

This experiment is about the study of motion, or **kinematics**. **Physics** uses *numbers* to quantify aspects of motion i.e.

The **position**, **velocity** and **acceleration** of an object vs **time**.

To keep things simple we will look at the **motion of a tennis ball**. We will *ignore*:

- Rotation of the ball
- Effects of air resistance (i.e. the ball colliding with air molecules)

EXPERIMENT 1Drop ball from a fixed height (e.g. 2m)EXPERIMENT 2Throw ball and record its *parabolic* trajectory

What will we do?

We will use a **30 frames per second video camera** to record the **position** of the tennis ball vs time. Quicktime will be used to step through the video frames. Three frame clicks correspond to 0.1 s.

We'll then do some analysis in Excel.

- Plot position vs time using a scatter graph
- Compare our data to a **mathematical model** of the motion

Kinematics of Usain Bolt

Extension

What happens when the ball bounces?

Experiment 1 – Ball drop

The Scientific Method

recap!

Galileo Galilei

1564-1642

Make some observations

"Falling objects seem to accelerate at the same rate... Independent of how massive they are!"

If we ignore air resistance! 4 Write up your findings and allow your peers to review it

3 **Do an experiment** Is there a match between theory and measured results? Is the experiment repeatable?

		Screen drop	Actual drop	
# clicks	time /s	distance /cm	distance /m	0.5*g*t^2
0	0	0	0.00	0
3	0.1	1.5	0.17	0.04905
6	0.2	3	0.33	0.1962
9	0.3	5.2	0.58	0.44145
12	0.4	8.4	0.93	0.7848
15	0.5	12	1.33	1.22625
18	0.6	16.9	1.88	1.7658

Time

Experiment 2 – Ball throw

Throw a ball over a 5m distance, with a metre rule clearly visible. Video using a digital camera at 30 frames per second. Open the resulting movie file in **Quicktime** and manually skip through the frames. Use a ruler to record the ball position relative to the computer screen and then calibrate to metres using the metre stick. Analyse in Excel, and overlay a screenshot with the x vs y parabola as shown above.

		screen		reality		XUVAT	⁻ model	
click #	t/s	x /cm	y/cm	x /m	y /m	x /m	y /m	
2	0.07	2.5	3.3	0.3	0.5	0.42	0.5	
4	0.13	5.0	5.0	0.7	0.7	0.73	0.8	
6	0.20	7.3	8.0	1.0	1.1	1.03	1.06	30FPS
8	0.27	9.5	9.5	1.3	1.3	1.34	1.28	video
10	0.33	11.5	11.0	1.6	1.5	1.64	1.46	recording
12	0.40	14.5	11.9	2.0	1.6	1.94	1.59	1 click
14	0.47	16.7	12.5	2.3	1.7	2.25	1.67	= 1/30 5
16	0.53	19.5	12.7	2.7	1.7	2.55	1.71	
18	0.60	22.1	12.5	3.0	1.7	2.86	1.71	
20	0.67	24.5	12.0	3.4	1.6	3.16	1.67	
22	0.73	26.0	11.4	3.6	1.6	3.46	1.58	
24	0.80	27.5	10.0	3.8	1.4	3.77	1.45	
26	0.87	29.0	8.5	4.0	1.2	4.07	1.28	
28	0.93	31.5	7.5	4.3	1.0	4.38	1.06	
30	1.00	33.0	5.5	4.5	0.8	4.68	0.8	

Displacement vs time equations (ignore drag, only include weight)

$$x = x_0 + u_x t$$
$$y = y_0 + u_y t - \frac{1}{2}gt^2$$

Initial velocities /ms^-1ux4.56launch speed / ms^-1uy5.557.183g9.81gravitational accelerationx00.12initial x value

Find x velocity using a line

0.15 initial y value

v0

of best fit to x vs t data.

Perform a similar process using $y + \frac{1}{2}gt^2$ vs time to find the initial *y* component (vertical) velocity.

Relationship between displacement, velocity and acceleration

Displacement is the vector between a fixed origin and the point of interest. If an object is moving, the displacement will vary with time *t*

V >>>

Х

Velocity is the *rate of change of displacement*. If velocity is in the same direction as displacement, it is the gradient of a (t,x) graph.

Acceleration is the *rate of change of velocity*. If acceleration is in the same direction as velocity, it is the gradient of a (t, v) graph.

Useful speed conversions:				
1 ms ⁻¹ = 2.24 miles per hour				
1 ms ⁻¹ = 3.6 km per hour				
$t / \min - 60 \times \frac{x / \min}{x}$				
$v / \text{mm} = 00 \times \frac{v}{v / \text{mph}}$				

Speed in mph	Time in minutes per 10 miles
10	60
20	30
30	20
40	15
50	12
60	10
70	8.57

Constant acceleration motion

It is almost *always* a good idea to start with a (t, v) graph. Let velocity increase at the same rate *a* from *u* to *v* in *t* seconds.

We can work out other useful relationships for constant acceleration motion

$$x = \frac{1}{2}(u + u + at)t \qquad x = ut + \frac{1}{2}at^{2}$$

$$x = ut + \frac{1}{2}at^{2} \qquad 2ax = 2uat + a^{2}t^{2}$$

$$v^{2} = (u + at)^{2} = u^{2} + 2uat + a^{2}t^{2}$$

$$\therefore v^{2} = u^{2} + 2ax$$