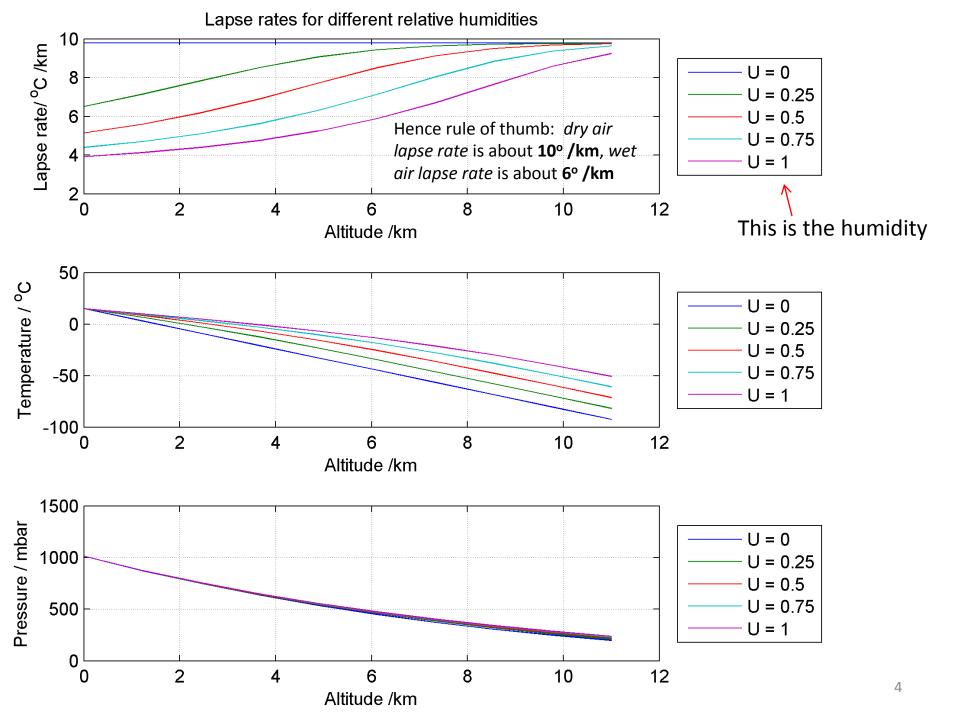
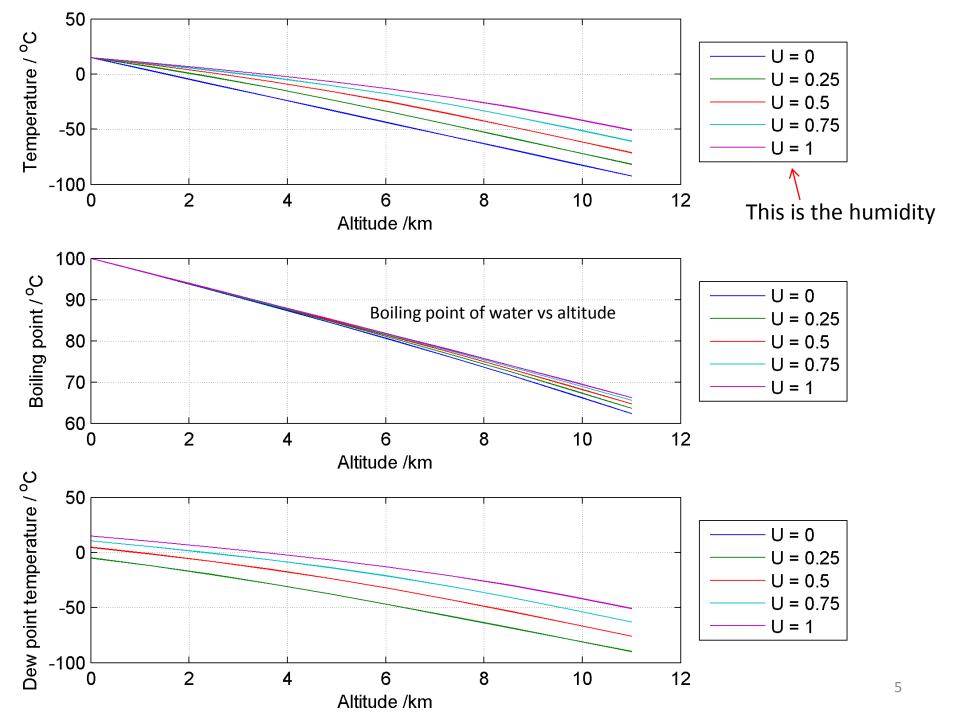
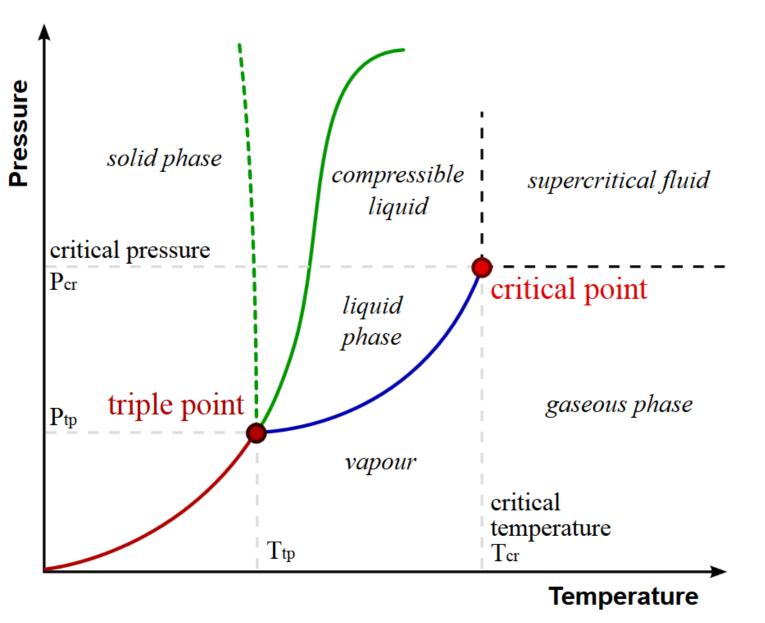
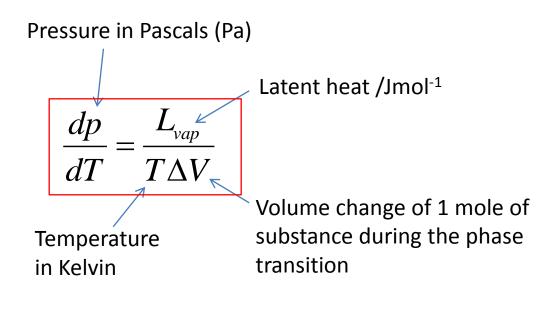

Dr Andy French. November 2019.


 L_{vap} L_{vap} $p = p_{100} e^{\overline{RT_{100}}} e^{-\frac{NP}{RT_{boil}}}$


 $p_{100} = 101.325$ kPa $T_{100} = 373$ K


Motivation: The boiling point of water *decreases* as atmospheric pressure *decreases*. You can observe this on a mountaineering expedition as you ascend in altitude.



To **boil** water, it must undergo a *phase transition* from liquid to gas. This requires a certain amount of heat, *the latent heat of vaporization*, to break the inter-molecular bonds inherent in the water.

The gradient of a phase transition line in the p, T diagram is given by the *Clausius-Clapeyron equation:*

In a **liquid to gas** transition we can assume the volume change is sufficiently large as to ignore the original fluid volume. If one assumes the resulting gas is *ideal*:

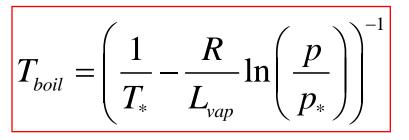
$$\Delta V = \frac{RT}{p}$$
 Hence: $\frac{dp}{dT} = \frac{L_{vap}}{RT^2}p$

Rudolph Clausius 1822-1888

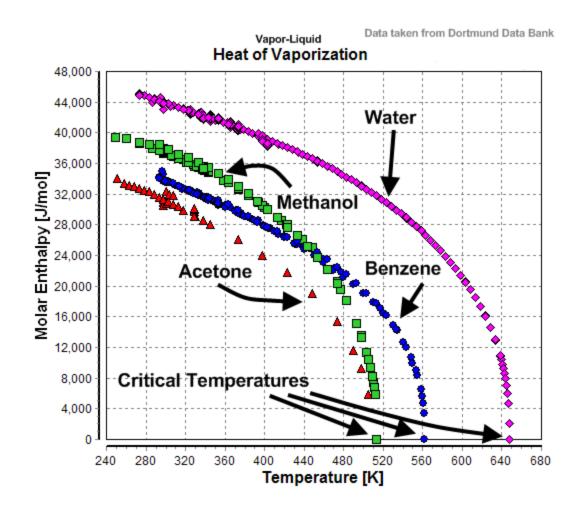
Benoît Clapeyron 1799-1864

We can use this relationship to determine the liquid-to-gas line in the p,T diagram if the latent heat of vaporization is assumed to be temperature independent. (In reality this is not the case, but is less of an issue at low temperatures – see next slide).

$$\frac{dp}{dT} = \frac{L_{vap}}{RT^2} p$$


$$\int_{P_*}^{P} \frac{1}{p} dp = \frac{L_{vap}}{R} \int_{T_*}^{T} \frac{1}{T^2} dT$$

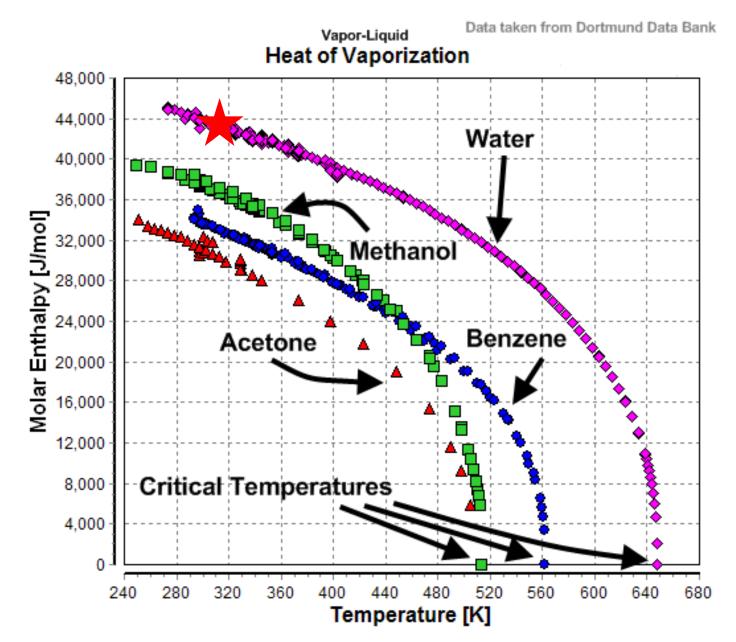
$$\ln\left(\frac{p}{p_*}\right) = -\frac{L_{vap}}{R} \left(\frac{1}{T} - \frac{1}{T_*}\right)$$


$$p = p_* e^{-\frac{L_{vap}}{R} \left(\frac{1}{T} - \frac{1}{T_*}\right)}$$

$$T = \left(\frac{1}{T_*} - \frac{R}{L_{vap}} \ln\left(\frac{p}{p_*}\right)\right)^{-1}$$

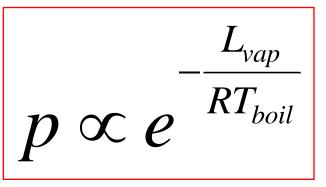
Since the temperature corresponds to the liquid-to-gas transition line, we can therefore derive an expression for the **boiling point** of a liquid relative to ambient temperature T and pressure p, as long as one fixed boiling point T_* and corresponding pressure p_* is known.

Boiling point of water at different atmospheric pressures /mbar.



Latent heat of vaporization of water is

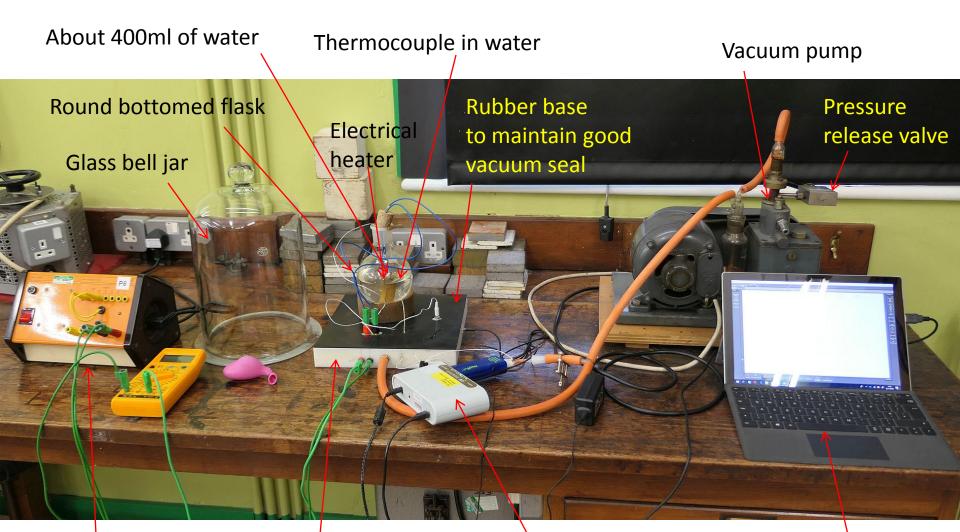
 L_{vap} = 43.8 kJ mol⁻¹ at 100°C and 1013.25 mbar ambient air pressure.


At 'typical' troposphere temperatures, a higher value of 45.07 kJ mol⁻¹ is used in some calculations, such as the lapse rate model.

http://en.wikipedia.org/wiki/Lapse_rate http://en.wikipedia.org/wiki/Enthalpy_of vaporization http://en.citizendium.org/wiki/Heat_ of vaporization At around ambient temperatures of about 30 to 40 degrees C (i.e. 303K to 313K) molar latent heat of vaporization of water is about **43.8 kJ/mol/K**

$$\begin{aligned} T_{boil} &= \left(\frac{1}{T_*} - \frac{R}{L_{vap}} \ln\left(\frac{p}{p_*}\right)\right)^{-1} \\ \frac{1}{T_{boil}} &= \frac{1}{T_*} - \frac{R}{L_{vap}} \ln\left(\frac{p}{p_*}\right) \\ \frac{1}{T_{boil}} - \frac{1}{T_*} &= \frac{R}{L_{vap}} \ln\left(\frac{p_*}{p}\right) \\ \therefore \ln\left(\frac{p_*}{p}\right) &= \frac{L_{vap}}{R} \frac{1}{T_{boil}} - \frac{L_{vap}}{R} \frac{1}{T_*} \end{aligned}$$

Expect a **Boltzmann Factor** as the functional dependence of pressure upon boiling temperature

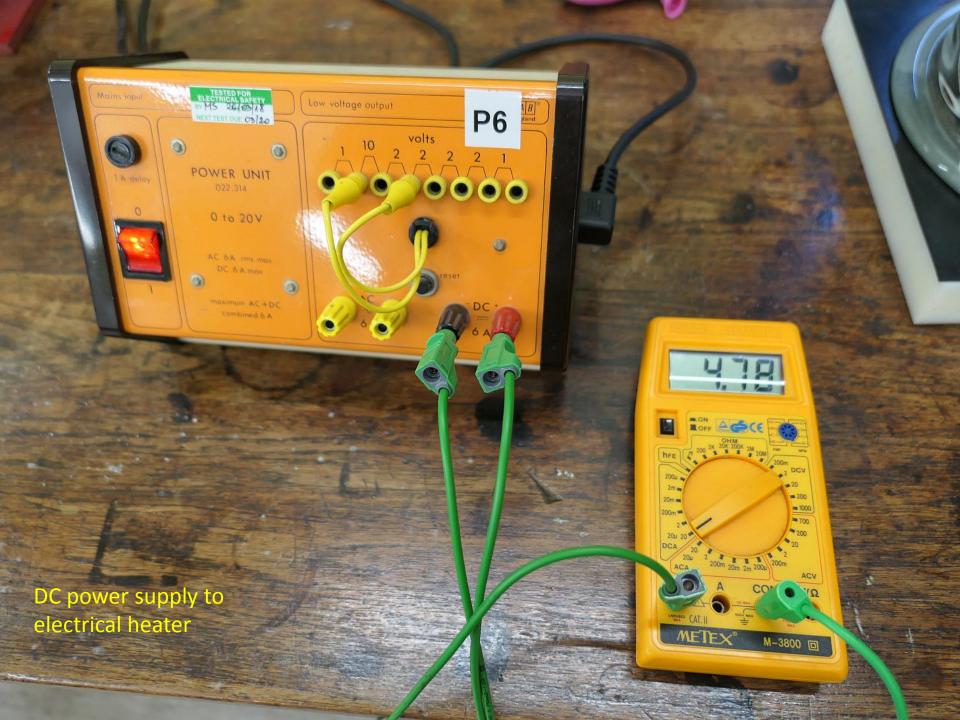


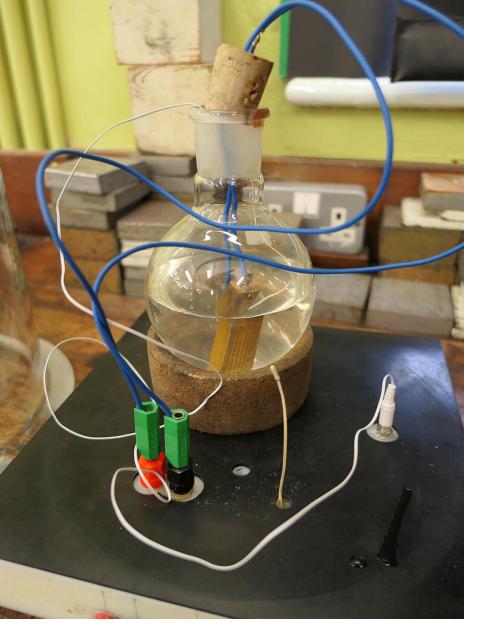
Note L_{vap} is the *molar* latent heat of vaporization

Linearized relationship:

$$\ln\left(\frac{p_*}{p}\right) = \frac{L_{vap}}{R} \frac{1}{T_{boil}} - \frac{L_{vap}}{R} \frac{1}{T_*}$$
$$y = mc + c$$
$$m = \frac{L_{vap}}{R}, \ c = -\frac{L_{vap}}{R} \frac{1}{T_*}$$

Equipment

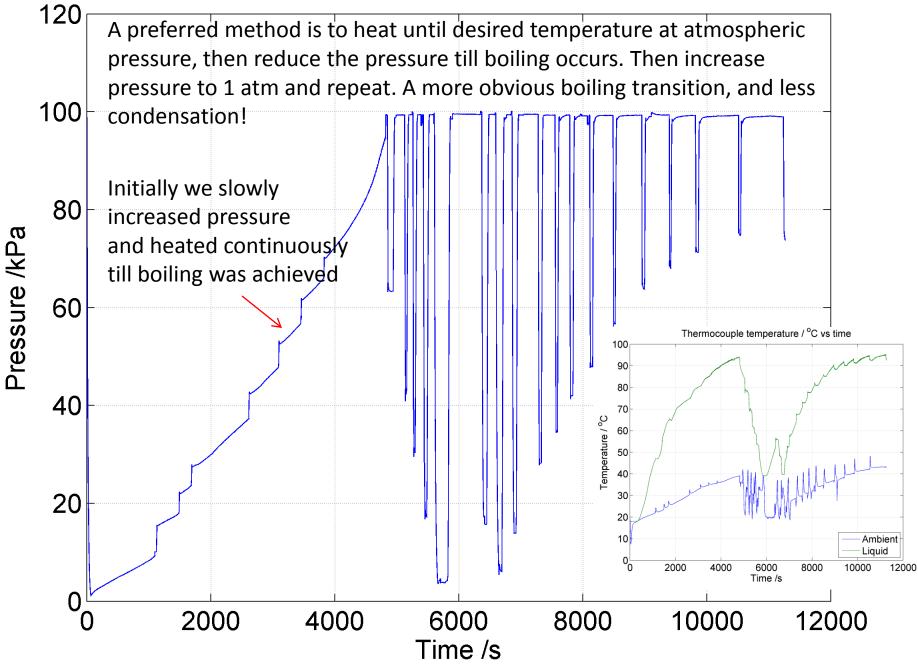



12V DC power supply to electrical heater (about 4.8A) Pump valve, +/power socket + 2x thermocouple connections drilled into plastic base PASCO datalogger USB hub (pressure unit + 2x thermocouple connections)

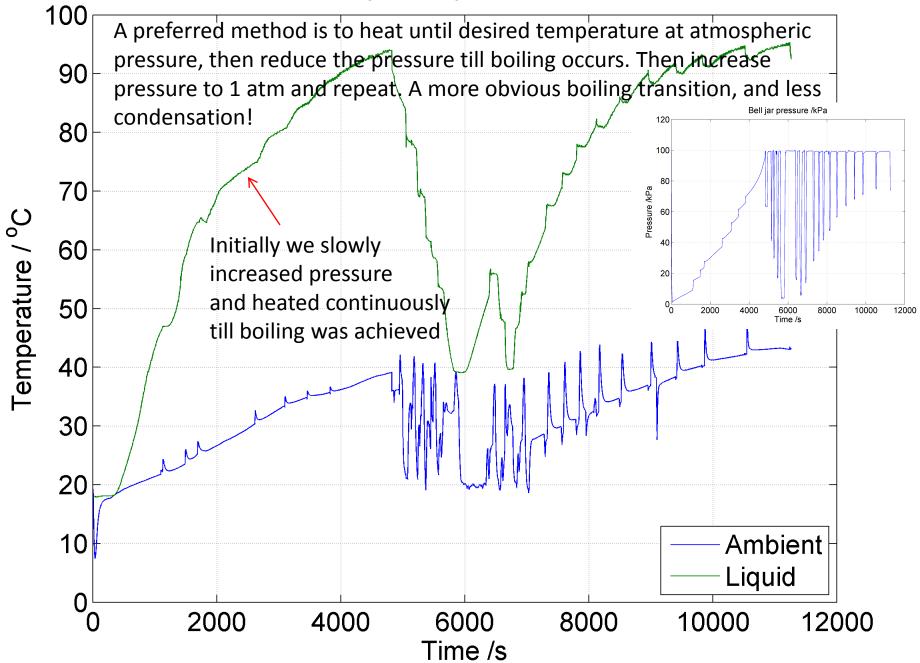
Laptop running CAPSTONE connected to USB hub

Vacuum pump, connected to bell jar. About 3% of atmospheric pressure is possible.

 Turn pressure valve *slowly* to return air to bell jar between experiments.



Heat water up to a desired temperature using electrical heater. (It is pretty slow, i.e about 10s per deg C, so you can leave it on)



Then pump out air till water spontaneously boils. At this point turn off the pump and record pressure and temperature using the datalogger display on the PC

Bell jar pressure /kPa

Thermocouple temperature / ^oC vs time

Excel analysis of raw data. Measurements were taken directly off the CAPSTONE display. Data rate was 10Hz for pressure and temperature. Perhaps 2H or 5Hz would have been easier to read the numbers? By eye, and error of about +/-0.3 °C and +/-0.2 kPa. i.e. too small to plot as an error bar.

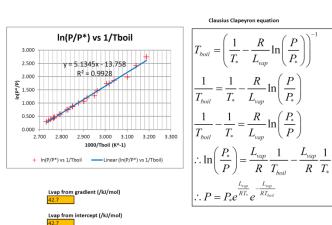
Water		Air temperature				
temperature at	Bell jar pressure	inside bell jar		1000/Tboil		
boiling /degC	/kPa	/degC	Notes	(K^-1)	In(P*/P)	Model P
40.7	6.5	28.9	** - explosive onset of boiling!	3.188	2.747	7.51
			* Water at 18.1degC, reduce pressure to 2.7kPa, bell jar temp 17.6degC. Note spontaneous boiling, but ceased when turned pump off. Heated continuously (about 12V DC, 4.5A), and			
45.4	9.08	21.7	increased pressure in stages, and waited for boiling to commence	3.141	2.412	9.56
49.5	13.9	27.4	**	3.101	1.986	11.74
55.9	15.7	26.7	**	3.040	1.865	16.00
58.4	17.8	23.5	*	3.018	1.739	18.00
59.6	17.8	30.9	** * and ** denote the two **	3.007	1.739	19.04
64.5	23.4	23.6	*	2.963	1.466	23.82
65.9	28.1	27.4	🐖 experimental approaches –	2.951	1.283	25.36
69.9	30.6	31.8	** undortakon Thoy are mixed	2.916	1.197	30.27
71.6	34.6	28.7	$\frac{1}{1}$ undertaken. They are mixed –	2.902	1.074	32.59
74.6	37.1	30.3	${=}$ as I have sorted the data by \Box	2.877	1.005	37.06
77.8	42	29.9	**	2.851	0.881	42.40
78	42.5	33.4	📧 boiling temperature. 🔤	2.849	0.869	42.76
80.4	47.6	33.4	*	2.830	0.756	47.22
81	47.9	32.2	** is recommended. –	2.825	0.749	48.40
84.8	56.5	34.9	*	2.795	0.584	56.46
85.5	56.8	34.1	**	2.789	0.579	58.07
			** Set temperature via heating or temperary immersion in a cold (or boiling) water bath. Atmospheric temperature, and bell jar periodically wiped of condensation. Then reduce pressure till boiling. Turn off pump, take measurement, increase pressure back to atmospheric and repeat. Easiest progression is to heat water to about 40degC, then start this process while heating constantly. Record boiling temp via lower pressure avery 5degC of			
88.2	63.7	36.12	so from 40degC.	2.769	0.464	64.63
88.6	63.8	36.7	**	2.765	0.463	65.65
88.8	65.8	35.7	*	2.764	0.432	66.17
90.5	68.5	38.2	**	2.751	0.391	70.71
91.7	71.3	40.2	**	2.742	0.351	74.07
93.2	75.2	42.3	**	2.731	0.298	78.47

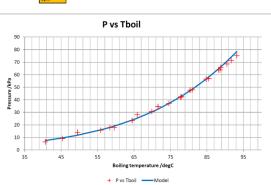
Excel analysis

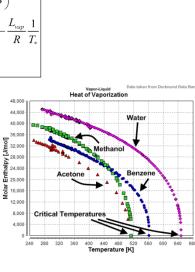
WATER BOILING POINT VS PRESSURE

A. FRENCH. P5 WINCHESETER COLLEGE. 1450-1800 22 Nov 2019.

errors: about +/- 0.3 degC and about +/-0.2Pa. (By eye from fluctuating readings).

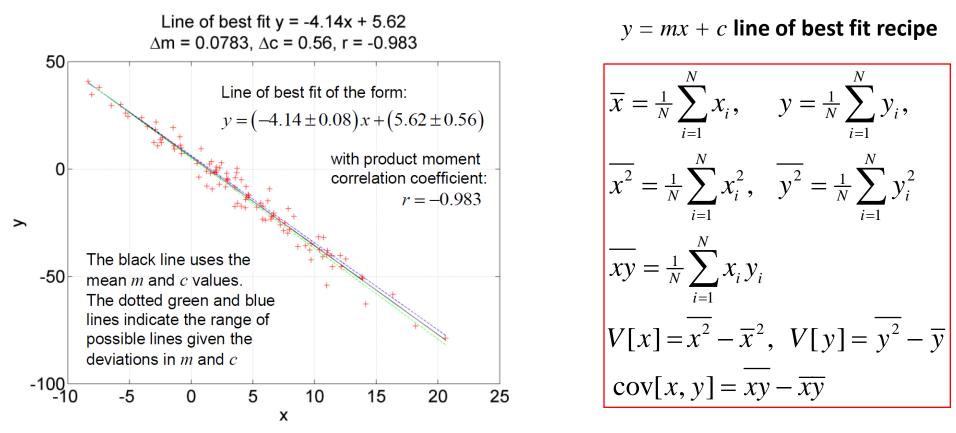

Water temperature at boiling /degC	Bell jar pressure /kPa	Air temperature inside bell jar /degC	Notes	1000/Tboil (K^-1)	In(P*/P)	Model P
40.7	6.5	28.9	** - explosive onset of boiling!	3.188	2.747	7.51
			* Water at 18.1degC, reduce pressure to 2.7kPa, bell jar temp 17.6degC. Note spontaneous boiling, but ceased when turned pump off. Heated continuously (about 12V DC, 4.5A), and			
45.4	9.08	21.7	increased pressure in stages, and waited for boiling to commence	3.141	2.412	9.56
49.5	13.9	27.4	**	3.101	1.986	11.74
55.9	15.7	26.7	**	3.040	1.865	16.00
58.4	17.8	23.5	*	3.018	1.739	18.00
59.6	17.8	30.9	**	3.007	1.739	19.04
64.5	23.4	23.6	•	2.963	1.466	23.82
65.9	28.1	27.4	**	2.951	1.283	25.36
59.9	30.6	31.8	**	2.916	1.197	30.27
71.6	34.6	28.7	**	2.902	1.074	32.59
74.6	37.1	30.3	*	2.877	1.005	37.06
77.8	42	29.9	**	2.851	0.881	42.40
78	42.5	33.4	**	2.849	0.869	42.76
80.4	47.6	33.4	*	2.830	0.756	47.22
81	47.9	32.2	**	2.825	0.749	48.40
84.8	56.5	34.9	•	2.795	0.584	56.46
85.5	56.8	34.1	**	2.789	0.579	58.07
			** Set temperature via heating or temperary immersion in a cold			
			(or boiling) water bath. Atmospheric temperature, and bell jar			
			periodically wiped of condensation. Then reduce pressure till			
			boiling. Turn off pump, take measurement, increase pressure			
			back to atmospheric and repeat. Easiest progression is to heat			
			water to about 40degC, then start this process while heating			
			constantly. Record boiling temp via lower pressure avery 5degC or			
38.2	63.7	36.12	so from 40degC. **	2.769	0.464	64.63
38.6	63.8	36.7	**	2.765	0.463	65.65
88.8	65.8	35.7	*	2.764	0.432	66.17
90.5	68.5	38.2		2.751	0.391	70.71
91.7	71.3	40.2	**	2.742	0.351	74.07
93.2	75.2	42.3	**	2 731	0.298	78 47


Known data for water P* /kPa T* /K


Lvap (kJ/mol) at 30degC

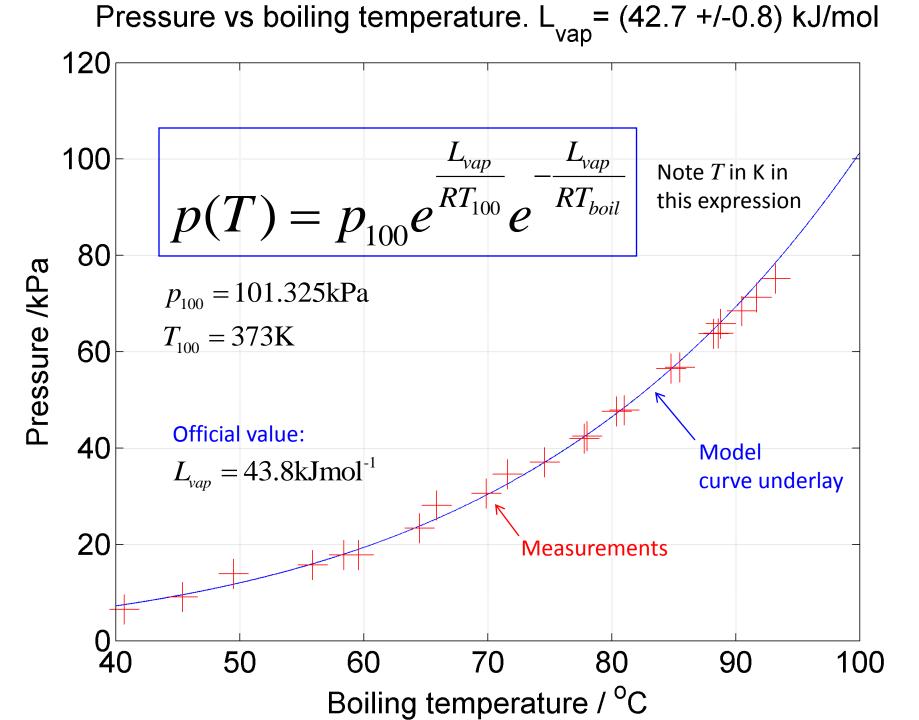
101.325

43.78 8.314



 $\frac{P}{P_*}$

ln


$$c = \overline{y} - m\overline{x}$$
$$m = \frac{\overline{xy} - \overline{yx}}{\overline{x^2} - \overline{x}^2} = \frac{\operatorname{cov}[x, y]}{V[x]}$$

$$r = \frac{\operatorname{cov}[x, y]}{\sqrt{V[x]V[y]}}$$

$$\Delta m = \frac{s}{\sqrt{N}} \frac{1}{\sqrt{V[x]}}$$
Errors in gradient

$$\Delta c = \frac{s}{\sqrt{N}} \sqrt{1 + \frac{\overline{x}^2}{V[x]}}$$
Errors in gradient
and y intercept

$$s = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_i - mx_i - c)^2}$$

