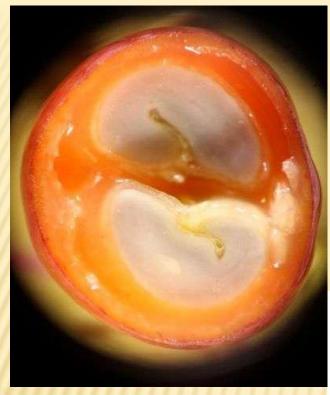
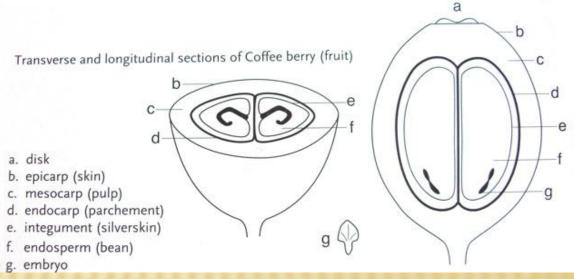
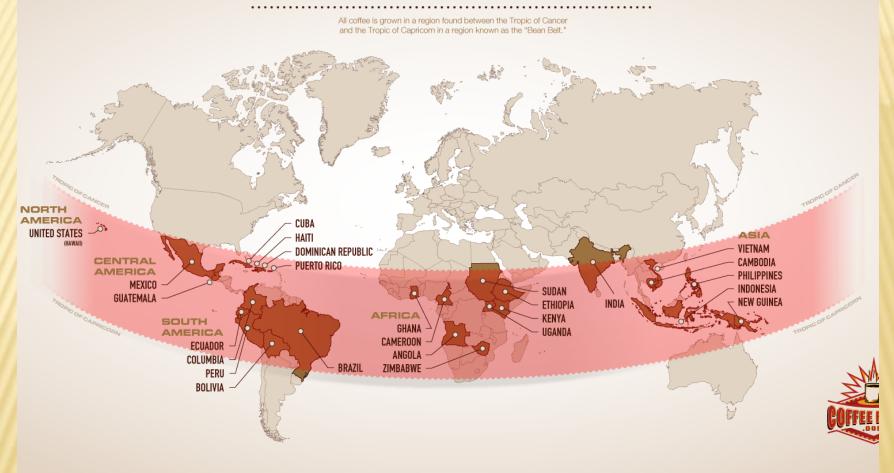


THE SCIENCE OF BREWING COFFEE


Kingdom:	<u>Plantae</u>
Division:	Magnoliophyta (Angiosperms)
(unranked):	<u>Eudicots</u>
Class:	Magnoliopsida
(unranked):	<u>Asterids</u>
Order:	<u>Gentianales</u>
Family:	<u>Rubiaceae</u>
Subfamily:	<u>Ixoroideae</u>
Tribe:	<u>Coffeeae</u>
Genus:	Coffea


Over 20 species, but only two of importance: arabica and robusta


THE COFFEA PLANT

INSIDE THE BERRY

THE COFFEE BEAN-GROWING BELT

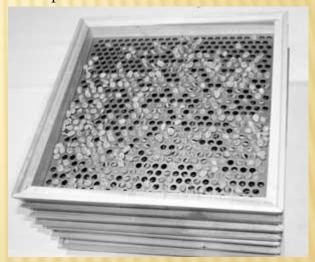
WHERE COFFEA PLANTS ARE GROWN

EFFECT OF ALTITUDE ON TASTE

De-pulping

Drying

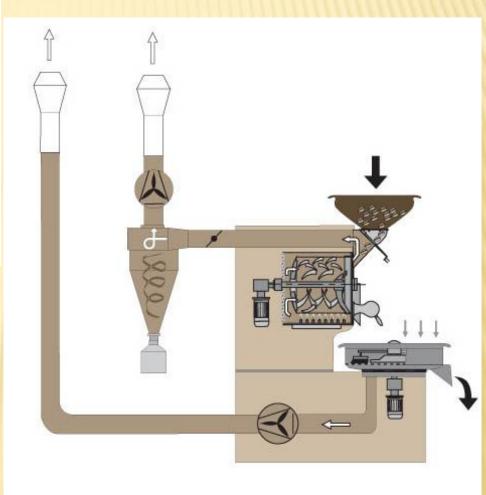
AFTER HARVESTING: PROCESSING


Parchment Removal

Grade = Bean size

For example, Grade 18 beans, also called AA, will pass through a sieve with 18/64" diameter holes, but are retained by the next smaller sieve with 16/64" diameter holes.

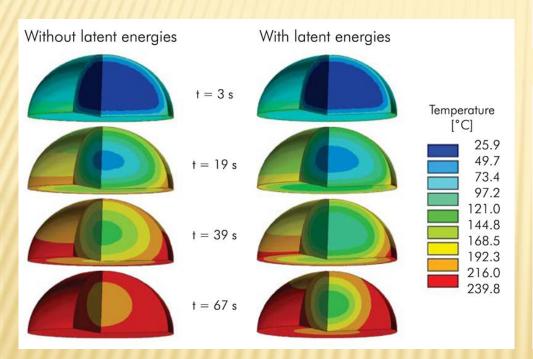
General correlation between bean size and flavour, but there are many exceptions.

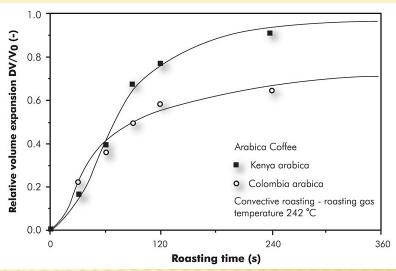


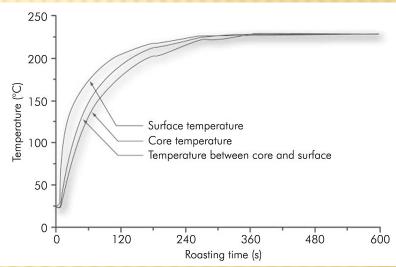
PARCHMENT REMOVAL, GRADING & SORTING

Table 2: Basic principles in modern roasting technology

Туре	Characteristics					
Rotating cylinder	Horizontal/vertical With/without perforated walls Direct heating by convective flow of hot gases Indirect heating by hot drum walls Batch-operated Continuously operated by an inner conveyer Gas temperatures: 400–550 °C Roasting times: 8.5–20 min					
Bowl	Direct heating by convective flow of hot gases Continuously operated across the gas stream; rotating Gas temperatures: 480–550 °C Roasting times: 3–6 min					
Fixed drum	Direct heating by convective flow of hot gases Batch operated Gas temperatures: 400–450 °C Roasting times: 3–6 min					
Fluidized bed	Direct heating by fluidizing gas Batch operated Gas temperatures: 240–270 °C Roasting times: 5 min					
Spouted bed	Direct heating by fluidizing gas Batch operated Fast roasting: Gas temperatures: 310–360 °C Roasting times: 1.5–6 min Slow roasting: Gas temperatures: 230 –275 °C Roasting times: 10–20 min					
Swirling bed	Tangential gas inlet Spiral upward motion of the beans Direct heat transfer of a moved packed bed Gas temperatures: 280 °C Roasting times: 1.5–3 min					




ROASTING


Table 1: Material data of arabica coffee beans

Coffee	Mass	Moisture	Roasting loss	Organic loss	Density	Volume	Radius*	Porosity
	(g)	(wt%)	(wt%)	(wt%)	(g/ml)	(ml)	(mm)	(-)
Green	0.15	10-12	0	0	1.2-1.4	0.11-0.13	3	<0.1
Medium to dark roast	0.13	2-3	15-18	5-8	0.7-0.8	0.16-0.19	3.5	0.5

*Of a sphere with the same volume.

CHANGES TO BEAN DURING ROASTING

a. Green

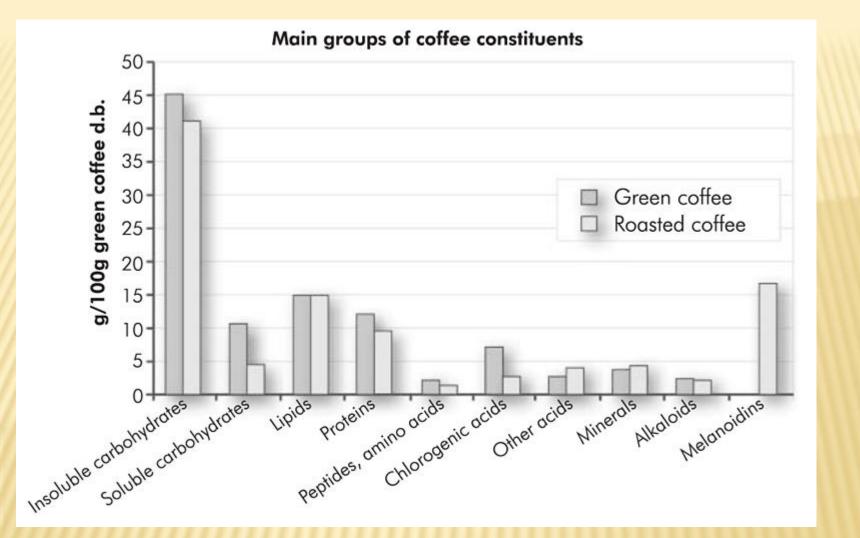
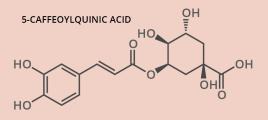

b. Toasted to 70 deg C c. Roasted (porous)

Table 3: Macroscopic changes during roasting

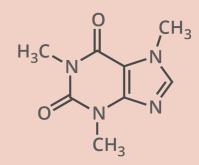
Temperature change within the bean (°C)	Effect
20-130	Liquid-vapour transition of water (bean drying). Colour fades
130-140	First endothermic maximum. Yellow colouring and swelling of bean with beginning of non-enzymatic browning. Roast gases are formed and begin to evaporate
140-160	Complex series of endothermic and exothermic peaks. Colour changes to light brown. Large increase in bean volume and micropores. Rests of silverskin are removed. Bean is very brittle. Some little fissures at the surface occur. Aroma formation starts
160-190	Roasting reactions move towards the inner dry structure of the bean (see also Figures 4 and 6)
190-220	Micro fissures inside the bean. Smoke escapes. Large volumes of carbon dioxide escape and leave the bean very porous. Typical flavour of roasted coffee appears


CHANGES TO BEAN DURING ROASTING

Ta	Table 4: Macroscopic changes brought about by roasting					
Parameter	Comment					
Colour of bean	It fades to whitish-yellow at the beginning of roasting, it darkens regularly with increasing temperature (see Figure 9); natural arabicas and robustas need a higher final temperature to reach the same colour as washed arabicas. There is a dark to light colour gradient from the surface within the bean, particularly noticeable with low-roasted fast-roasted coffees					
Surface of bean	Oil sweats to the surface rendering it brilliant, particularly at high roasting levels					
Structure of the bean	The large volumes of carbon dioxide freed render the bean porous (see Figure 9c)					
Brittleness	It increases with roasting to a maximum, with an important modification of the internal texture of the bean, which under the microscope looks like a volcanic land covered with an amalgam of the original constituents					
Density	Decreases regularly from 550 to 700 gl ⁻¹ in raw beans to 300–450 gl ⁻¹ in roasted beans (the lowest figures are attained with fast-roasted coffee)					
Hot water extract	It decreases slightly from green to light-roasted beans, then increases again slightly with increasing roasting degree (highest with fast-roasted coffee)					
Moisture	Both free water, which decreases regularly all through roasting, and chemically bound water, liberated above 100 °C, decrease to below 1% unless water quenching is applied (moisture release is less efficient with fast-roasted coffee)					
Organic losses	Destruction of carbohydrates, chlorogenic acids, trigonelline, amino acids becomes important above 160 °C, varying between 1 and 5% at the lightest commercial roasts, 5–8% for medium-roasted coffees, to above 12% for darkroasted ones (lower for fast-roasted coffee). Release of CO ₂ continues for several days					
Volatile constituents	Aroma content reaches a maximum at low roasting, while destruction becomes more important than generation at medium roasting losses (aroma generation is higher in fast-roasted coffees, where a maximum is reached at medium roast)					
pH of beverage In washed arabicas it increases from 4.9 for low-roasted coffees to 5. dark-roasted one; higher for dry-processed coffees (lower values for roasted coffee)						

THE CHEMISTRY OF COFFEE

WHY IS COFFEE BITTER?



Chlorogenic acids account for up to 8% of the composition of unroasted coffee beans. More than 40 different varieties have been identified in green coffee beans, with 5-caffeoylquinic acid the most prevalent.

Chlorogenic acid content decreases when coffee beans are roasted, as they react to form quinolactones, phenylindanes & melanoidins. These contribute to flavour and bitterness.

THE CAFFEINE CONTENT OF COFFEE

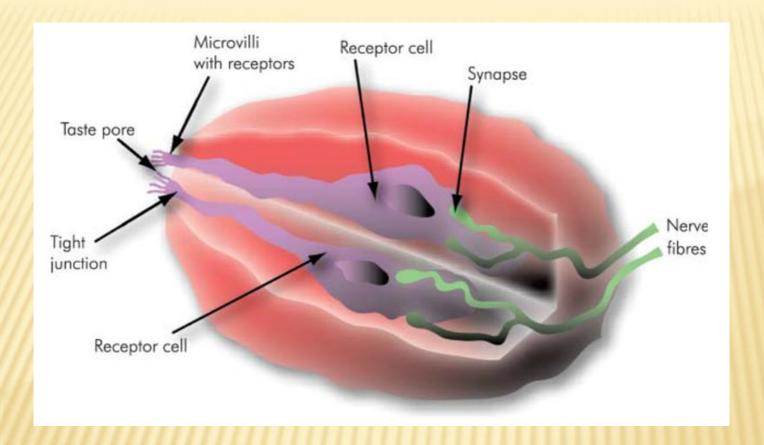
The caffeine content of coffee is variable but is approximately 100mg in a cup.

Caffeine works by blocking the action of a group of brain chemicals called adenosines, which work to naturally trigger tiredness.

The amount of caffeine in your bloodstream peaks 15 to 45 minutes after ingestion.

Ci

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives Licence.


CHEMISTRY: CHLOROGENIC ACID AND CAFFEINE

The process used by professionals to evaluate and compare the characteristics and quality of coffee.

			Specialty Coffee	Association of Am	erica Coffee Cup	ping Form	Quality scale:	
(Name:				6.00 7.00 - 6.25 7.25	8.00 -Specialty 9.00 - 8.25 9.25
		5	Date:				6.50 - Good 7.50 - Very G 6.75 7.75	ood 8.50 -Excellent 9.50 -Oustanding 8.75 9.75
		SSOCIATION ERICA						0.10
	Roast Level	Score: Fragrance/Aroma	Score:	Score: Acidity	Score:	Score: Uniformity	Score: Clean Cup	Score: Total Score
	of Sample	ին հինական կ <mark>ան</mark>	1016			00000	00000	
		Dry Qualities: Brea	Aftertaste	Intensity High	Level Heavy	Score:	Score:	Defects (subtract)
		± — ±			\pm			Taint=2 # cups Intensity Fault=4 X =
			6 7 8 9 1	Low	Thin	6 7 8 9	10	rault-4
,	Notes:							Final Score
	Roast	Score:	Score:	Score:	Score:	Score:	Score:	Score: Total
1 1	of Sample	Fragrance/Aroma	Flavor	Acidity	Body 	Uniformity	Clean Cup	OverallScore
	ē	7 8 9 Dry Qualities: Brea	10 6 7 8 9 1	0 6 7 8 9 10 Intensity	6 7 8 9 10 Level	Score:	Score:	6 7 8 9 10 Defects (subtract)
			Aftertaste	High	Heavy	Balance	Sweetness	Taint=2 # cups Intensity
			-	b \pm Low	Thin			Fault=4 X =
l t								First Coons
/	Notes:							Final Score
Sample #	Roast	Score:	Score:	Score:	Score:	Score:	Score:	Score: Total
	of Sample	Fragrance/Aroma	Flavor	Acidity	Body 	Uniformity	Clean Cup	Overall Score Score
	Sample	5 7 8 9 Dry Qualities: Brea	10 6 7 8 9 1 ak Score:	0 6 7 8 9 10	6 7 8 9 10	Score:	Score:	
		Dry Qualities: Bre	Aftertaste	Intensity High Low	Level Heavy	Balance	Sweetness	Taint=2 # cups Intensity
			_	o Low	Thin			Fault=4 X =
I -				L	L			

CUPPING

Tastebud with two receptor cells (Lindemann, 2001). On the top surface of the bud, microvilli are noticeable; on the bottom part the synapses are shown. Tastants enter the bud through the pore, are processed in the cells, and a signal is sent to the brain by the nerve fibres.

MORE ON TASTE (GUSTATION)

Memories associated with odours are linked to emotions; conversely they appear to play a special role for memories: it is the 'Proust effect'. In À la recherche du temps perdu, French novelist Marcel Proust described his feelings after consuming a spoonful of tea in which he had soaked a madeleine:

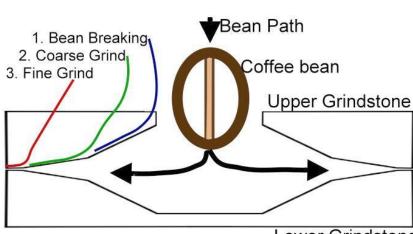
The taste [meaning, of course flavour] was that of a little piece of madeleine which on Sunday mornings in Combray . . . my Aunt Leonie used to give me, dipping it first in her own cup of tisane . . . Immediately the old grey house on the street, where her room was, rose up like a stage set . . . and the entire town, with its people and houses, gardens, church, and surroundings, taking shape and solidity, sprang into being from my cup of tea.

What if he had been drinking an espresso?!?

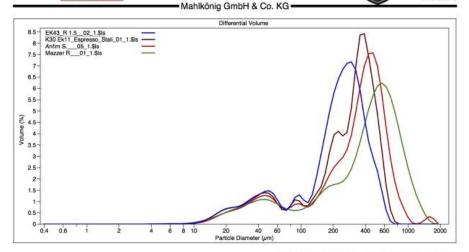
Schematic synaptic organization circuit, from the olfactory sensory neurons (OSNs) to higher regions in the brain (Mori et al., 1999). The olfactory epithelium is mapped onto the olfactory bulb in the brain with a convergent topography. Axons from OSNs expressing the same odorant receptor converge to defined glomeruli.

MORE ON SMELL (OLFACTION)

Odours: Volatile and hydrophobic



Grinding Stages in a Flat Burr Grinder


GRINDING

Beckman Coulter LS Particle Size Analyzer

31 Oct 2013

© 2013 Mahlkonig All Rights Reserved

Extraction Contribution by % Volume EK43 vs Robur

Mahlkönig GmbH & Co. KG

0.5

31 Oct 2013

Differential Volume 7.5- EK43_R 1.5_02_1.\$ls ____ Theoretical Extraction Yield: 26% 23% 15% 10% 6.5 % Volume EK43: 19% 25% 45% 0% % Volume Robur: 16% 11% 19% 7% 5.5 38 5 3.5-2.5

@ 2013 Mahlkonig All Rights Reserved

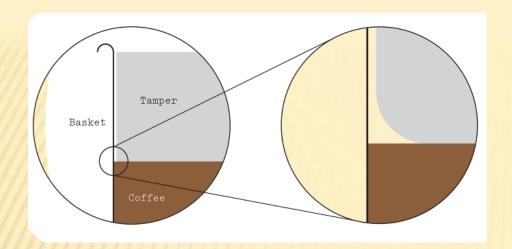
GRINDER PERFORMANCE

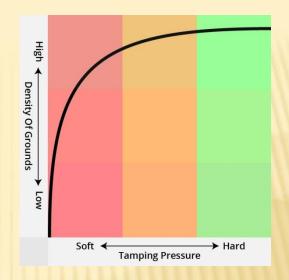
20

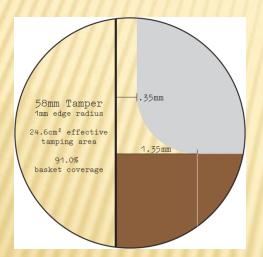
40

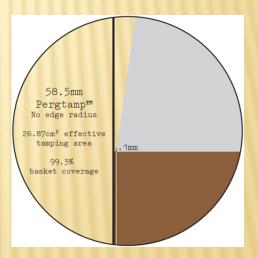
- × Particle size
 - + Too small overextracted (bitter)
 - + Too big underextracted (sour/astringent)
- * Temperature
 - + Higher faster extraction
 - + Colder slower extraction
- Pressure (Flow Rate)
 - × Higher faster extraction
 - Lower slower extraction
- **×** Tamper Force
 - × Higher slower extraction
 - Lower Faster extraction
- × Time
 - + Longer overextracted
 - + Shorter underextracted

So, how do we get the correct extraction for a bright, fruity, sweet, creamy, heavy espresso that sits in your mouth for hours?

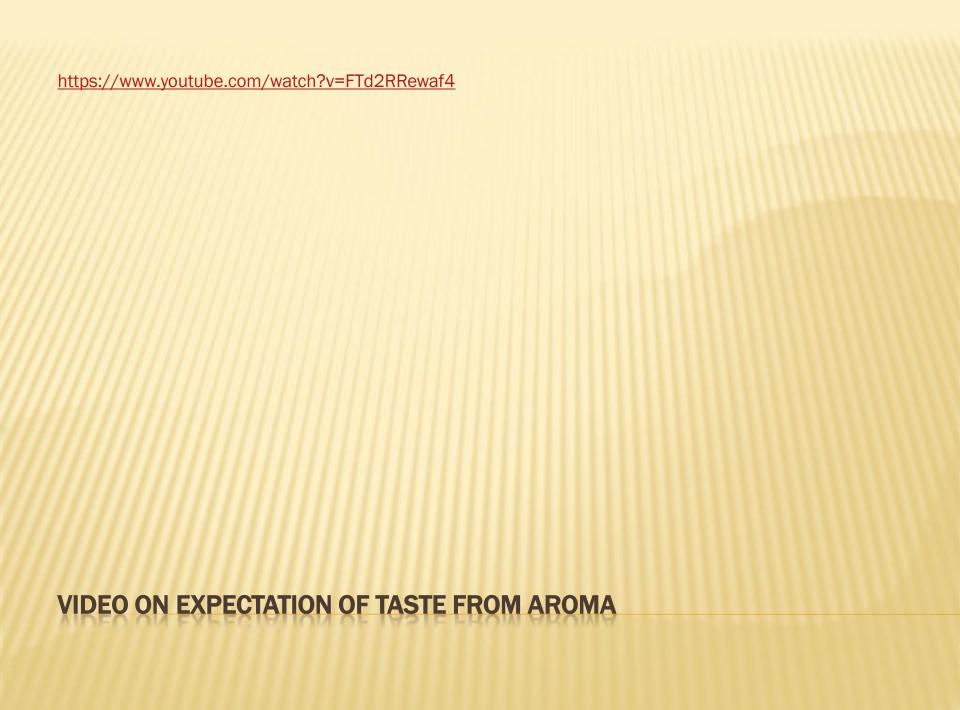


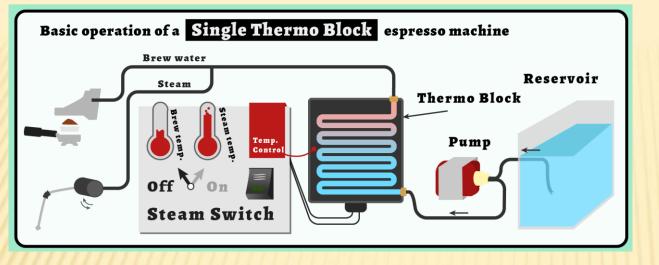




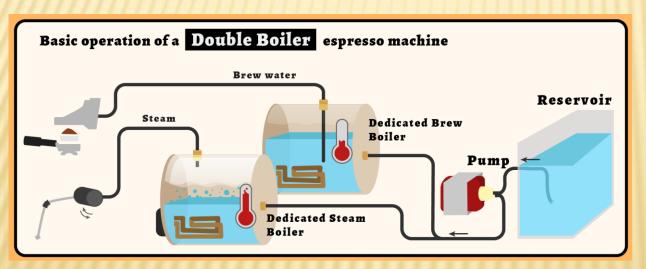

INDEPENDENT VARIABLES AFFECTING EXTRACTION LEVEL

Extraction yield % increases by average of 1% using the Pergtamp


TAMPING



CHANNELING



ESPRESSO MACHINES

ESPRESSO MACHINES

Proportional-Integral-Derivative Controller

Simple example PID code

previous_error = 0 integral = 0

start:

error = setpoint - measured_value
integral = integral + error*dt

derivative = (error - previous_error)/dt

output = Kp*error + Ki*integral + Kd*derivative

previous_error = error

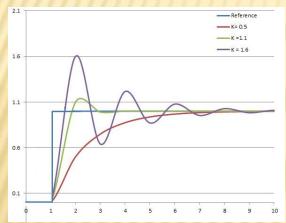
wait(dt)

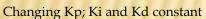
goto start

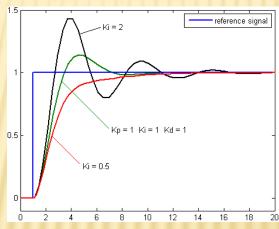
$$\mathbf{u}(t) = \mathbf{MV}(t) = K_p e(t) + K_i \int_0^t e(\tau) \, d\tau + K_d \frac{d}{dt} e(t)$$

where

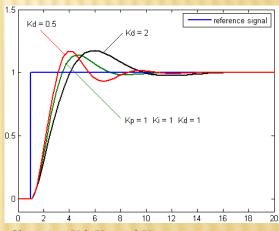
 K_p : Proportional gain, a tuning parameter


 K_i : Integral gain, a tuning parameter


 K_d : Derivative gain, a tuning parameter


e: Error = SP - PV

t: Time or instantaneous time (the present)


au: Variable of integration; takes on values from time 0 to the present au.

Changing Ki; Kp and Kd constant

Changing Kd; Kp and Ki constant

ESPRESSO MACHINES: THE PID TEMPERATURE CONTROLLER

Manual tuning [edit]

If the system must remain online, one tuning method is to first set K_i and K_d values to zero. Increase the K_p until the output of the loop oscillates, then the K_p should be set to approximately half of that value for a "quarter amplitude decay" type response. Then increase K_i until any offset is corrected in sufficient time for the process. However, too much K_i will cause instability. Finally, increase K_d , if required, until the loop is acceptably quick to reach its reference after a load disturbance. However, too much K_d will cause excessive response and overshoot. A fast PID loop tuning usually overshoots slightly to reach the setpoint more quickly; however, some systems cannot accept overshoot, in which case an over-damped closed-loop system is required, which will require a K_p setting significantly less than half that of the K_p setting that was causing oscillation. Icitation needed]

Effects of increasing a parameter independently[13]

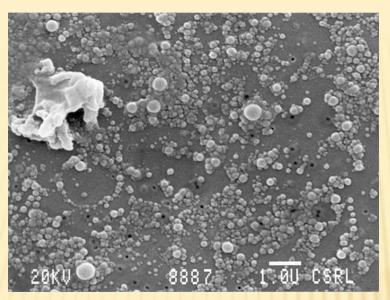
Parameter	Rise time	Overshoot	ershoot Settling time Steady-state error		Stability ^[11]
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small

Ziegler-Nichols method [edit]

For more details on this topic, see Ziegler-Nichols method.

Another heuristic tuning method is formally known as the Ziegler-Nichols method, introduced by John G. Ziegler and Nathaniel B. Nichols in the 1940s. As in the method above, the K_i and K_d gains are first set to zero. The proportional gain is increased until it reaches the ultimate gain, K_u , at which the output of the loop starts to oscillate. K_u and the oscillation period P_u are used to set the gains as shown:

Ziegler-Nichols method


Control Type	K_p	K_i	K_d
P	$0.50K_u$	-	-
PI	$0.45K_u$	$1.2K_p/P_u$	-
PID	$0.60K_u$	$2K_p/P_u$	$K_pP_u/8$

These gains apply to the ideal, parallel form of the PID controller. When applied to the standard PID form, the integral and derivative time parameters T_i and T_d are only dependent on the oscillation period P_u . Please see the section "Alternative nomenclature and PID forms"

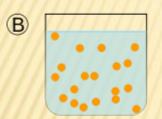
PID TUNING

SEM of coffee lipid droplets and solid particles filtered out from their liquid matrix

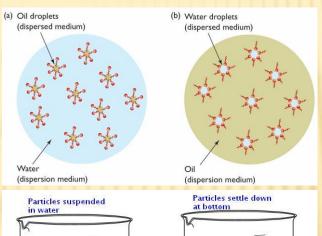
The peculiarity of espresso beverage is the simultaneous presence of three dispersed phases coexisting within a matrix, namely a concentrated solution of salts, acids, sugars, caffeine and many other hydrophilic substances. These phases are:

- 1. an emulsion of oil droplets (stable for weeks/months);
- 2. a suspension of solid particles (stable for days);
- 3. an effervescence of gas bubbles, which evolves into a foam (stable for only 1-3 minutes)

Table 1: Typical analysis of an espresso brew


Parameter	Pure arabica	Pure robusta
Density at 20 °C (g/ml)	1.0198	1.0219
Viscosity at 45 °C (mPa-s)	1.70	1.74
Refractive index at 20 °C	1.341	1.339
Refractive index of filtrate at 20 °C	1.339	1.339
Surface tension at 20 °C (mN/m)	46	48
Total solids (mg/ml)	52.5	58.2
Total solids of filtrate (mg/ml)	47.3	55.6
Total lipids (mg/ml)	2.5	1.0
Unsaponifiable lipids (mg/ml)	0.4	0.2
рН	5.2	5.2
Chlorogenic acids (mg/ml)	4.3	5.0
Soluble carbohydrates (mg/ml)	8.0	10.0
Total elemental nitrogen (mg/ml)	1.8	2.3
Caffeine (mg/ml)	2.6	3.8
Ash (mg/ml)	7.2	7.0
Elemental potassium (mg/ml)	3.2	2.9

ESPRESSO



Two immiscible liquids, not yet emulsified

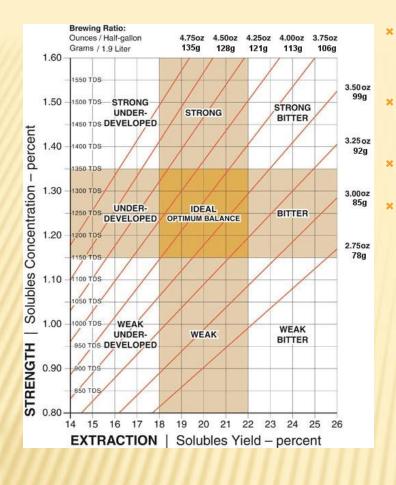
- An **emulsion** is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable).
- In chemistry, a suspension is a heterogeneous mixture containing solid particles that are sufficiently large for sedimentation. Usually they must be larger than one micrometer.
- Effervescence is the escape of gas from an aqueous solution and the foaming or fizzing that results from a release of the gas.
- * A **foam** is a substance that is formed by trapping pockets of gas in a liquid or solid.

B. An emulsion of Phase II dispersed in Phase I

C. The unstable emulsion progressively separates

D. The <u>surfactant</u> (outline around particles) positions itself on the interfaces between Phase II and Phase I, stabilizing the emulsion

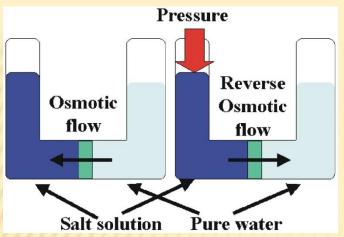
EMULSIONS, SUSPENSIONS, AND EFFERVESCENCE


http://en.wikipedia.org/wiki/Effervescence http://en.wikipedia.org/wiki/Suspension_(chemistry)

http://en.wikipedia.org/wiki/Emulsion

Sedimentation Process

http://nsb.wdfiles.com/local--files/c-9-5-5-4/Emulsion%202.jpg


http://2.bp.blogspot.com/-_xOs3YCHvyo/UDr_CLJ6pgI/AAAAAAAABjI/w5ZGXkGjfVQ/s1600/cl9SciCH2Fig5.jpg https://punctalucis.files.wordpress.com/2014/02/puncta_2014_02_effervescence_i.jpg

- **Extraction yield** % The percentage by mass of coffee grounds that ends up dissolved in the brewed coffee.
 - + Extraction yield % = Brewed Coffee[g] (espresso/ristretto shot) x TDS[%] /Coffee Grounds[g] E.g. 55g brewed coffee x 6.5% TDS / 18g ground coffee = Extraction yield of 19.86%
- **Total Dissolved Solids (TDS)** If you have a standard refractometer the TDS is expressed in parts per million. (ppm). To convert ppm into a percentage: Divide the ppm by 10000. E.g. 10000ppm /10000 = 1%
- **Strength** Also known as "solubles concentration", as measured by Total Dissolved Solids how concentrated or watery the coffee is.
- Brew ratio The ratio of coffee grounds (mass) to water (volume): how much coffee is used for a given quantity of water. This may be expressed in units of either grams per litre or ounces per US half gallon. Since the density of the liquid coffee beverage is essentially equal to the density of pure water (1 g/mL), this ratio is often expressed as the mass of coffee grounds to mass of liquid coffee (a unit-less ratio).

TOTAL DISSOLVED SOLIDS & EXTRACTION YIELD

This process requires that a high pressure be exerted on the high concentration side of the membrane, usually 2–17 bar (30–250 psi) for fresh and brackish water, and 40–82 bar (600–1200 psi) for seawater, which has around 27 bar (390 psi) natural osmotic pressure that must be

overcome.

"Ideal" water according to Jim Schulman:
Total Dissolved Solids 150 ppm
Total Hardness 3-5 gpg (51-85ppm)
Total Alkalinity 80 ppm
pH 7.0 gpg
Calcium Hardness 3-4 gpg
Total Chlorine <0.1 ppm
Free Chlorine <0.5
Total Chlorides <30 ppm
Total Iron 0 mg/L
Silica not more than 5 mg/L
Sulfate 25-50 mg/L
Hydrogen Sulfide 0 mg/L
Manganese 0 mg/L
Nitrate 0 mg/L

Schematics of a reverse osmosis desalination system using

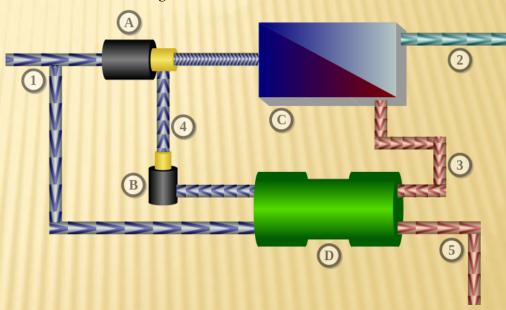
a pressure exchanger.

1: Sea water inflow,

2: Fresh water flow (40%),

3: Concentrate flow (60%),

4: Sea water flow (60%),


5: Concentrate (drain),

A: Pump flow (40%),

B: Circulation pump,

C: Osmosis unit with membrane,

D: Pressure exchanger

WATER - REVERSE OSMOSIS

Lots of magnesium, not much bicarbonate

"ReverseOsmosis with PressureExchanger" by chris 論 - own drawing inspired by this video. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:ReverseOsmosis_with_PressureExchanger.svg#/media/File:ReverseOsmosis_with_PressureExchanger.svg

http://en.wikipedia.org/wiki/Reverse_osmosis http://bestreverseosmosissystem.net/wp-content/uploads/2014/10/What-Is-Reverse-Osmosis.jpg

(a) under-extracted;

(b) correctly extracted;

(c) overextracted

https://youtu.be/qaUZcbLPTBA

EXTRACTION: WHAT IT LOOKS LIKE, AND THE IMPORTANCE OF CREMA

LATTE ART

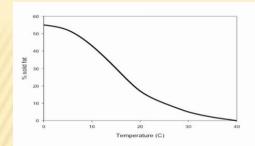
MILK STEAMING

ESPRESSO FIELD GU

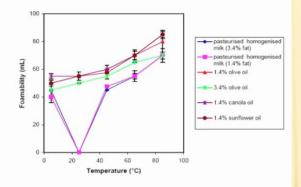
A VISUAL REFERENCE FOR INGREDIENT RATIOS

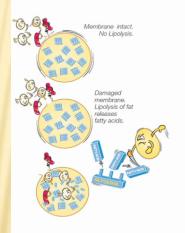
10oz

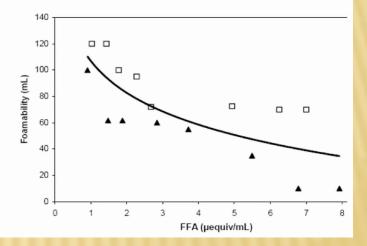
1 oz = 28.4 mL


GRAPHIC BY OFFICE OFFICE OFFIT OFFIT

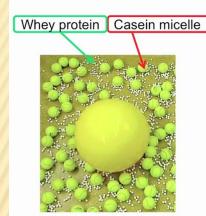
The destabilizing effect of milk fat is temperature-dependent and reduced by homogenization...

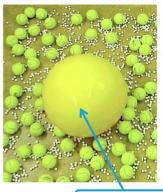

A typical example is the homogenization of milk, where the milk fat globules are reduced in size and dispersed uniformly through the rest of the milk.




Replacement of milk fat with oil stabilizes fat globules and improves foaming

Partially crystalline fat causes damage to fat globules in foams spreading of liquid fat on interface detrimental


Lipolysis creates rancidity and reduces foaming...


Milk foams: using proteins to stabilize foams...

- Milk proteins crucial for stabilizing foams
- Milk contains more than enough protein to stabilize the foam
- Little effect of heat treatment and other processing
- But interactions of milk proteins with coffee constituents:
 - Reduced flavour release
 - Reduced bitterness

Lipolysis /lɨˈpɒlɨsɪs/ is the breakdown of lipids and involves hydrolysis of triglycerides into glycerol and free fatty acids. The following hormones induce lipolysis: epinephrine, norepinephrine, ghrelin, growth hormone, testosterone, and cortisol.

Milk foams: controlling fat particles

Fat globule

- Fat globules are crucial for taste and mouthfeel of milk foams, but have a major destabilizing effect
- Fat globule size should be reduced by homogenization (but not too far)
- Lipolysis should be prevent at all cost
- Interactions of milk fat with coffee flavor compounds

