

Dr Andrew French. October 2021.

Equipment setup

Red laser

Laser (in this case red) mounted vertically using a retort stand, boss and clamp. * DON'T SHINE THE LASER INTO YOUR EYES *

Diffraction grating (100, 300 and 600 lines per mm)

Keep the diffraction grating at a fixed height h (in mm) above the paper. Make sure you record what this is in your spreadsheet for the experiment.

- Mount laser vertically using a retort
 stand, boss and clamp. Mount a
 diffraction grating (100,300,600 lines
 per mm) underneath the laser. Set so
 that by moving the grating, the laser
 beam illuminates the centre of the
 grating windows.
- Measure height *h* (in mm) of the grating above a sheet of blank A3 paper on a bench. Fix this for the experiment. i.e. move the laser when swapping from red to green, but *not* the grating.
- Record the positions of diffraction maxima on the paper using a pen or pencil. Use both lasers, and all three gratings. i.e. six set of dots in all. Don't forget to label each dot by maxima number (*n*), grating and laser colour.

Use a 30cm ruler to determine the distance between the n=0 spot and subsequent higher order spots, for each laser and for each grating.

an obstacle with two thin consider plane waves striking slits separated by distance d. Slit width 422,d observe superposition & diffiacted waves at distance (>>> d²/2 This is the 'Far field' ٢ and at this point can regard waves at angle O to be planar Thin sliks (1), (1) We observe an intergerence pattern us Q 12 separated by distance a series of bright and dark friges. Using the approximation of plane waves (19 // rays) at à constructive intergerence when 0 puch difference Dr = n2integer dsing = or From diagram above: 0= So expect matimal when

LASER WAVELENGTH A-LEVEL PRACTI N lines per mm diffraction grating

A. French 7/10/2021

(1e6/N)*sin(theta)

000

-2000

4000

Red laser —— Linear (Red laser)

y = 659.49x

 $R^2 = 0.9997$

Spreadsheet for experiment

DED	IACED
RED	LAJER

$$10^6$$
 Sn $\theta_n = n \times (2m)$

$$\lambda = 659.5$$
 nm

				(1e6/N)*
				sin(theta
N	n	xn /mm	theta_n /rad)
100	-5	-143	-0.336	-3293
100	-4	-112	-0.267	-2635
100	-3	-82.5	-0.199	-1973
100	-2	-55	-0.133	-1330
100	-1	-27	-0.066	-657
100	0	0	0.000	0
100	1	27	0.066	657
100	2	59	0.143	1424
100	3	82	0.197	1961
100	4	111	0.264	2613
300	-1	-81	-0.195	-646
300	0	0	0.000	0
300	1	81	0.195	646
600	-1	-179	-0.412	-667
600	0	0	0.000	0
600	1	174.5	0.402	653

Wavelength of red laser

Height of diffraction grating from paper /mm

410

GREEN LASER

ζ Ŋ 10° Suby

				(1e6/N)* sin(theta
Ν	n	xn /mm	theta_n /rad)
100	-6	-142.5	-0.335	-3283
100	-5	-107.5	-0.256	-2536
100	-4	-92.5	-0.222	-2201
100	-3	-69	-0.167	-1660
100	-2	-46	-0.112	-1115
100	-1	-23	-0.056	-560
100	0	0	0.000	0
100	1	22	0.054	536
100	2	44	0.107	1067
100	3	76	0.183	1823
100	4	89	0.214	2121
100	5	110.5	0.263	2602
100	6	135	0.318	3128
100	7	161	0.374	3655
100	8	187	0.428	4150
300	-2	-139	-0.327	-1070
300	-1	-67	-0.162	-538
300	0	0	0.000	0
300	1	65	0.157	522
300	2	135	0.318	1043
600	-1	-145	-0.340	-556
600	0	0	0.000	0
600	1	145	0.340	556

529.4nm

