Heisenberg’s
Uncertainty Principle
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To evalcuate the final step I have used the standard integral:
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An example non-normal distribution: a “parabolic distribution”
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The mean of the x2 values can be found in a similar fashion:
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To evalcuate the final step I have used the standard integral:
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Putting this together:
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The symmetry of the box about x = %a implies left and right propagation

directions for waves are equally likely. Therefore we expect the mean value of
particle momentum to be zero.
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i.e. p? is independent of position = and time ¢. Therefore:
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Heisenberg’s Uncertainty Principle (which we shall prove in general shortly)
states that:
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This is profoundly important, as it means there is a fundamental limit on how
precise we can know, simulteanously, the position and momentum of a particle. For
the Particle in a Box
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‘Particle in a Box’ satisfies ApAx > %h Note there is also an Uncertainty Principle
connecting the energy of a particle £ and the time ¢ at which the measurement was
made.
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A general derivation of the Uncertainty Principle

Heisenberg’s Uncertainty Principle ApAx > %h can be derived in very general
terms. I will summarize the argument in Haken & Wolf [3] pp466-468.
Firstly define an integral expression:
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Now if we set a coordinate system where x = 0 corresponds to the mean value
of x, this implies (x) = 0 by definition. Therefore since Az = \/ (x2) — () and
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Integrating the last term by parts, and again noting W\Q = b
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If we consider a plane wave of the form v(z,t) = ¢ etkr=«?) .
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If we consider a plane wave of the form 1 (z,t) = e’ (Fz =«
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From de Broglie’s relation between momentum and wavenumber p = hk, there-

fore we can write:’

dy  ip
a5 282
ox h (6.282)
Which means:
= |2ef *\ip, | 1 [ 5 2 (p*)
[ ol o= [ aemp [ pwiae=Tgh @)

If left & right particle motion symmetry can be assumed, then expect (p) = 0

as in the Particle in a Box model. Hence:
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and therefore:
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minimum value 1s when j—‘sj = 0. 1.e.
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So if J > 0 for all values of £, and the minimum value of J is Juyin = 53

L this implies:
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Since Ap and Ax are both positive quantities:
ApAz > h (6.292)

which proves Heisenberg’s Uncertainty Principle.
Recap of assumptions:

e Coordinate system set such that (z) = 0.
e Assume mean momentum (p) = 0. In practical terms, this means the centre of

mass of the system is at rest (on average).
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