do."

Donald Knuth 1938-
Stanford University

"Computer programming is an art, because it applies accumulated knowledge to the world, because it requires skill and ingenuity, and especially because it produces objects of beauty. A programmer who subconsciously views himself as an artist will enjoy what he does and will do it better."

$$
\text { - } \int_{0}^{\infty} \frac{2 x \sin x}{1+x^{2}} d x=\frac{\pi}{e}
$$

"I can't go to a restaurant and order food because I keep looking at the fonts on the menu."

Lecture map

Fast numerical calculation + display systems

Use of computer programming as an artistic tool

Where you can design and refine the tool
Complexity, and beauty, from simplicity
(i.e. code)

Case studies

General thoughts on how humans best interact with information technology What You See Is What You Need!

Random rectangles
\& Mondrian

Ciphers

Uif Dpnfez pg Fsspst
cz Xjmmjbn Tiblftqfbsf

The Sierpinski Triangle

Case studies

for $n=1: N$
$r=r a n d ; \%$ Generate a random number
if (r \quad = $1 / 3$)
\%Move half way towards red star
$x=0.5^{*}(x R+x)$;
$y=0.5 *(y R+y) ;$
\%Plot a red dot
plot ($\mathrm{X}, \mathrm{y}, \quad$ r.') ;
elseif $(r>1 / 3) \& \&(r<=2 / 3)$
\%Move ... blue star
$\mathrm{x}=0.5^{*}(\mathrm{xB}+\mathrm{x})$;
$\mathrm{y}=0.5^{*}(\mathrm{yB}+\mathrm{y})$;
\%Plot a blue dot plot ($\mathrm{x}, \mathrm{Y}, \quad$ 'b.') ;
else
\%Move ... green star $x=0.5^{*}(x G+x)$;
$y=0.5^{*}(y G+y) ;$
\%Plot a green dot plot ($\mathrm{x}, \mathrm{y}, \quad$ ' $\mathrm{g} .{ }^{\prime}$) ;
end

end


```
fid = fopen( filename, 'r' ); %Open file filename (read only)
```

\%Store filename text in a row vector A of characters, then close file
A = fscanf(fid, '\%c'); fclose(fid);

```
e.g A = 'The Comedy of Errors .....'
```

\%Open file for writing
fid $=$ fopen (strrep (filename,'.txt', ['-', cipher_mode,'.txt']), 'w');
\%Step through cipher_key, replacing instances of the
\%characters with their plaintext or enciphered equivalents
B = A; dim = size(cipher_key);
if strcmp(cipher_mode,'encrypt')==1
\%Encrypt file contents
for $n=1: \operatorname{dim}(1)$
indices $=$ strfind (A, cipher_key\{n,1\});
B(indices) = cipher_key\{n,2\};
end
e.g.
plaintext.txt would become plaintextencrypt.txt
else
\%Decrypt file contents
for $\mathrm{n}=1: \operatorname{dim}(1)$
indices = strfind (A, cipher_key\{n,2\});
$B(i n d i c e s)=c i p h e r _k e y\{n, 1\} ;$

MATLAB code for cipher.m

end
end
\%Write encrypted character array B to a appended, then close file fwrite(fid, B); fclose(fid);

Composition with Yellow, Blue, and Red \qquad 1937-42, Piet Mondrian. Oil on canvas; $72.5 \times 69 \mathrm{~cm}$. London, Tate Gallery.

Randomly generated from mondrian.m

Piet Mondrian (1872-1944)
"a post or support"
De Stijl movement (Amsterdam, 1917-1931) "Neoplasticism" "Ultimate simplicity and abstraction"

Cut a rectangle randomly in horizontal and vertical directions. Randomly divide into two types

2 Shrink the 'red' type to the black lines

1. Choose an intersection at random \star
2. Find nearest \star intersection which has the same y coordinate
3. Find the nearest \star intersection from this which has the same x coordinate

5

4. Construct a rectangle

Find coordinates of all line segment intersections

Repeat from
4
cycling through red, blue and yellow colours

Soundsnipper GUI

Mandlebrot transformations of complex numbers

$$
\begin{array}{|l|}
i^{2}=-1 \\
z=x+i y \\
x=\operatorname{Re}(z) \\
y=\operatorname{Im}(z) \\
|z|=\sqrt{x^{2}+y^{2}}
\end{array}
$$

$(1+i)(1+i)$
$=1+2 i+i^{2}$
$=1+2 i-1$
$=2 i$

julia.m plot option abs diverge

Plot a surface with

 height $h(x, y)$. This is the iteration number when |z/ exceeds a certain value e.g. 4In this case colours indicate height $h(x, y)$. It is a 'colour-map'.

julia.m plotoption plot z
Plot a surface with height $h(x, y)$

$$
\begin{aligned}
& x=\operatorname{Re}(z), \quad y=\operatorname{Im}(z) \\
& h(x, y)=e^{-\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Benoit Mandlebrot (1924-2010)

Mandlebrot deep zoom (YouTube)

The Mandlebrot Set has infinite complexity!
 ... But a recursive fractal geometry

Count the green squares that contain the points

Fractal dimension=1.4549 (+/-) 0.05104

The light bulb

$$
z_{n+1}=\log \left(z_{n}^{2}+z_{0}\right)
$$

The Mandlerocket!

$$
z_{n+1}=\sin ^{-1}\left(z_{n}^{2}+z_{0}\right)
$$

The profusion of power

$$
z_{n+1}=\left(z_{n}^{2}+z_{0}\right)^{z_{n}}
$$

Remember $h(x, y)$ is a surface

$$
z_{n+1}=z_{n}^{2}+z_{0}
$$

$$
z_{n+1}=z_{n}^{2}+z_{0}
$$

$$
z_{n+1}=z_{n}^{2}+z_{0}
$$

Mandlebrot surface: iteration 64

Selection from Day of Julia. Mathematicon Exhibition, 2014

7 steps to enlightenment

$$
z_{n+1}=\tan ^{-1}\left(z_{n}^{2}+z_{0}\right)
$$

The Mandlerocket

$$
z_{n+1}=\sin ^{-1}\left(z_{n}^{2}+z_{0}\right)
$$

Mandlebrot surface: iteration 25

$$
\begin{aligned}
& x=\operatorname{Re}(z), \quad y=\operatorname{Im}(z) \\
& h(x, y)=e^{-\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

$$
m_{i} \frac{d \mathbf{v}_{i}}{d t}=A m_{i} \sum_{j \neq i} \frac{m_{j}\left(\mathbf{r}_{j}-\mathbf{r}_{i}\right)}{\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|^{P+1}}-B m_{i} \sum_{j \neq i} R_{j} \frac{m_{j}\left(\mathbf{r}_{j}-\mathbf{r}_{i}\right)}{\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|^{Q+1}}
$$

- Sun
- Mercury
Venus
Earth
Mars

$t=0$

$$
t=2
$$

$t=2.5$

Movie

Movie HD

Camera roll increment

Surface and colour	- Lighting			
Colourmap	Select light			3D light mode
bespoke -	Light 2	Light colour		
Colour function	Lighting style	Lighting mode		Camlight
Log *	local	phong	\checkmark	
\square Add colorbar \square Add axis		Light range	Light azi	Light elev
\square Transparency \square Texture	\square Light arrow	1500	143,1567	56.8352

Camera position			
			Default
14.4769	5.042	-8.1226	Camera view angle /deg
Camera target		z	
0.11471	-0.092678	0.20539	4.83
Camera u x	rector	z	
0.43953	0.19331	0.87718	

clock anticlock

Andy French v3. 02014 Spheria
NG image saved in 136.2825 s . Welcome to Spherium. Dragging the mouse in the main axes will result in a 3D rotation. Use the + and - buttons to zoom and out, and the >> < etc to translate the figure. Hydrogenic orbital spheria take the form H XN e.g. H P1. Note the blue square must be pressed to update Spherium following 3D rotation
ammonite

Ammonite options					
- Plot spiral?	V Add ridges	Ridge frequency	Cross section ratio	\# spiral turns	\# surface points per turn
V Add bumps	\checkmark Add ridges to colour	5	0.9	5	200
	(1) Add bumps to colour	Ridge ampilude	Spiral bump amplitud		
Spiral type		0.3	0.2		
Logarithmic		Helicity	Spiral bump frequency		
		0	14		

Atomic dragon spiral Mathematicon, 2014

$$
\text { PNG image saved in } 136.2825 \mathrm{~s} \text {. Welcome to Spherium. Dragging the mouse in the main axes will result in a 3D rotation. Use the }+ \text { and - buttons to zoom }
$$ in and out, and the $>,<$ etc to translate the figure. Hydrogenic orbital spheria take the form HXN e.g. $\mathrm{HP1}$. Note the blue square must be pressed to update Spherium following 3D rotation.

Camera pos	ion	z	Default
11.0504	9.6644	-8.7085	Camera view angle /deg
Camera target		z	
-0.04044:	-0.20037	0.32887	4.0273
Camera up \times	${ }^{\text {ector }}$	z	
0.4116	0.31926	0.85361	

Camera roll increment
clock anticlock
 v3. 02014

	Student Version> : klein	\square

- Kiein bottle

Pipe granularity	Rotational granularity	Radius of top bend	: small pipe	Radius of base : small pipe	Base height : small pipe
1000	1000	3		7	8

Klein bottle with cloudy holes transparency map

\square 回 x
translate the figure. Hydrogenic orbital spheria take the form H XN e.g. H P1. Note the blue square must be pressed to update Spherium following 3 D rotation. \qquad
<Student Version> : polyspike

Polyspike-		
\# azi spikes	\# elev spikes	spikiness
20	10	1

*harmonograph

- The Harmonograph was a Victorian curiosity attributed to Professor Blackburn in 1844
- Use two or three pendulums to create strange and beautiful patterns

Example of a lateral harmonograph

Photo from The Science Museum

Create Harmonographs from .wav files

Rotary freq-damp

$+$

Harmonograph

Harmonograph types

 \# loopsRotary freq-damp
50

Create Harmonographs from .wav files

Rotary freq-damp

$\mathrm{N}=50, \mathrm{~A}=0.5, \mathrm{~F}=7.04$, phi $=121.7936^{\circ}, \mathrm{D}=2.15$

Harmonograph

Play tones Save .PNG Written by Andy French v1 2012\quadDPI

Harmonograph types
Rotary freq-damp
$-$
\# loops
50

Create Harmonographs from .wav files

Rotary freq-damp

$N=50, A=0.5, F=5.92$, phi $=121.7936^{\circ}, D=2.15$

Default Load settings Save settings

Harmonograph types
\# loops
Rotary freq-damp

Create Harmonographs from .wav files

Rotary freq-damp

$\mathrm{N}=50, \mathrm{~A}=0.5, \mathrm{~F}=3.04$, phi $=121.7936^{\circ}, \mathrm{D}=2.15$

Create Harmonographs from .wav files

Rotary freq-damp

$\mathrm{N}=50, \mathrm{~A}=0.5, \mathrm{~F}=0.96, \mathrm{phi}=121.7936^{\circ}, \mathrm{D}=2.15$

Play tones

Harmonograph
\# loops
Harmonograph types \# loops

Rotary freq-damp
$\mathrm{N}=50, \mathrm{~A}=0.5, \mathrm{~F}=-1.5204$, phi $=121.7936^{\circ}, \mathrm{D}=2.15$

Play tones

Written by Andy French
v1 2012

Default

Harmonograph types
Rotary freq-damp
Load settings Save settings \# loops

1000 \# points per loop

$$
\begin{aligned}
& x=A_{1} e^{-\frac{t}{T_{1}}} \sin \left(t W_{1}+P_{1}\right)+A_{2} e^{-\frac{t}{T_{2}}} \sin \left(t W_{2}+P_{2}\right) \\
& y=A_{3} e^{-\frac{t}{T_{3}}} \sin \left(t W_{3}+P_{3}\right)+A_{4} e^{-\frac{t}{T_{4}}} \sin \left(t W_{4}+P_{4}\right)
\end{aligned}
$$

Rotary harmonograph with frequency damping

$$
\begin{aligned}
T & =\frac{2 \pi}{\omega \log \left(\frac{100}{100-D}\right)}\left[1, \frac{1}{F}, 1, \frac{1}{F}\right] \\
A & =[1, a, 1, a] \\
W & =[\omega,-F \omega, \omega,-F \omega] \\
P & =\left[0, \phi, \frac{\pi}{2}, \frac{\pi}{2}+\phi\right]
\end{aligned}
$$

Parameters
t is time /seconds
ω is 2π times the first pendulum swing frequency $/ \mathrm{Hz}$
a is the amplitude ratio
F is the frequency ratio
D is the damping factor (typically between 0 and 5)
ϕ is the phase difference /radians between the pendula

Musical harmony

- The mathematics of music has been known since the time of Pythagoras, 2500 years ago
- Frequency intervals of simple fractions e.g. 3:2 (a fifth) yield 'harmonious' music
- An octave means a frequency ratio of 2. An octave above concert A (440 Hz) is therefore 880 Hz . An octave below is 220 Hz .
- The modern ‘equal-tempered scale’ divides an octave (the frequency ratio 2) into twelve parts such that

$$
F_{n}=2^{n / 12}=\sqrt[\frac{n}{12}]{2}
$$

Musical harmony

Name	Exact value in 12 -TET	Decimal value in 12-TET	Cents	Just intonation interval
Unison (C)	$2^{0 / 12}=1$	1.000000	0	$\frac{1}{1}=1.000000$
Minor second (Cझ/Db)	$2^{1 / 12}=\sqrt[12]{2}$	1.059463	100	$\frac{16}{15}=1.066667$
Major second (D)	$2^{2 / 12}=\sqrt[6]{2}$	1.122462	200	$\frac{9}{8}=1.125000$
Minor third (D\#/Eb)	$2^{3 / 12}=\sqrt[4]{2}$	1.189207	300	$\frac{6}{5}=1.200000$
Major third (E)	$2^{4 / 12}=\sqrt[3]{2}$	1.259921	400	$\frac{5}{4}=1.250000$
Perfect fourth (F)	$2^{5 / 12}=\sqrt[12]{32}$	1.334840	500	$\frac{4}{3}=1.333333$
Augmented fourth (F\#/Gb)	$2^{6 / 12}=\sqrt{2}$	1.414214	600	$\frac{7}{5}=1.400000$
Perfect fifth (G)	$2^{7 / 12}=\sqrt[12]{128}$	1.498307	700	$\frac{3}{2}=1.500000$
Minor sixth (G\#/Ab)	$2^{8 / 12}=\sqrt[3]{4}$	1.587401	800	$\frac{8}{5}=1.600000$
Major sixth (A)	$2^{9 / 12}=\sqrt[4]{8}$	1.681793	900	$\frac{5}{3}=1.666667$
Minor seventh (A\#/Bb)	$2^{10 / 12}=\sqrt[6]{32}$	1.781797	1000	$\frac{7}{4}=1.750000$
Major seventh (B)	$2^{11 / 12}=\sqrt[12]{2048}$	1.887749	1100	$\frac{15}{8}=1.875000$
Octave (C)	$2^{12 / 12}=2$	2.000000	1200	$\frac{2}{1}=2.000000$

Represent musical harmonies visually with the harmonograph!

Rotary
$\mathrm{F}=2.01, \mathrm{D}=0.7$,
$\mathrm{A}=1, \mathrm{phi}=0$

Note the difference a small change in F makes....

Rotary
$\mathrm{F}=1.51, \mathrm{D}=0.7$,
$\mathrm{A}=1$, phi $=0$

What You See Is What You Need

 lengths R and D and will also vary with angles. However, as a first approximation, let us assume the variation of these quantities is small and or secondary importance to the overall dynamics. i.e. all k parameters shall be assumed to be fixed inputs and independent of θ and ϕ.
Application of Newton's second law to determine

 derived quantitiesLet us apply Newton's second law in and directions to both the passenger and the parachute. If dynamic equilibrium is assumed there is no acceleration, so the sum of all the forces must equate to zero.

Passenger:

$x:$	$0=-T_{1} \cos \theta+F_{1}+T_{2} \cos (\phi+\theta)$
$y:$	$0=-T_{1} \sin \theta-M g+T_{2} \sin (\phi+\theta)$

Parachute:

$$
\begin{array}{|ll|}
\hline x: & 0=-T_{2} \cos (\phi+\theta)+F_{2} \\
\hline y: & 0=-T_{2} \sin (\phi+\theta)-m g+F_{L} \\
\hline
\end{array}
$$

Substituting for the v^{2} models of drag and lift:
Passenger:

$$
\begin{array}{|ll|}
\hline x: & T_{1} \cos \theta=k_{1} v^{2}+T_{2} \cos (\phi+\theta) \\
\hline y: & T_{1} \sin \theta=-M g+T_{2} \sin (\phi+\theta) \\
\hline
\end{array}
$$

Parachute:

$$
\begin{array}{|ll|}
\hline x: & T_{2} \cos (\phi+\theta)=k_{2} v^{2} \\
\hline y: & T_{2} \sin (\phi+\theta)=-m g+k_{L} v^{2} \\
\hline
\end{array}
$$

\# (parachute newton 2 x y)

Hence by dividing the y and x components of (ref: passenger newton 2 xy)

$$
\tan \theta=\frac{-M g+T_{2} \sin (\phi+\theta)}{k_{1} v^{2}+T_{2} \cos (\phi+\theta)}
$$

and then substituting the results of (ref: parachute newton 2 xy) we arrive at an equation relating v
\qquad
\square
\square
\square Introduction - 1

facebook $\&^{5}$

Home favourite
wins silver med Okagbare seals
women's spint Wumen's spint Glasgow
GLASGOW 2014 Lord Coe praise
'sensational $G \varepsilon$ GLAGGOW \& WE
SCOTLAND SCOTLAND
Bolt. Games si
'nonsense' nonsense Silver justifies
Weightman beli Weightman be $\substack{\text { Guernsey's Dru } \\ \text { athletics }}$

> bly

What is it like being Usain Bolt?
Adulation, glory, money, weird
photocalls, 'selfie' 'equests and a photocalls, 'selfie' requests and a
bagman' to get his food - the life of the sprint superstar.

Meet Judd and Williams - the next generation
Jess Judd and Jodie Williams are determined to make their
at Glasgow 2014, as BBC Sport's Tom Fordyce finds out.
'I had tn invent mu nwn terhninuio to clear the bar
ñ hack from a

'High productivity multi-tasking,' or are you just being distracted?

What You See Is What You Need

The rise of Apps for Smartphones....Typically software designed for a very specific purpose

"The psychological profiling of a programmer is mostly the ability to shift levels of abstraction, from low level to high level. To see something in the small and to see something in the large."
"Email is a wonderful thing for people whose role in life is to be on top of things. But not for me; my role is to be on the bottom of things. What I do takes long hours of studying and uninterruptible concentration."

Fast numerical calculation + display systems

Use of computer programming as an artistic tool

Where you can design and refine the tool
Complexity, and beauty, from simplicity (i.e. code)

Case studies

General thoughts on how humans best interact with information technology What You See Is What You Need!

Inspired?

All welcome, regardless of prior experience

