

This experiment is about the study of motion, or kinematics.
Physics uses numbers to quantify aspects of motion i.e.
The position, velocity and acceleration of an object vs time.
To keep things simple we will look at the motion of a tennis ball. We will ignore:

- Rotation of the ball
- Effects of air resistance (i.e. the ball colliding with air molecules)

EXPERIMENT 1 Drop ball from a fixed height (e.g. 2 m)
EXPERIMENT 2 Throw ball and record its parabolic trajectory

What will we do?

We will use a $\mathbf{3 0}$ frames per second video camera to record the position of the tennis ball vs time. Quicktime will be used to step through the video frames. Three frame clicks correspond to 0.1 s .

We'll then do some analysis in Excel.

- Plot position vs time using a scatter graph
- Compare our data to a mathematical model of the motion

Extension
 What happens when the ball bounces?

The Scientific Method

 recap!2 Propose a theory, involving things that can be measured

Galileo Galilei 1564-1642

1 Make some observations
"Falling objects seem to accelerate at the same rate... Independent of how massive they are!"

If we ignore air resistance!

4 Write up your findings and allow your peers to review it

\# clicks	time /s	Screen drop distance /cm	Actual drop distance /m	$0.5 *{ }^{*}{ }^{\text {t^2 }}$
0	0	0	0.00	0
3	0.1	1.5	0.17	0.04905
6	0.2	3	0.33	0.1962
9	0.3	5.2	0.58	0.44145
12	0.4	8.4	0.93	0.7848
15	0.5	12	1.33	1.22625
18	0.6	16.9	1.88	1.7658

Distance vs time for a ball dropped vertically from 2 m

Experiment 2 - Ball throw

Throw a ball over a 5 m distance, with a metre rule clearly visible. Video using a digital camera at 30 frames per second. Open the resulting movie file in Quicktime and manually skip through the frames.
Use a ruler to record the ball position relative to the computer screen and then calibrate to metres using the metre stick. Analyse in Excel, and overlay a screenshot with the x vs y parabola as shown above.

click \#	t/s	x / cm	y/cm	x / m	y / m	x / m	y / m
2	0.07	2.5	3.3	0.3	0.5	0.42	0.5
4	0.13	5.0	5.0	0.7	0.7	0.73	0.8
6	0.20	7.3	8.0	1.0	1.1	1.03	1.06
8	0.27	9.5	9.5	1.3	1.3	1.34	1.28
10	0.33	11.5	11.0	1.6	1.5	1.64	1.46
12	0.40	14.5	11.9	2.0	1.6	1.94	1.59
14	0.47	16.7	12.5	2.3	1.7	2.25	1.67
16	0.53	19.5	12.7	2.7	1.7	2.55	1.71
18	0.60	22.1	12.5	3.0	1.7	2.86	1.71
20	0.67	24.5	12.0	3.4	1.6	3.16	1.67
22	0.73	26.0	11.4	3.6	1.6	3.46	1.58
24	0.80	27.5	10.0	3.8	1.4	3.77	1.45
26	0.87	29.0	8.5	4.0	1.2	4.07	1.28
28	0.93	31.5	7.5	4.3	1.0	4.38	1.06
30	1.00	33.0	5.5	4.5	0.8	4.68	0.8

Displacement vs time equations (ignore drag, only include weight)

$$
\begin{aligned}
& x=x_{0}+u_{x} t \\
& y=y_{0}+u_{y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

Initial velocities / $\mathrm{ms}^{\wedge}-1$

ux	$\mathbf{4 . 5 6}$		
uy	$\mathbf{5 . 5 5}$	\quad	launch speed $/ \mathrm{ms}^{\wedge}-1$
:---:			

g	$\mathbf{9 . 8 1}$	gravitational acceleration
x 0	$\mathbf{0 . 1 2}$	initial x value
y 0	$\mathbf{0 . 1 5}$	initial y value

Find x velocity using a line of best fit to x vs t data.

Perform a similar process using $y+\frac{1}{2} g t^{2}$ vs time to find the initial y component (vertical) velocity.

Relationship between displacement, velocity and acceleration

Displacement is the vector between a fixed origin and the point of interest. If an object is moving, the displacement will vary with time t

Velocity is the rate of change of displacement. If velocity is in the same direction as displacement, it is the gradient of a (t, x) graph.
a Acceleration is the rate of change of velocity. If acceleration is in the same direction as velocity, it is the gradient of a (t, v) graph.

Useful speed conversions:

$1 \mathrm{~ms}^{-1}=2.24$ miles per hour
$1 \mathrm{~ms}^{-1}=3.6 \mathrm{~km}^{\mathrm{km}}$ per hour
$t / \min =60 \times \frac{x / \mathrm{miles}}{v / \mathrm{mph}}$

Speed in mph	Time in minutes per 10 miles
10	60
20	30
30	20
40	15
50	12
60	10
70	8.57

Constant acceleration motion

It is almost always a good idea to start with a (t, v) graph.
Let velocity increase at the same rate a from u to v in t seconds.

The acceleration is the gradient: $a=\frac{v-u}{t} \quad \therefore v=u+a t$
The area under the graph is the displacement.
Since this a trapezium shape:

$$
x=\frac{1}{2}(u+v) t
$$

We can work out other useful relationships for constant acceleration motion

$$
\begin{array}{ll}
x=\frac{1}{2}(u+u+a t) t & x=u t+\frac{1}{2} a t^{2} \\
x=u t+\frac{1}{2} a t^{2} & 2 a x=2 u a t+a^{2} t^{2} \\
& v^{2}=(u+a t)^{2}=u^{2}+2 u a t+a^{2} t^{2} \\
& \therefore v^{2}=u^{2}+2 a x
\end{array}
$$

