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Abstract

This thesis, submitted for the degree of Doctor of Philosophy at University College London, is a

discussion and analysis of combined stepped-frequency and pulse-Doppler target recognition methods

which enable a multifunction phased array radar designed for automatic surveillance and multi-target

tracking to offer a Non Cooperative Target Recognition (NCTR) capability. The primary challenge

is to investigate the feasibility of NCTR via the use of high range resolution profiles. Given stepped

frequency waveforms effectively trade time for enhanced bandwidth, and thus resolution, attention is

paid to the design of a compromise between resolution and dwell time. A secondary challenge is to

investigate the additional benefits to overall target classification when the number of coherent pulses

within an NCTR wavefrom is expanded to enable the extraction of spectral features which can help

to differentiate particular classes of target. As with increased range resolution, the price for this extra

information is a further increase in dwell time. The response to the primary and secondary challenges

described above has involved the development of a number of novel techniques, which are summarized

below:

• Design and execution of a series of experiments to further the understanding of multifunction
phased array Radar NCTR techniques

• Development of a ‘Hybrid’ stepped frequency technique which enables a significant extension
of range profiles without the proportional trade in resolution as experienced with ‘Classical’

techniques

• Development of an ‘end to end’ NCTR processing and visualization pipeline

• Use of ‘Doppler fraction’ spectral features to enable aircraft target classification via propulsion
mechanism. Combination of Doppler fraction and physical length features to enable broad

aircraft type classification.

• Optimization of NCTR method classification performance as a function of feature and waveform
parameters.

• Generic waveform design tools to enable delivery of time costly NCTR waveforms within oper-

ational constraints.

The thesis is largely based upon an analysis of experimental results obtained using the multi-

function phased array radar MESAR2, based at BAE Systems on the Isle of Wight. The NCTR

mode of MESAR2 consists of the transmission and reception of successive multi-pulse coherent bursts

upon each target being tracked. Each burst is stepped in frequency resulting in an overall bandwidth

sufficient to provide sub-metre range resolution. A sequence of experiments, (static trials, moving

point target trials and full aircraft trials) are described and an analysis of the robustness of target

length and Doppler spectra feature measurements from NCTR mode data recordings is presented. A

recorded data archive of 1498 NCTR looks upon 17 different trials aircraft using five different vari-

eties of stepped frequency waveform is used to determine classification performance as a function of

various signal processing parameters and extent (numbers of pulses) of the data used. From analysis

of the trials data, recommendations are made with regards to the design of an NCTR mode for an

operational system that uses stepped frequency techniques by design choice.
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0.2 Glossary

• Azimuth φ, γ (antenna coordinates) Bearing angle of target relative to Radar system

measured clockwise from the perpendicular to the antenna face

• Bayesian classifier A means of target classification by computing the posterior probability of
obtaining a class distinction given a set of observed data. This is computed from a (typically

Gaussian) likelihood distribution which defines the probability of set of measured data given a

class distinction.

• Burst A set of coherently transmitted pulses, i.e. a continuous measurement of phase is

measurable during times when the burst pulses are received. In this document, all transmitted

pulses within each burst will use the same carrier frequency.

• Carrier frequency fTx All transmitted pulses, with spectral bandwidth B and duration τ ,

are mixed with a radio-frequency (RF) sinusoidal carrier fTx. For an S-band system, fTx ≈
3GHz whereas the instantaneous pulse bandwidth B is typically < 20MHz for a phased array

system. Received pulses are usually mixed down to ‘baseband’ (often in several stages) prior to

digital sampling. In order to observe the Shannon-Nyquist sampling theorem, the sample rate

of receiver Analogue to Digital Converters (ADCs) must exceed the instantaneous bandwidth of

the pulse.

• Chirp Describes a pulse with a linear frequency coding. The frequency variation of the pulse

is proportional to the transmission time. A chirp with bandwidth B and duration τ will have a

(frequency,time) gradient df
dt = B

τ .

• Classical method Refers to the conventional method of forming High Resolution Range (HRR)

profiles of targets illuminated by stepped frequency waveforms. In essence, a single measurement

of target phase is determined for each frequency step and the inverse Fourier Transform of the

set of these measurements yields the HRR profile. In this document, the ‘Classical’ technique

also means the use of chirp waveforms. Target phase (and amplitude) samples are taken from

the pulse compressed receiver samples.

• Confusion Matrix Square matrixC which describes the performance of a classification scheme

based upon a finite number of classes. If a set of feature measurements is obtained from known

source classes, element [C]ij ≡ Cij corresponds to the number of features assigned to class i

(which are actually from class j ) divided by the total number of features which are sourced

from class j. Perfect classification will result in an identity matrix of size equal to the number

of classes.
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• dB Decibels. If a signal power is x and a reference power x0 the signal power in dB of x relative

to x0 is given by 10 log10

³
x
x0

´
. dBm(x) is a special case when x0 = max(x).

• Doppler filtering In general, receiver samples resulting from a burst of identical pulse trans-

missions can be combined in such a way as to weight the relative gain of spectral components

of a signal. In this document, a weighted Discrete Fourier Transform is applied over samples

from each of the within-burst pulses. This is done for every HRR range cell. Doppler filtering is

applied after the effects of bulk target motion have been subtracted from the receiver samples,

so the distribution of power in the ‘Doppler domain’ gives an indication of the internal target

motion projected in the look direction. P pulses transmitted at a pulse repetition frequency

of fPRF will give ‘Doppler bins’ of frequency width
fPRF
P . A range-rate of Ṙ will give rise to

a Doppler shift of fD = −2Ṙc fTx where fTx is the transmitted frequency and c the speed of

light. Doppler shifts outside the range will be ‘folded’ in; i.e. any measured Doppler shift will

be ambiguous by ZfPRF where Z is an integer which defines the ambiguity.

• DRAS Software written by Roke Manor designed to interface with the MESAR2 data logger

and allows track data to be extracted.

• Dwell Total time required to transmit (and receive) the stepped-frequency train of pulses in

order to form a HRR profile of a target. If the pulse repetition interval is fPRF , the number of

pulses per burst is P ‘real’ pulses and G ‘guard’ pulses, and the number of frequency steps is Q

Tdwell =
(P +G)Q

fPRF
(1)

• Elevation (antenna coordinates) Vertical angle (relative to the antenna face normal) that

a beam must be steered to intersect a target, following alignment in azimuth.

• Falcon Commercial jet aircraft manufactured by Dassault.

• FFT Fast Fourier Transform This is an efficient implementation of a Discrete Fourier Trans-

form. A (suitably weighted) FFT of a set of time samples is often an acceptable approximation

of the Fourier Transform of the analogue signal being sampled.

• fproc Processing software for MESAR2 NCTR data written for the MATLAB environment by

the author.

• FTG False Target Generator This is a mechanism for delaying the reflection of incident

electromagnetic radiation upon a target, such that the target appears (to the observing Radar)

to be at a much longer range. For experimental systems this might practically consist of dipoles

separated by several kilometers of cable, wrapped up in a portable container.

• Fuzzy Logic classifier A simple implementation of a scalar discriminant based classification

scheme. The classifier consists of a set of pre-defined discriminant functions of target feature

measurements; (e.g. single input, single output or many inputs, single output). A different

function is defined for each class of a (usually finite) set. For a given set of feature measurements,

a class is assigned which corresponds to the largest value of the discriminants evaluated for each

of the classes.
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• Guard pulses Prior to the ‘Classical’ or ‘Hybrid’ processing described in this document, some
form of Clutter filtering will likely be applied by combining receiver samples from consecutive

pulses within each burst. For example, three consecutive pulses can be combined (with suitable

weightings) such that signal frequency components near to zero are suppressed. (This would be

an example of a ground clutter filter). In order to give filter outputs with the same clutter content

contributing to each pulse, additional ‘guard’ pulses must be transmitted first. Conventionally

one assumes clutter is present up to a maximum range. The number of guard pulses is chosen

so each processed pulse has clutter returns (from previous pulses) up to the maximum clutter

range.

• HRR profile High Range Resolution profile of a target. This usually means range cell widths

of less than a metre.

• Hybrid method An improvement upon the ‘Classical’ signal processing scheme of generating

HRR profiles of targets using stepped-frequency waveforms being developed at BAE Systems

Integrated System Technologies. In essence a wide bandwidth pulse is ‘synthesized’ from an

ensemble of modest bandwidth chirps, with each of these transmitted with a linearly stepped

carrier.

• ISAR Inverse Synthetic Aperture Radar. Equivalent to SAR but utilizes the rotational motion

(and aspect change) of a target instead of motion of the sensor antenna.

• k-means A popular data clustering algorithm applied in this thesis to yield a non-parametric

alternative to the Bayesian classifier.

• Look The transmission and subsequent reception of target reflections from a particular azimuth

and elevation. To achieve maximum gain a Radar beam is typically steered (mechanically and/or

electronically) to the desired location.

• M2DATS Data processing software written by Graham Biggs of BAE Systems to convert

DRAS outputs into text files that can be human read and imported into MATLAB via Meros.

• MATLAB Comprehensive computer aided mathematics tool supplied by The Mathworks Inc.

Nearly all figures1 and processing schemes described in this document have been created within

the MATLAB environment.

• Meros Processing and modelling tool developed at BAE Systems Integrated Systems & Tech-

nologies designed to implement and investigate performance of ‘Classical’ and ‘Hybrid’ HRR

methods using data from MESAR2.

• MESAR2 Experimental multi-function phased array Radar system designed and currently

sited at BAE Systems Integrated Systems & Technologies, Cowes, Isle of Wight. MESAR2 was

developed as the technological testbed for the Sampson Multi-Function Radar and is currently

part of the ARTIST joint programme between US DoD and UK MoD.

• Motion compensation Manipulation of Radar receiver samples to remove the effects of bulk

target motion. This requires an accurate estimation of target range rate, obtained either directly

from data or in conjunction with external information; e.g. from a track extractor.

1Xara X, Microsoft Excel and Microsoft Draw are used for the remainder.
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• MTD Moving Target Detection. Use of a bank of clutter filters to detect targets with a char-

acteristic range-rate and thus Doppler frequency.

• MTI Moving Target Indication. Doppler (or ‘clutter’) filter designed to admit Doppler con-
tributions close to the range-rate of a target. P pulses-worth of receiver samples gives one

clutter-filtered pulse at the output of the MTI filter.

• NCTR Non Cooperative Target Recognition.

• NCTR scaling Calibration coefficients that take account of the phase shift from the Radar to

the ‘average’ target range, (i.e. the range obtainable from a conventional plot extractor) plus

any internal system phase effects. If Q carrier frequencies are transmitted, receiver data for each

of these will be multiplied by one of Q coefficients. Calibration coefficients are derived from

stepped frequency illumination of a static point target, in conjunction with the ‘average’ target

range.

• Off Diagonal Extent (ODE) Measure of misclassification ξ. This is defined to be ξ =

1 − Tr[C]XN

i=1

XN

j=1
[C]ij

where C is the Confusion matrix and N is the number of classes. C has

dimensions N ×N. For perfect classification ξ is zero, for total misclassification ξ is unity.

• Phased array Ensemble of Radar transmit & receive elements. Each element has a controllable

phase shift which means a net radiation field can be formed with a principal lobe that points in

a desired look direction; i.e. a phased array Radar can potentially offer electronic beam steering.

• Pod Refers to a ‘repeater’ or False Target Generator (see above) carried by an aircraft such a

Dassault Falcon.

• Polarimetry The use of a variety of planes of electric field vector to yield information about

the scattering mechanisms that form a high resolution target image e.g. obtainable using SAR

or ISAR techniques.

• PRF Pulse Repetition Frequency fPRF

• Pulse Radio frequency Radar transmission. In a Pulse-Doppler Radar that employs pulse com-

pression, frequency coded pulses (or waveforms) of duration τ and bandwidth B are transmitted

at repetition frequency fPRF .

• Pulse compression Receiver samples are convolved with a stored set of weights generated from

the receiver samples of a reflection from a static point target. If a frequency coded waveform of

bandwidth B is used, range resolution δR can theoretically be as good as δR = c
2B .

• RCS Radar Cross Section. Effectively the electromagnetic scattering area of a target. Typically

defined in m2 or dBm2.

• Rx Radar receiver.

• SAR Synthetic Aperture Radar. A means of imaging a ground scene using an airborne or

spaceborne sensor that forms a wide aperture via sensor bulk translation rather than having a

physically large antenna.
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• Scattering center Model (SCM) compare classifier Scattering centres are extracted

from the ‘major’ peaks of HRR profiles and their ranges compared (via a barcode matching

algorithm2) to the radial projections of scattering centres which are marked upon the plan views

of the aircraft drawings. Classification is assigned based on the nearest barcode match.

• Signal processor Sequence of processes that take raw Radar signals and transform these into

a form that enables useful features to be extracted. In this document the signal processing chain

described in the ‘Classical’ and ‘Hybrid’ methods begins with in-phase and quadrature digital

samples and ends with the generation of a HRR profile.

• SNR Ratio of Signal to Noise power. Usually expressed in decibels (dB)

• Spectral stitching Method critical to the ‘Hybrid’ HRR technique which involves the assembly

of the spectra of receiver samples corresponding to consecutive frequency steps. This is used to

‘synthesize’ the receiver samples of a wide bandwidth chirp.

• Stepped frequency A waveform consisting of an ensemble of identical pulses, but with the

carrier frequency of each pulse stepped by (in this document) a constant amount.

• tsee Visualization software for MESAR2 NCTR data written for the MATLAB environment

by the author.

• Tx Radar transmitter.

• Waveform A Linear chirp waveform of pulse length 25.6μs and bandwidth -4.5MHz transmitted

in bursts of 8 pulses for 128 frequency steps of 3.2MHz, starting with a carrier of 2724.2MHz. A

PRF of 2.5kHz is used.

• Waveform B Non-linear chirp waveform of pulse length 20μs and bandwidth ≈5MHz transmit-
ted in bursts of 8 pulses for 128 frequency steps of 0.8MHz, starting with a carrier of 2953MHz.

A PRF of 2.5kHz is used.

• Waveform C Non-linear chirp waveform of pulse length 20μs and bandwidth ≈5MHz transmit-
ted in bursts of 8 pulses for 128 frequency steps of 3.2MHz, starting with a carrier of 2724.2MHz.

A PRF of 2.5kHz is used.

• Waveform D Non-linear chirp waveform of pulse length 20μs and bandwidth ≈5MHz transmit-
ted in bursts of 32 pulses for 32 frequency steps of 0MHz, starting with a carrier of 2999.4MHz.

A PRF of 2.5kHz is used.

• Waveform E Linear chirp waveform of pulse length 25.6μs and bandwidth -4.5MHz transmitted

in bursts of 32 pulses for 32 frequency steps of 3.2MHz, starting with a carrier of 2708.2MHz. A

PRF of 2.5kHz is used.
2The nearest aircaft is selected based upon the maximum value of the peak power of the cross-correlation of the

projected scattering centre barcode (i.e. a binary vector) for each item in a database of aircraft, and the barcode derived
from HRR profile scattering centre extraction.
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0.3 Parameter list with typical values

fTx Carrier frequency GHz

fPRF Pulse repetition frequency kHz

fs Receiver sample frequency MHz

fJEM Jet Engine Modulation frequency few kHz

∆f Frequency step of NCTR waveform few MHz

B Bandwidth of pulses transmitted few MHz

τ Duration of transmitted pulse μs

P Processed pulses per burst 8, 32 ... 1024

Q Frequency steps 32 ... 128 ...

G Guard pulses 1 ..10

σ (Target) Radar Cross Section 0.1 .. 30 dBm2



Chapter 1

Introduction

1.1 Chapter summary

The context and motivation for this research is firstly described with the aim of taking the reader

from the operational need for target recognition through to a discussion of the applicable attributes of

the Radar sensor. The aims and content of the research reported in this thesis is then summarized

followed by an outline of the thesis structure. Finally a survey of published literature is presented

relating to the major topics discussed in this thesis.

1.2 The operational need for target recognition

1.2.1 Target recognition ‘at a glance’

One of the most potent of human skills is the ability to rapidly recognize and classify environmental

stimuli, often when such signals are severely corrupted. Of this toolkit of sensors and processing, the

method of visual facial recognition is perhaps the most impressive. Typically, a successful recognition

will occur in 120 ms [93], with cruder classifications (for example classification of a species group from

a background) in as little as 50ms. Not only is the latency of this process sufficiently small as to be

negligible on the typical timescales of human communication; from an early age most humans have

an extensive library of faces which they not only can recognize as a class (e.g. man or woman, child

or adult) but assign an identification, a name. The triumph which is human visual facial recognition

is perhaps the utopia that any machine1 designed for target recognition must aspire to. A credible

system must be able to recognize broad object classes against a cluttered background with a latency

which is small on the timescales of the expected engagement with the object. Ideally the system must

possess an extensive library of profiles which can be rapidly correlated with input sensory data; the

ultimate goal of identification being conditional on the fidelity of such a database.

1.2.2 Recognizing objects of military importance via remote sensing

Modern warfare relies heavily on the effective use of environmental information returned from sensors

mounted upon military platforms. Radar, Sonar, thermal imaging technologies (to list but a few) can,

jointly, allow an operator to survey the battlespace far beyond the limits of human sensors, both in

terms of range and external environmental conditions such as weather. However, to quote Dr René van

der Heiden of NATO Consultation Command & Control Agency: “One of the most serious problems in

1See [6], [102] for a description of machines that aspire to perform visual face recognition.

7
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today’s military capability is the lack of rapid and reliable identification of objects in the battlespace.”

[103].

The current trend is that of the asymmetric engagement: a highly mobile, dispersed army of

enemy combatants pitted against a large scale, complex force with armaments designed primarily

to defend platforms against weaponry similar to their own. [29]. The suicide bomber riding in a

car, rigid inflatable boat or underground train is a tragically regular threat, one which contemporary

defence systems are somewhat ill posed to counter. The challenge is to enhance military sensors to

be aware of the small, mobile, but potentially lethal objects in the battlespace without mass physical

incursions into the lives of civilians whose liberty belligerents often exploit as camouflage. The issue

is not confined to the problem of urban or littoral waters terrorism. In ballistic missile defence,

identification of the warhead amongst a cloud of delivery vehicle parts and chaff is a major challenge,

and crucial to the success of an anti-missile defence system such as Patriot.2 3 Beyond visual range

missiles such as BVRAAM are being adopted by the UK Royal Air Force as part of the armory of

the Typhoon aircraft.4 However, current rules of engagement require a positive target identification

prior to launch. Until a viable non-visual Non-Cooperative Target Recognition (NCTR) capability

has been proven, the extra range of BVRAAM cannot be fully exploited.

Awareness is not just detection, but recognition; ultimately to obtain sufficient information that

military resources can be intelligently deployed. Unfortunately it is often the case that the only

defence against modern threats is the swift application of lethal force. Here there is clearly no room

for error. Mistaken identity will lead to likely death of innocent individuals and widespread public

condemnation, as in the case of the shooting down of the Iranian Airbus flight IR655 in 1988 by USS

Vincennes stationed in the Persian Gulf.5 In addition to the correct recognition of a terrorist threat,

a large and complex military force must also be able to recognize its own personnel and platforms.

During the 1991 Gulf War 35 of the 148 U.S. fatalities were as a result of fratricide, or ‘friendly fire.’

[103] Cooperative systems such as Identify Friend or Foe (IFF) radio transponders6 are fallible, both

mechanically and subject to human error.7 IFF systems could potentially be set with the incorrect

codes, be accidentally turned off, jammed and even used to masquerade a real threat. In all cases

there is a clear operational need to possess an NCTR capability to, at minimum, check the validity of

the intelligence received via a cooperative system.

1.3 Target recognition methods using Radar

1.3.1 The Radar sensor

Radar is a contraction of RAdio Detection And Ranging. It is a particular example of a wide class

of sensors that detect the presence of a physically remote object via the reception and processing

2http://www.raytheon.com/products/patriot
3http://www.theregister.co.uk/2004/05/20/patriot_missile/
4http://www.eurofighter-typhoon.co.uk/common/AA/bvraam.html
5http://news.bbc.co.uk/onthisday/hi/dates/stories/july/3/newsid_4678000/4678707.stm
6The civil equivalent of military IFF is known as Air Traffic Control Radar Beacon System (ATCRBS). Both IFF

and ATCRBS employ an electronic dialogue of the form: Interrogator: "Who are you?" Target transponder: "I am a
friend and my identity reference is .... "

7A Royal Air Force (RAF) Board of Inquiry investigating the destruction of an RAF Tornado GR.4A by a US Army
Patriot missile during the March 2003 invasion of Iraq concluded that the aircraft’s identification friend-or-foe (IFF)
system had failed. However, it also criticised the missile-classification criteria used by the Patriot system, and the US
Army’s Patriot rules of engagement, firing doctrine and crew training.
[Jane’s Missiles and Rockets - 28 June 2004]
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of backscattered electromagnetic waves. Unlike optical systems, (which are responsive to frequencies

≈1015Hz), Radar is typically associated with frequency bands ranging from a fewMHz (High Frequency
or HF band) up to hundreds of GHz (mm wave). Radar is somewhat useful for the following reasons:

• Most targets of interest (especially those constructed from metal) are highly reflective at Radar

frequencies.

• Radar can be used in darkness and can penetrate haze, fog, snow and rain.

• Atmospheric propagation attenuation is much less severe for Radar than higher frequency elec-
tromagnetic disturbances. This means Radar can be used for long range surveillance. A military

air defence system may have an operational range of hundreds of kilometers. At the extreme

end, Radar has been used to successfully measure the distance between the Earth and other

planets in the solar system. [103]

• The technology to generate, receive and process Radar signals has been continuously refined for
nearly 100 years. Military and civilian air traffic control have employed Radar as a key sensor

extensively since the Second World War. Magnetron transmitters, which are stable sources of

microwaves (0.1 - 100 GHz approximately) are ubiquitous as a fundamental element of modern

domestic ovens. Given the size of a Radar antenna roughly scales with the wavelength it trans-

mits/receives, Radars (with modest directivity, i.e. a beamwidth of a few degrees) tend to be of

dimensions well suited to human use i.e. of the order of a few metres.

1.3.2 The hierachy of Radar derived target intelligence: from recognition to iden-
tification

As alluded to in section 1.2.1, there is an important difference between recognition and identification

of targets. Although no general standard exists, in this thesis a convention based on the definitions in

Skolnik [96] pp370 will be used. These statements describe a four part breakdown of target recognition,

with the ultimate goal being full identification.

1. Recognition of general nature of target. Broad class distinction such as aircraft, ship, motor

vehicle, land clutter, sea clutter etc.

2. Recognition of target type. Initial division of broad class. e.g. ‘aircraft’ can be subdivided into

missile, propeller driven, jet, helicopter. At limits, distinction of targets such as a multi engine

commercial airliner from a fighter jet. It is the methodology of such perceptual classification on

which this thesis focuses.

3. Recognition of target class. This is essentially a species identification. For ‘aircraft’ it would

reveal ‘Airbus A380’,‘Boeing 747-400’...

4. Full target identification. Determination of name or other unique identifier of object being

interrogated. For example: ‘Airbus A340, Acme Airlines flight AM42 from London Heathrow to

New York.’
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Figure 1.1: Description of a generic Radar based system for Non-Cooperative Target Recognition.
(NCTR). In this example we focus on the generation of High Range Resolution (HRR) profiles and
Doppler spectra of targets. Features such as length, distrbution of scattering centres and presence
of Jet Engine Modulation (JEM) can be used to classify a set of radar returns and thus associate a
target with one example from a defined set of objects. In this thesis we will principally explore broad
classes such as “long or short”, “propeller, jet engine or no visible rotating parts”, rather than jump
straight to the more difficult challenge of aircraft type classification e.g. 747,757,A340...
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1.3.3 A summary of target recognition methods using Radar

Radar technology can initially be subdivided into two broad categories. ‘Active’ Radar transmits an

electromagnetic disturbance and then listens for reflections. The time delay between transmission and

reception can be used as an accurate estimator of range, if indeed the clock used is sufficiently accurate

and stable. Interrogation systems such as IFF are active and also cooperative since target identification

information is encoded into the returning signal if a successful dialogue is set up. ‘Passive’ systems

aim to interpret electromagnetic emissions from external sources. For example, transmissions from

other active Radars or emissions from a target aircraft.

Radar, like any other sensor, is in essence an information gathering machine. The received elec-

tromagnetic signals from active or passive devices will contain a wealth of information imparted upon

them via their interaction with the external environment, as well as the effect of the receiver and

signal processing chain. To achieve target recognition, a basic minimum amount of information must

be distilled from a received signal. For level 1 recognition (as defined in the previous subsection), a

target must firstly be detected and discriminated from reflections from thermal noise and unwanted

objects (clutter) such as mountains, rain and birds. In addition particular features must be extracted

from the signal, which are correlated with a distinct target class such that some form of classification

can be inferred. It is this latter statement of a requirement of additional information which differenti-

ates a target recognition system from a Radar which simply reports detections of wanted objects, and

perhaps their location in one or more geometric coordinate. A summary of such additional information

is best aligned to particular technologies, which are tabulated below.

Radar technology Measured quantities Possible information obtainable

Active normal Radar
Signal to noise ratio

Time delay

Phase

Range

Bearing

Elevation

Radar Cross Section

Doppler &

Interferometric Radar

Phase change of a sequence of

returning signals

Range rate

Signal modulations from

moving parts

Polarimetric Radar [94]
Signal strengths in

various polarizations

Indications of the target

scattering mechanisms

Plot & Track extractor
History of target coordinates

+ uncertainty

Estimate of target position

and velocity vectors

Synthetic Aperture Radar (SAR)
As Doppler Radar +

accurate (moving) Radar position

Reflectivity map of surface

illuminated by Radar

Inverse SAR (ISAR)
As Doppler Radar (assumes change

of target aspect angle)

Target image, with

major scatterers highlighted
Table 1. Summary of Radar based technologies and corresponding measured quantities and target

information obtainable.
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Figure 1.2: The MESAR2 S-band experimental multi-function phased array Radar designed and
installed at Cowes, Isle of Wight, United Kingdom.

1.3.4 MESAR2

MESAR2 (fig 1.2) is the second iteration of an experimental phased array Radar developed by BAE

Systems at Cowes on the Isle of Wight. It is the prime demonstrator of technology used in the Sampson

Multi-Function Radar (fig 1.3) which forms a key sensor in the UK Navy Type 45 platform.(fig 1.4).

A third iteration is now being developed as part of the ARTIST programme funded jointly by the UK

MoD and US DoD.

MESAR2 has the ability to electronically steer a Radar beam to any desired azimuth and elevation

within a defined operational sector (approximately 90 degrees in azimuth and elevation, subject to

angular transmission restrictions at a given site). It can therefore be used to interleave wide area

surveillance activities with tracking functions. The latter are specially designed waveforms transmitted

at the estimated angular position of detected objects designated by the system as targets of interest.

The NCTR waveforms discussed in this thesis are transmitted by MESAR2 upon targets that are

already being successfully tracked. Whereas tracking estimates the bulk position and velocity (plus

associated uncertainties) of a target, the NCTR mode aims to determine additional information such

as length and other inferred parameters from the position and within-target motion of the constituent

scatterers which compose the target as viewed by the Radar.
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Figure 1.3: The Sampson multi-function phased array radar mounted in its antenna test facility
at Cowes, Isle of Wight, UK. Unlike MESAR2, Sampson is a full production system which rotates
continuously and containes two opposing faces fully populated with Transmit-Receive modules.

Figure 1.4: Artistic impression of the Sampson Multi-Function Radar mounted atop the principal
mast of the UK Navy Type 45 Anti Air Warfare Destroyer class warship.
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1.4 Overall aims of this thesis

1.4.1 Scope

This study is largely based upon Non Cooperative Target Recognition (NCTR) research conducted

using the S-band multifunction Radar technical demonstrator MESAR2. 8 The practical elements of

the research are based upon a discussion and analysis of the following:

1. A suite of stepped frequency High Range Resolution (HRR) NCTR waveforms automatically

transmitted upon targets being tracked by MESAR2, interleaved between surveillance & tracking

functions.

2. Multi-pulse bursts at fixed frequency and pulse repetition frequency (PRF) to enable Discrete

Fourier Transform (DFT) based Doppler filtering. Short bursts are used to filter Jet Engine

Modulation (JEM) from range profiles, whereas longer bursts are used to identify JEM frequen-

cies.

3. Fully catalogued and accessible target data set (1498 looks upon 54 different target trajectories).

17 different target classes from four sets of experimental trials: (i) On and (ii) Off boresight

static trials; (iii) Moving point target (Falcon & pod); (iv) Targets of opportunity (commercial

aircraft).

4. A development suite of NCTR signal processing, feature extraction & analysis, and classification

software written as part of this research.

1.4.2 Problem statement

Amultifunction phased array Radar (MFPAR) such as MESAR2 operates via the scheduling of distinct

remote sensing activities directed against a potential multitude of targets. Indeed this facility of

‘simultaneous engagement’ is one of the key discriminators against the majority of systems which claim

target recognition capabilities (which typically can only maintain a limted number of simultaneous

target tracks due to the need to mechanically orient an antenna to coincide with the estimated position

of the target). The inevitable compromise conceded by the MFPAR to achieve its desirable qualities

is two-fold: an NCTR waveform will have a limited transmitted pulse bandwidth and a limited dwell

time.

Electronic beam scanning (E-scan) is typically applied to improve upon the latencies associated

with a purely mechanical antenna orientation system. A cost effective and typical implementation of

this is a phased array. At S-band, the bandwidth required to yield target range profiles9 is a significant

proportion of the carrier frequency. This implies significant beam squint during the transmission of a

HRR waveform.10 To limit the squint to within a beamwidth (typically a small number of degrees),

the S-band phased array imposes a limit on the maximum bandwidth which can be associated with

any transmitted pulse. For MESAR2 this is of the order of 5MHz, which is insufficient for target

8The technical content of this thesis is intended to be generic and of an unclassified nature. Where specific reference
is made to MESAR2 (which is in part a UK Restricted and UK Secret programme), references are limited to the scope
agreed with the UK Ministry of Defence (MoD) Defence Science & Technology Laboratories (DSTL) in 2006, which is
the series of experiments described in this thesis. Trials results alluded to in this thesis refer to non-military aircraft
only.

9Sub-metre range resolution requires in excess of 150MHz of bandwidth
10See Background theory section.
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recognition. A means of getting round this constraint is to transmit an ensemble of pulses which

are stepped in frequency. When combined, the ‘synthesized’ waveform is of the required bandwidth.

However, this solution impacts upon the second MFPAR compromise, which is time. To provide a

continuous wide area surveillance, multiple target tracking and NCTR functions, the amount of time

allocated to any given task is inevitably bounded by a time window functionally dependent on the

typical speeds of objects being tracked and the number of objects under consideration. For aircraft

targets, ‘looks’ of more than a few hundred milliseconds are likely to be unacceptable operationally.11

The primary challenge is to determine whether stepped frequency waveforms can be used for

NCTR purposes with an S-band multifunction phased array system. A secondary challenge is to

understand the benefits and limitations of making use of multiple pulse bursts, rather than single

pulses at each frequency step. Although the extra pulses will cause a further erosion of the schedule as

a consequence of increased dwell, these waveforms can provide clutter cancellation as well as further

target characterization via identification of Doppler domain signatures such as Jet Engine Modulation.

1.4.3 Fundamental research aims & key questions

The overall aim of the thesis is to understand the relationship between the characteristics of stepped

frequency methods which can be applied using multifunction phased array Radar, and the resulting

air target classification performance. As a sub-aim, we shall seek to improve classification performance

via optimization of the signal processing and feature extraction methods used. Specifically, we shall

address the following list of fundamental research aims and key questions.

Fundamental research aims

1. Conduct a literature survey of the following topics relating to NCTR using phased array Radar:

stepped frequency high range resolution waveforms; Doppler processing (with specific relevance

to Jet Engine Modulation and Propeller modulation); feature extraction and classification meth-

ods using range and Doppler profiles.

2. Use MESAR2 to deliver NCTR waveforms upon static and moving aircraft targets. Implement

signal processing algorithms to obtain range and Doppler profiles from raw receiver samples

obtained from stepped frequency waveforms consisting of coherent bursts of frequency coded

pulses. In the first instance use ‘conventional’ algorithms such as the Classical stepped frequency

methods described in the background theory section.

3. Develop improved signal processing techniques for stepped frequency waveforms which enable

the ‘Classical’ link between HRR profile extent and HRR resolution to be broken; i.e. which

enable extended aircraft such as a Boeing 747 to be captured unambiguously and a measure

of its length measured directly from a HRR profile. Construct software to apply the required

processing to large numbers of data files automatically. Also construct visualization and analysis

tools to enable interrogation (and testing) of the processing chain at all stages.

4. Conduct trials which enable an incremental understanding of the capabilities and limitations of

the NCTR techniques applied using S-band multifunction phased array Radar (as exemplified

using MESAR2). Start with static trials with two point targets separated in range. Then repeat

11Based upon practical experience with systems such as MESAR2.
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this in a scenario where the Radar beam is required to be electronically scanned off-boresight.

What is the effect upon the HRR profile? Next conduct controlled aircraft trials consisting

of a ‘point’ target co-moving with a (range separated) small aircraft. Can NCTR waveforms

be successfully interleaved with other scheduled activities such as surveillance and tracking?

How does a moving point target HRR profile compare to its static equivalent? What does the

‘point target response’ tell us about the range profile of the small aircraft? How successful are

‘conventional’ motion compensation algorithms? Finally conduct an uncontrolled aircraft trial

using ‘targets of opportunity’ with a mechanism for providing independent identification of each

target via collaboration with a nearby air traffic control. Ideally collect profiles of aircraft whose

length is beyond ‘Classical’ HRR windows, and aircraft which exhibit Jet Engine Modulation or

Propeller Modulation.

5. Implement post processing algorithms which enable the extraction of ‘physical’ scalar features

such as Radar Cross Section (RCS) and target length, plus detection of rotational motion induced

modulation effects.

6. Implement classifier methods which allow for an exploration of: (i) methods which assume an a

priori feature distribution with pre-defined parameters (such as mean and standard deviation);

(ii) an a priori feature distribution with parameters estimated from training data; (iii) methods

which make no assumption of the feature distribution; (iv) methods which allow for a natural

extension to multi-dimensional feature vectors.

7. Analyze classifier performance as a function of signal processing and feature extraction para-

meters. To make initial progress against this somewhat generic statement, choose ‘physical

features’ such as target length12 and well known classifiers such as Gaussian Bayes, Fuzzy logic

or k-means. Parameters consist of numbers of pulses per burst, number of frequency steps,

feature thresholds and carrier frequency jitter.

8. Investigate to what extent combined range and Doppler profiles (using multi-pulse burst stepped

frequency waveforms) can yield useful target information, and model the various associated

ambiguities and coupling phenomena resulting from the use of an S-band multifunction phased

array Radar.

9. Model wider the operational constraints which impact upon the design of NCTR waveforms and

suggest mechanisms for parameter selection such as Pulse Repetition Frequency (PRF).

Key questions

1. Can MESAR2 (and by inference other S-band multifunction phased array radars) be used to

record robust range (and Doppler) profiles of air targets?

2. How robust are feature measurements taken from the trials data set? Do feature measurements

naturally segment into classes? Should certain features be combined, and are they correlated?

3. Can we achieve acceptable classifier performance based upon the extraction of various target

features? How does the crudeness of class definition affect this result and how does performance

12 Instead of abstracted features such as those resulting from a dimensionality reduction process such as a Karhunen
Loeve transform (see Literature Survey)



1. Introduction 17

depend upon: (i) the proportion of total pulse cycles used to form the target data set; (ii) thresh-

olds used in feature measurement, and (iii) the features used (and their possible combination)?

4. Based upon the learning obtained in conducting this research, what are the recommendations

regarding the design of future NCTR modes?

1.5 Thesis structure and chapter summaries

1. Introduction

The operational need for target recognition, Target recognition methods using Radar, MESAR2.

Scope, problem statement, fundamental research aims and key questions. Literature survey

(stepped frequency methods, Doppler processing & Jet Engine Modulation, feature extraction

& classification methods).

2. Background theory

Classical stepped frequency High Range Resolution (HRR) methods: requirement, theory, lim-

itations. Bulk target motion compensation. Hybrid stepped frequency HRR method. Alias

mitigation. Doppler processing. Jet Engine Modulation (JEM), Helicopter & Propeller mod-

ulation. Target feature extraction: Kinematics, Radar Cross Section (RCS), length, scattering

center extraction, Doppler fraction (dfrac). Methods of target classification (Bayes, Fuzzy logic,

k-means). S-band multifunction phased array Radar (beam position, scanning losses, frequency

stability).

3. NCTR experiments using MESAR2

Waveforms. Overall extent of trials data. NCTR signal processing chain. On & Off boresight

static trials. Pod & Falcon aircraft trials. Targets of Opportunity trial.

4. Target classification using HRR profiles

Target data sheets. Range sidelobes from low frequency propeller modulation. Long or Short,

Four Lengths & Pod or Falcon class definitions. Variation of length features. Six aircraft (Pod,

Falcon, Dash8, B747, B757, B777) classification performance via length and ‘Scattering center

Model (SCM) compare’ features.

5. Range-Doppler profiles & Doppler spectra classification

Prop, JEM or No Non Skin Doppler (NNSD) classes discriminated by dfrac. Six aircraft classifi-

cation performance via dfrac. Range-Doppler profiles using multi-pulse burst stepped frequency

waveforms. Classical stepped frequency model + JEM. Range-Doppler profiles of Targets of

Opportunity.

6. Relationship between characteristics of stepped frequency methods and overall air
target classification performance

Variation of confusion matrix off diagonal extent (ODE, ξ) with: Pulse per burst P , frequency

steps Q, length and dfrac thresholds, carrier frequency jitter. Classification via combined length

& dfrac features.
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7. NCTR waveform design recommendations

Generic operational requirements for a (stepped frequency) NCTR waveform. NCTR waveform

design chart.

8. Conclusions & Recommendations

Reiteration of problem statement. Summary of research achievements and scientific contribu-

tions. Summary of specific results. Recommendations for further study. List of publications

arising from this thesis.

References
Appendices A-P are split into two broad categories:

• Theory sections on the main topics discussed in the thesis (phased arrays, Radar equation, χ(x, z)

function, linear chirp waveforms, JEM, stretch processing, k-means and Bayesian classification).

• MESAR2 trials data sheets for Pod, Falcon & Targets of Opportunity (maximum RCS, Range

profiles, Doppler profiles).

1.6 Literature survey

The subject of Non-Cooperative Target Recognition using Radar is an active research area with many

hundreds (if not thousands) of relevant research papers and textbooks. (e.g Tait [103]). In this thesis

I will not attempt to survey the entire subject but instead focus on a subset relevant to three key

areas which align to the main research aims. These are:

• Stepped frequency methods

• Doppler processing & Jet Engine Modulation

• Feature extraction and classification methods13

1.6.1 Stepped frequency methods

Overview

Following an overview of the terminology and hierachy of target recognition, Skolnik [96] pp372 -375

effectively states the goal of the stepped frequency HRR method: the generation of a profile in range

of sufficient resolution to discern individual scattering centres. Radial profiles of a commercial 757

airliner and the (now out of service) US Navy Gun Cruiser USS Baltimore are provided as illustrations.

The latter is generated using an X-band system with a resolution of about 30cm i.e. an intrinsically

wide bandwidth waveform is used. Clark [19] discusses the use of stepped frequency HRR waveforms

in the detection of ballistic missiles. Particular reference is made to the problems associated with the

bulk motion compensation of tumbling objects. In this thesis the bulk acceleration (and rotation) of

targets, which are typically commercial aircraft, is ignored, i.e. a constant range-rate model is assumed

for each look.
13With particular reference to classification of airborne targets using radar.
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Stepped frequency HRR profiling

What will be referred to as the Classical method in Chapter 2 is well documented in Wehner [111]

pp200 - 237. The theoretical HRR profile for a point reflector is derived and the effects of target motion

are alluded to. Wehner also discusses the use of pseudorandom frequency steps, i.e. rather than a one-

way progression of carrier frequencies, (for example in a linear fashion up or down) a jumbled sequence

is used. This can help to remove range-Doppler coupling effects resulting from target motion. This

scheme is somewhat similar to the Costas waveforms described in Richards [88] pp222. In this case

the frequency steps are chosen to yield an Ambiguity diagram for the waveform which has very low

sidelobes in range and Doppler away from the central spike at the origin. Richards gives a summarized

account of stepped frequency HRR. Like Wehner, he uses a fixed frequency pulse and alludes to the

details of the resulting ambiguity diagram derived in the 2004 book by Levanon & Mozeson. Two key

papers are of particular interest and are most likely source material for the book. The first by Levanon

2002 [58] describes the stepped frequency method in general terms. Similar papers are presented by

Gill & Huang [34] and Kai [50], with the latter discussing the use of phase coding in the constituent

pulses of the stepped frequency train. The second, coauthored by Mozeson [59] considers a scheme

for the reduction of ‘grating lobes’ processing artifacts. Several papers consider this topic and add

further colour to the theoretical exposition of the stepped frequency HRR method: Rabideau [87] and

Gladkova [37],[38] consider the use of non-linearly stepped frequencies and the effect of this scheme

upon the ambiguity function of the overall waveform.

‘Hybrid’ techniques

A further refinement of the stepped frequency method is to code in frequency the individual pulses

that constitute the stepped frequency waveform. As applied in the Classical method, this allows for a

more accurate means of identifying the ‘target sample’ at each carrier since the returns from each pulse

can be pulse compressed in the conventional way to yield a (low resolution) range profile. McGroary

& Lindell [65] describe the theoretical frequency domain synthesis of samples from two τ =1 μs,

B =75MHz chirps spaced in frequency such that the central section of each chirp forms a continuous

bandwidth. Schimpf, Wahlen & Essen [92] describe a similar ‘bandwidth synthesis’ technique using

100MHz or 200MHz linear FM chirps transmitted using the 35 or 94GHz MEMPHIS mm-wave Radar

operated by FGAN. Lord & Inggs [62] start from 347.5MHz (using 8 non-overlapping steps of 15MHz)

but otherwise describe a very similar method, with some insight how to provide phase continuity

between the frequency steps.

Ching Tai Lin and Cantrell [17] report similar results with three 100MHz linear FM chirps. Chirps

are combined via an ‘inverse filter’ which appears to account for the fact the combined spectrum of

three chirps of 100MHz bandwidth is different from a single chirp of 300MHz bandwidth. It is possible

that the ‘frequency domain weighting’ proposed in the ‘Hybrid’ method discussed in this thesis are

functionally similar to the application of the ‘inverse filter’. However, it is unclear whether the method

properly accounts for HRR profile aliases in the manner proposed in this thesis.

Berizzi [12], provides extensive analysis of bandwidth synthesis via short pulse CW, linear FM

pulses and phased coded pulses stepped in carrier frequency. The method appears to be closer in

technique to the Classical processing described above. Rather than synthesize a wide-bandwidth

waveform in the frequency domain, the HRR profiles formed for each receiver range cell are combined

with an appropriate range offset. This could be viewed as an extension of the Classical method

described in this thesis. The latter involves an initial pulse compression step to identify the range
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cell of the target. Following motion compensation, the HRR profile is formed from the inverse FFT

of these target samples, one for each frequency step. The Berizzi method could be summarized as a

time domain combination of Classical HRR profiles. It is not totally clear from [12] how the Berizzi

method deals with targets who range extent is beyond the Classical HRR window c
2∆f . A time domain

synthesis of Classical profiles should cause ‘aliases’ wrapped into each profile to superpose. (See

Background theory chapter). Although methods for grating lobe suppression (via careful choice14 of

frequency step ∆f and pulse bandwidth B) are discussed, it is not clear whether this is totally effective

for alias reduction of extended targets.

An alternative to the subsequent “transmit, receive, shift frequency, repeat” of the stepped fre-

quency waveforms described above is to break down a single transmission into sub-pulses of different

frequency. This type of waveform is known as ‘frequency jump burst’ and is described by Maron

[66].15. There are clearly drawbacks with this approach. By transmitting a longer pulse train, the

minimum range is increased and maximum pulse repetition frequency is reduced to achieve a sensi-

ble duty cycle. The benefit of pulse-Dopper processing between frequency steps (or indeed between

frequency jump bursts) is therefore not fully exploitable. However, using a single transmit mode may

well reduce the overall waveform dwell time which would be amenable to a multi-function Radar. (See

Chapter 7). This could be doubly beneficial if the target is accelerating as a longer dwell assuming a

constant range rate model may become less appropriate, resulting in a corrupted HRR profile.

The idea of removing the edges of the spectra of each chirp prior to bandwidth synthesis is outlined

byWalbridge & Chadwick [109] and more recently Miller, Shepherd & Newman [70]. The term ‘Hybrid’

originates from the latter. The research in this document aims to continue from this work, principally

to document the delivery and subsequent processing of Hybrid & Classical waveforms using an S-band

phased array Radar.

Impact of target motion

A number of recent papers consider methods for the mitigation of target motion induced effects

associated with stepped frequency methods applied in phased array Radar. Zeng & Long [116] present

a description of the implementation of a stepped frequency method using a phased array Radar,

particularly the phase shifts required to maintain focus upon a target. Haiying & Ruliang [61] then

derive a theoretical model to quantify the impact of uncompensated target range rate upon the HRR

profile. Haotian et al [115] present a scheme for the automatic motion compensation of a stepped

frequency waveform which appears to work without the need for a independent range-rate estimate.

The method is based on a waveform which comprises of ‘positive’ and ‘negative’ frequency step ‘styles’

rather than the conventional fixed step linear increase. An alternative method considered by Bai Jin

Liang et al [5] makes use of a ‘Fractional Fourier Transform’ (FRFT) and associated matrix based

parameter estimation technique to remove the effects of bulk target motion. In this method there

is no requirement for positive and negative frequency steps and, according the authors, the practical

implementation of the method is comparable in computational efficiency to the Fast Fourier Transform

(FFT). These methods might be useful if a single pulse is used per frequency step and each pulse has

poor range resolution. (e.g. ‘modest’ pulse length CW rather than frequency coded pulses which yield

14By setting the pulse bandwidth B such that the nulls of the pulse temporal autocorrelation at intervals of c
2B

correspond to the stepped frequency aliases separated by c
2∆f .

15The theoretical analysis of stepped frequency waveforms, in particular the ambiguity function presented by Levanon
& Mozeson [59] are probably best described as Frequency Jump Burst. i.e. a single transmission of stepped frequency
pulses.
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(via pulse compression) range accuracies of a few tens of metres16). For the waveforms discussed in

this thesis, motion compensation in the absence of a range-rate estimate from the tracking system

could be achieved by firstly estimating a target range rate from the peaks of the pulse compressor

outputs plotted against pulse number. Given the PRF is known (and fixed) for each waveform, the

range rate could obtained from the gradient of a linear regression of this data. Improvements upon the

crude estimate are then made by considering the skin return deviation in the target Doppler spectra,

which is incoherently summed over all frequency steps. (See section 3.5.2).

Practical applications

In the majority of the examples cited, any practical implementation is typically using an X-band or

millimetric Radar. Walbridge & Chadwick [109] provide an isolated example and discuss the use of

5MHz bandwidth pulses stepped by 3.2MHz, which matches one of the waveforms applied in MESAR2.

(See Chapter 3). The S-band (3GHz) BYSON Radar installation at QinetiQ (formerly DERA) in

Malvern, UK was used in this instance. However, results which demonstrate the practical application

of stepped frequency waveforms in an operational context at S-band are not well represented. It is the

practical demonstration of the use of stepped-frequency waveforms for NCTR, using a multifunction

phased array Radar (with the prime example at S-band), that represents the main contribution to

ongoing research captured in this thesis.

Stepped frequency Radar finds an application in sub-surface remote sensing, in particular buried

object detection. The remote (and therefore safe) detection of explosive devices such landmines is a

pressing requirement for military & civilian personnel who live and work in regions undergoing current

or recent conflict. Cattin [15] states that the generation of a (typically centimetre resolution) range

profile (to a depth of a few metres) might be more optimally achieved using a stepped frequency

approach than via an intrinsically wideband waveform as generated by an ‘impulse Radar.’ Cattin

states: “Sensitivity, dynamic and investigation depth are improved. Moreover perturbations due

to the antenna or material properties can be corrected for each frequency.” The latter concept is

considered by Cherniakov [16] who derives weighting functions for the signal contributions at each

frequency step prior to the Inverse FFT processing which yields the range (or depth) profile.17 A

theoretical discussion relating to the detection of buried spherical objects using stepped frequency

Radar is presented by Freundorfer and Iizuka [32]. Based upon measurements of two 6.6cm dielectric

spheres, a recommendation is made to use the ‘anti resonance mode’ since the backscattered signal is

largest. Stickley et al [98] employ a system with carrier frequencies ranging from 10 to 620MHz with

penetration to approximately 9m.18 Sorensen [97] explicitly reports upon landmine detection using

a 3.8-3.9GHz system with 100 steps of 3MHz, i.e. relatively similar to the waveforms described in

this thesis. The method appears to successfully detect non-metallic anti-personnel mines as well as

metallic variants.

Another novel application of stepped frequency Radar is in the remote mapping of ocean cur-

rents. Traditionally, ocean currents are detected remotely via HF band systems (3-30MHz) which

tend to be large structures (i.e. several tens if not hundreds of metre arrays of antennae) to enable

sufficient azimuth resolution for mapping purposes.19 However Popstefanija et al [84] demonstrate a
16 i.e. sufficient to detect the bulk position of the target in range but not infer any great detail about the position of

scatterers, overall length etc.
17 In all the references relating to stepped freqency methods applied to ground penetrating radar, a “Classical” technique

is used.
18A delay of 60ns is quoted.
19Although HF radars require large antennae, they also offer the possibility of over-the-horizon marine surveillence
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stepped frequency microwave Radar operating between 5.62GHz to 5.92GHz with 16 pairs of frequen-

cies separated by between 2MHz and 40MHz can be employed to achieve an acceptable result. The

HF frequency ‘Bragg’ spectrum, (which is used to quantify the ocean current magnitude and direc-

tion) can be derived via a cross correlation of each pair of signals followed by a power sum of these

correlations. The method works because “the energy in the resonant peak in these cross products

is correlated because the HF separation frequency of the transmitted microwave signals is the same.

However, the energy of the cross products at other frequencies is uncorrelated so the averaging results

in a spectrum having enhanced energy in the ∆K (wavenumber) peak compared to energy in the

background spectrum.”

1.6.2 Doppler processing and Jet Engine / Propeller Modulation

Overview

There are numerous classic texts which describe the coherent processing of bursts of receiver samples

obtained using a pulse-Doppler Radar. Skolnik’s Introduction to Radar Systems [96] provides a general

introduction, although the discussion is mostly focussed on analogue systems which use delay lines to

achieve signal processing effects. Skolnik’s Radar handbook [95] is a much more complete reference and

provides useful pictorial examples relating to digitized receiver samples. An excellent, and modern,

reference is by Richards [88]. Much of the discussion of Jet Engine Modulation (JEM) is summarized

from Tait [103] which in turn provides a summary of the (open20) literature relating to JEM.

The theoretical model presented in section 2.4.2 is due to Martin &Mulgrew [67],[68] who derive the

JEM spectrum from a simple electromagnetic model of rotating line antennas. Their model represents

a propeller rather than a jet engine but is thought to be applicable at S-band [103] where it is less likely

more than one engine stage will be resolved. A number of other papers present models of varying

fidelity, but all come to the same basic conclusion: A rotating blade modulation will (principally)

manifest as a set of spectral lines separated by a Doppler frequency shift equal to the product of

the number of propeller blades and the propeller spool rate. Revelation of further spectral structure

depends on wavelength and Doppler resolution.

Helicopter modulation

Anderson [1] and Green [39] refer to helicopter modulation observed using HF band (3-30MHz) Radar.

Anderson describes the spectral discrimination of two helicopters in a 1983 experiment using the

Australian Jindalee skywave system. However, he reports a tough requirement of 60dB SNR to

detect modulation lines for jet aircraft using this system.21. Green derives theoretical models for the

backscatter of HF frequency radio waves from rotating blades using a similar ‘rotating wires’ model

as employed by Martin & Mulgrew. This model is compared to idealized experiments using 3000RPM

rotors mounted upon scale models which are positioned in an anechoic chamber to minimize clutter.

To account for the reduction in physical scale, frequencies are increased to 3.4GHz. Misiurewicz et

al [73],[72] & Kulpa et al [56] present an analysis of Radar signal backscatter from a Russian MI-2

helicopter with 14.6m diameter blades rotating at 246RPM. A 4kHz PRF, S-band coastal surveillance

due to the possibility of surface and skywave propagation modes; i.e. the range extent for a HF radar is potentially far
greater than an equivalent altitude microwave system.
20Previous (classified) work during the 1970s by W. Bardo of the UK Ministry of Defence Royal Signals & Radar

Establishment is also credited in Tait [103].
21Which are predicted to appear 50dB below the skin return associated with the aircraft fuselage



1. Introduction 23

Radar is used in these experiments. Kulpa states that the ‘shelf’ in spectra resulting from the rotating

hub is more easily detectable if the fuselage skin return is removed from the spectra.

Pouliguen et al [85] present the most detailed theoretical description of the RCS of a rotating

helicopter blade using Physical Optics (PO) methods combined with Method of Equivalent Currents

(MEC) techniques to model diffraction effects from the edge of the blades. He Sisan et al [44] offers an

alternative perspective by considering the detection of sinusoids in a stack of consecutive HRR profiles

resulting from rotating structures. However, the method presented is possibly of limited practical use

given the time domain signals resulting from propeller modulation typically appear to manifest as

a series of regular impulses (‘blade flashes’) rather than a smoothly varying oscillation. Yoon [114]

outlines techniques for exploiting the blade flash effect via use of a stacked Discrete Fourier transform.

The time variation of the Doppler spectrum is used (as it is for propeller aircraft in this thesis) to

estimate the blade flash rate.

Jet Engine Modulation

Tong et al [105] describe a simple physical model of JEM where the engine air intake is represented

as a cylindrical waveguide. Assuming ideal conductors, a scattering matrix is computed incorporating

the effect of rotating blades. Bell & Grubbs [10] refer to previous work by Gardner, Hynes & Mensa

(1967) and describe a parametric model based upon the periodic modulation of the scattered return.

Their analysis is based upon experiments using a Hughes X-band Radar with a PRF of 25kHz, a pulse

bandwidth of 1MHz and P = 1024 pulses per burst. Piazza, Pellegrini, Cuomo & Pardini discuss

models of JEM and its possibility to enable classification of civilian aircraft in a series of papers. [80]

identifies JEM in the Doppler spectra of civilian aircraft and presents the finding that energy in JEM

could be up to 20% higher than the skin return.22. The paper also reports JEM effects “disappear

for the transverse aspect” above 30o from nose on to the aircraft. [24]&[25] describe the details of

a classification approach based upon a neural network. Data was gathered on five different civilian

target classes and 5 target profiles (a mixture of raw signal and spectral) were used in classification.

The Radar used a 32 pulse burst with a PRF of 1kHz. Training data proportions ranged from 3 in

5 to 12 in 76, and average confusion matrix diagonals ranged between 36% and 51% which implies

that mis-classification is predicted to occur between 2 in 3 and 1 in 2 occasions. [79]&[83] describe

the validation of the Martin & Mulgrew model against target spectrum data acquired using the S and

L-band ATC radars at Fiumicino (Rome) and Linate (Milan) airports.

Miller, Shepherd & Newman [70] combine stepped frequency and Doppler processing to form range-

Doppler images of targets where JEM lines can be localized in range. The research in this thesis is a

continuation of this theme with the major difference being the use of an S-band phased array system

with correspondingly different pulse lengths, bandwidths and sample rates. In [70] a sequence of 25

bursts (stepped in frequency by 4MHz) of 50 linear chirp pulses with a bandwidth of 270MHz and

pulse length 1μs were used. By contrast, MESAR2 uses a more modest bandwidth of 5MHz23.

22This observation is the motivation for the energy fraction (efrac) and Doppler fraction (dfrac) feature measurements
discussed in section 2.5.6.
23 It seems somewhat strange that the actual bandwidth of the transmitted waveform (250MHz) is higher than the

entire bandwidth (100MHz) of the 25 x 4MHz frequency steps. In MESAR2, frequency steps of 0.8MHz and 3.2MHz
were used using pulses of bandwidths between 4.5 and 5MHz. Hence the synthesized bandwidth is indeed significantly
higher than it is possible to transmit for any given pulse.
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1.6.3 Feature extraction and classification methods

Overview

The classification of remotely observed objects via features extracted from Radar data is a sub-field

of the broad topic of pattern recognition. As outlined in the introductory chapter of the classic

textbook by Duda [27],24 the overall goal is to determine the decision boundary within a feature space

such that feature measurements can be correctly assigned to their true class. In [27] the example is

given of the classification of two classes of fish (sea bass and salmon) based upon a two dimensional

feature vector comprising, respectively, of measures of fish width and skin lightness. The decision

boundary is determined via a model of expected width and lightness for each class of fish. Techniques

for the formulation of the boundary (for generic, non-fish specific problems!) form a major part of

the field of pattern recognition, in particular when considering decision theory. In this literature

survey we shall firstly consider the sort of features derived from Radar which are typically used for

classification experiments. We shall then discuss references to methods of classification (classifiers)

which, in essence, generate the decision boundary between feature measurements. Lastly we shall

survey reports of classification experiments using Radar.25

Features used for target classification

Tait [103] provides a discussion of feature based classification vs template matching, the latter being

the correlation of target profiles (either in range or Doppler, or both) with reference profiles. The

theory of predicted classification performance via correlation based template matching is discussed in

depth by Haspert [41]. The inherent variability (‘speckle’) of target profiles26 with very small changes

in aspect is considered both by Tait and Hudson [46]. They suggest that very large databases of range

or Doppler profiles corresponding to many angular steps is required for this method to be robust. Van

der Heiden [106] outlines additional problems associated with range profiles; a profile formed using a

Discrete Fourier Transform (DFT) technique (see Classical method in Background theory) will have

an unknown circular range shift. Hwang [47] proposes an additional matching algorithm where an

incremental phase shift is added to the DFT of each range profile, thus enabling the profile under test

to be ‘aligned’ to the database entry. Van der Heiden proposes a ‘Smoothed zero phase representation’

(SZPR) which achieves a similar effect. All profiles are aligned based upon a moving average DFT

phase shift corresponding to the phase of the maximum correlation of profiles in range. In this

thesis, all range profiles are generated such that the maximum power corresponds to the middle range

cell. Further alignment techniques (based on maximum or start range) are then considered for the

purposes of range profile combination. Hudson [46] considers the benefits of averaging range profiles.

Using an 0.5m resolution S-band Radar27 he defines an ‘encounter’ of 100 profiles sub-divided into

‘frames’ of 8 profiles. Using 119 encounters of 24 aircraft he is able to report significant improvements

in classification performance based upon template matching when encounters are used rather than

frames or indeed individual ‘looks.’ Zyweck & Bognor [121] add to this sentiment by noting that
√
N

24Alternatively Webb [110] or Jain [49].
25The overall structure of this thesis is, in essence, an expanded version of the style typically adopted by papers which

report classification experiments. i.e. theory section, choice of features, classification performance (possibly as a function
of some property of the feature generation process and/or classification method).
26Zyweck & Bognor [120] propose that specular reflection, as oppose to difractive scattering, is the dominant contrib-

utor to target RCS at typical radar frequencies using the example of ISAR imagery of a Mirage III aircraft observed at
≈9GHz.
27Air Force Rome Air Development Center
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signal to noise ratio improvement can be achieved via coherent combination of range profiles i.e. those

formed from a burst of phase coherent pulses, relative to a non-coherent power sum over different

looks.28

A practical alternative to template matching is to instead extract a number of features from

the target profile which are themselves less sensitive to changes in aspect angle, as discussed by

Nieuwoudt [78] who compares feature vs correlation based classifiers 29. Zyweck & Bogner [118], [119]

present a practical classification scheme (evidenced using recordings of several commercial aircraft

leaving Adelaide airport) based upon ‘dimensionality reduction’, which is to collapse a large number

of features (effectively samples of the target Doppler spectrum) into a feature space with much fewer

dimensions. Stove & Sykes [100],[101] employ a similar ‘PCA’ technique30 for reducing the Doppler

spectra of personnel, wheeled or tracked vehicles into two dimensional feature vectors. Atrouz [3] also

employs PCA in a less dramatic fashion, reducing 64 sample range profiles to 26 element vectors.

Alternatively, Mitchell [74] demonstrates that (Rician) probability distributions can be estimated for

the amplitude associated with each range bin. He forms a classification process by combining the

probabilities of each (measured) range bin amplitude given the estimated distribution for each class.

This is an example of classifier combination rather than feature combination.31 In this thesis we use

‘physical’ features (i.e. length and a shape characteristic of the Doppler spectrum) since the focus is

to understand the underlying causes of changes to classification performance when profile resolution

is degraded and feature measurement thresholds are varied. (Which would be harder to understand

if a scalar output Karhunen Loeve transform was used, for example). It is also more obvious how to

define a priori feature distributions using physical observables, a necessity in this thesis given the lack

of adequate training data. Whether this physical approach is less optimal in an operational context

(with the possibility of human-in-the loop classification and the obvious need for meaningful features)

compared to training data driven dimensionality reduction techniques, is outside the scope of this

thesis.

Classification methods

In addition to textbook references such as those by Webb [110] and Duda [27], Kotsiantis [54] provides

a review of ‘supervised’ machine learning32, which he defines as follows:

“Supervised machine learning is the search for algorithms that reason from externally supplied

instances to produce general hypotheses, which then make predictions about future instances. In

other words, the goal of supervised learning is to build a concise model of the distribution of class

labels in terms of predictor features. The resulting classifier is then used to assign class labels to the

28A coherent sum of N pulses will yield an increase in signal to noise ratio by a factor N. An incoherent sum (i.e. a
sum of magnitudes or powers) can be shown (see any Radar textbook such as Skolnik [95]) to only offer an improvement
of
√
N. The relative SNR improvement going from incoherent to coherent is therefore

√
N.

29Nieuwoudt [78] classifies four different aircraft types ranging from a 7.3m ‘Arrow’ to a 41.5m B727-200 using simulated
HRR profiles created from plan drawings. Range profiles are reduced to a smoth ensemble of peaks using Burg and MUSIC
super-resolution algorithms. Classifier perfromance is then evaluated against target aspect and range resolution. A similar
analysis of classification performance (via HRR template matching) vs range resolution is presented by Rosenbach [90].
30PCA stands for Principal Component Analysis. A covariance matrix is formed from a set of training data vectors.

The eigenvectors of the covariance matrix, ordered by size of associated eigenvalue, are used as basis vectors for a new
set of dimensions. For example, if a feature vector (e.g. a HRR profile) has 128 elements, this can be ‘dimensionality
reduced’ to two elements by outputting the scalars resulting from the projections using the first two eigenvectors. (Which
will also be 128 element vectors). This projection by covariance matrix eigenvectors is also known as the Karhunen Loeve
transform. An expanded discussion of PCA and its application to target classification using radar is provided by Borrion
[13].
31Kahler [51] describes the use of both feature and decision level fusion.
32Which includes Bayesian, Neural networks, Nearest neighbour, Support Vector Machine and other classifier methods.
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testing instances where the values of the predictor features are known, but the value of the class label

is unknown.”

Webb essentially defines unsupervised learning as the automatic assignment of classes via a clus-

tering algorithm applied to a data set, i.e. the class alphabet (and associated characteristics) are not

defined a priori.

Fuzzy logic methods initially proposed by Zadeh are presented as a comprehensive tutorial by

Mendel [69]. A practical Radar classification example and theory summary is provided by Colin &

Moruzzis [22] who make the distinction between ‘Possibility’ (which corresponds to the maximum value

of the fuzzy membership function over classes for a given feature measurement) and ‘Necessity’ (which

considers the distribution of a particular feature measurement). In this thesis the fuzzy logic classifier

includes ‘Possibility’ but not ‘Necessity’ (the inclusion of which could be a potential refinement).

Bayesian Gaussian classification is briefly described by Tait [103], Vespe [108] and in greater detail

by Duda [27], Webb [110], Krieg [55], Das, [26], Heckerman [42] and Murphy [76],[77].33. This is

a well established technique and typically forms the point of departure for any serious discussion

of parametric classifiers. The Friedman Regularized Discriminant (FRD) method employed in this

thesis is described by Webb and is in essence based upon the assumption of Gaussian probability

distributions of feature measurements deriving from a particular class. The FRD recipe allows for the

estimation of the feature mean and covariance matrices for each class if training data is provided. A

slightly different approach for estimating these parameters is presented by El-Matouat et al [28] who

use the concept of the ‘optimal histogram;’ i.e. the quality of the estimation of the underlying feature

probability distribution per class is dependent of the histogram bin size; too large or too small and no

structure is revealed for a finite data set.

The k-means classifier is a popular non-parametric method which is based upon the iterative

Generalized Lloyd algorithm (Karayiannis 1995). The version described here (see section 2.6.4 and

the Appendix) is an application of the methods of Bezdeck, Ehrlich & Full cited in Bowden [14] and

Wong [113]. k-means classification is widely referenced, although perhaps more as a data clustering

algorithm rather than a classification scheme. Vespe [108] provides a very clear introduction to this

method. Pham [82] describes a novel use of k-means clustering to help reduce the database size for a

template matching scheme, i.e. clustering regions of aspect angle where the range profile is moderately

invariant.

Van der Walt [107] reviews general characteristics of data which determine classifier performance

and compares parametric and non-parametric classifiers. The effect of noise is compared indepen-

dently of the natural distribution of features and the amount of feature data is related to classifier

dimensionality.

Target classification experiments

A thorough application of a Bayesian classifier34 using target feature data of a similar nature proposed

in this thesis is presented by Leung & Wu [60]. Target identity from an Identify Friend or Foe (IFF)

system, elevation measurement from Radar and target speed & target acceleration from a tracker

are used as features to classify targets into broad categories based upon permutations of ‘hostile’,

‘friendly’,‘commercial’,‘military’,‘unknown’ and ‘clutter.’ This type of classification of physical at-

33There are a large number of references describing Bayesian classifiers and Bayesian Networks. A recommended
website is http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.htm which provides an overall summary and plenty of
links for further reading.
34and an alternative ‘Dempster-Shafer’ methodology.
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tributes into general categories that are of operational significance is the methodology adopted in this

thesis. A comprehensive scheme for target classification is presented by Bastiere [9]. The MILORD

system deployed upon the BEM MONGE measurement & test vessel operated by the French Navy

deploys Bayesian and fuzzy logic classifiers using features taken from kinematic, HRR, Doppler and

ISAR Radar measurements.

Rosenbach [91], like Zyweck & Bogner [118], [119] devise a practical feature processing and classi-

fication scheme for aircraft targets. Following a thresholding and normalization process, range profile

features are extracted via Kohonen-net dimensionality reduction of Zernike moment magnitudes. The

latter is a rotation invariant transformation of the range profile. Zyweck & Bogner by contrast opt for

a DFT of range profile magnitude which corresponds to a translation invariant transform. Rosenbach

then compares Bayes, Neural network35 and k-nearest-neighbour classifiers. Hu [45] presents a paper

along similar lines. HRR profiles are used “to avoid the complexity of ISAR” and are reduced to

a nine dimensional feature vector corresponding to various statistical characteristics such as length,

maximum, asymmetry etc. A Mellin transform is applied to the data to circumvent scale variations

due to aspect angle change, and dimensionality reduction via the Karhunen Loeve method is also

considered. Neural network and nearest neighbour classifiers are applied and compared to a simple

correlation filter (template matching) approach.

Jahangir [48] and Stove & Sykes [100],[101] discuss classification of land based targets divided into

personnel, wheeled or tracked classes using Doppler spectra measurements. Using a 15.75GHz, 4kHz

PRF Radar, Jahangir claims the profiles are “invariant to aspect angle and speed” and therefore form

the basis of a robust identification system. Jahangir develops a ‘Hidden Markov Model’ (HMM) to

predict the evolution of (dimensionality reduced) feature vectors over time. Classification is determined

via the most probable dynamic model based upon a measured time series of Doppler spectra. Stove

& Sykes describe classification experiments using the AMSTAR battlefield surveillance Radar and

employ dimensionality reduction via PCA and classification using a Fisher linear36 discriminant. The

Doppler frequencies associated with the AMSTAR experiments are of the order of a kilohertz which

enable the Radar spectrum to be replayed to an operator as an audible tone. Stove & Sykes remark

that automatic classification (which requires typically less than 100ms dwell) can proceed faster than

human classification which, even for trained operators, can take several seconds.

Miller, Shepherd & Newman [70] present graphs of classification performance (although not a full

confusion matrix) using 58 data sets consisting of 6 different aircraft types. Performance is evaluated

using feature measurements (length and presence of JEM are mentioned) and correlation of HRR

profiles with a database of 612 range profiles of aircraft. Both measures are plotted as a function of

additive noise and range resolution. A similar method is presented in this thesis using data obtained

using MESAR2. In addition to a change of sensor, in this thesis we also explore a variation of

waveforms (frequency step size, and numbers of pulses per burst), consider a much larger dataset

(1498 NCTR looks upon 17 distinct target types) and compute full confusion matrices using k-means,

Fuzzy Logic and Bayesian classifiers. A variety of class distinctions are considered; from all aircraft

types to some very general discriminators such as ‘long’ and ‘air-breathing’ (e.g. contains a jet engine

or propeller). The robustness of feature measurements (for example the statistical variation of length

measurement) are considered as a data quality check. Classification performance results can then be

better understood by virtue of a comparison of the estimated probability density functions of feature

35For a more comprehensive analysis of neural network based classification using turntable data see Abbott [2].
36Note: A Gaussian Bayes method such as FRD is a quadratic discriminant - i.e. the discriminant function varies as

the square of the elements of the feature vector.
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measurements between classes.



Chapter 2

Background theory

2.1 Chapter summary

The purpose of this chapter is to provide a theoretical foundation from which research topics discussed

in later chapters are based. As stated in the Introduction, (and indeed the title) the topic of this thesis

is primarily concerned with target recognition modes applied using multifunction phased array Radar.

To consider the practical realization of such systems we shall refer to attributes of MESAR2, which

shall naturally constrain our discussion of target recognition to the subset of methods applied in its

operation. Note inferences made following analysis of the NCTR modes applied using MESAR2 are of

course generally applicable to any form of sensing system adopting similar waveforms and processing

techniques. This argument is founded on the basis that MESAR2 has been designed as an experimental

multifunction radar “technological testbed” rather than a tightly specified production system.

For reasons of cost and historical design preference, the NCTR modes in MESAR2 are implemented

as bursts of phase-coherent pulses (allowing for the possibility of determining the target’s internal

motion induced Doppler spectrum) and ensembles of bursts, each stepped in carrier frequency by a

fixed amount. Each pulse is coded in frequency with an instantaneous bandwidth which can be at

most 5MHz. There are of course in general many other ways of performing target recognition, as

described in Table 1, such as polarimetry, SAR and ISAR techniques. [103]. None of these are

applied in MESAR2.1. Other waveform choices which can lead to viable high range resolution modes

such as very short, high energy ‘impulse’ pulses or wide bandwidth stretch waveforms2 were also not

implemented in MESAR2 by design choice.

In this chapter, the ‘Classical’ method of stepped frequency High Range Resolution profiling,

as deployed in MESAR2, is discussed first. The successes, and limitations, of this technique are

highlighted using examples from the (static) trials data set. An alternative processing scheme, the

‘Hybrid’ method, is presented to improve upon the (literal!) shortcomings of the Classical method.

Doppler processing is then discussed and ‘Skin’ and JEM line features of a target Doppler profile are

defined from a theoretical standpoint. After a discussion of feature measurement (length, scattering

centres and RCS from HRR profiles, Doppler fraction (dfrac) from Doppler spectra), three methods

of target classification (k-means, Fuzzy logic and Bayesian) are described, leading to a recipe for

1 ISAR may be possible using a manouvering target with a continually changing aspect angle to the radar, totalling
a significant angular change over the duration of an NCTR look. However, since most of the experiments were based
upon targets of opportunity which in the main followed linear trajectories, this technique was not explored. Indeed most
targets were chosen based upon a radially inbound trajectory.

2See Appendix and section 2.7.4 for a discussion of the benefits and limitations of stretch processing.
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computing classification performance. Lastly we discuss the practical features and limitations of an

S-band multifunction phased array Radar used for NCTR. In particular, the differences between the

stepped frequency techniques applied in MESAR2 and methods deployed in other Radar sensors such

as Stretch Processing and use of True Time Delay.

2.2 Classical stepped frequency High Range Resolution profiling

2.2.1 The stepped frequency concept

Define a waveform consisting of Q single pulse transmissions (or Q bursts of P coherent transmissions)

with each being radiated using a different carrier frequency fTx(q). The pulses are transmitted by a

monostatic Radar which generates a set of complex receiver samples
©
ψq,p,k

ª
between the transmission

of pulses. k is the range cell number of the K receiver samples for each pulse p of burst q. Consider

for simplicity P = 1 and a simple rectangular pulse of constant frequency and duration τ . The carrier

frequencies are linearly stepped by interval ∆f and begin with frequency f1. Let a Radar illuminate a

static reflector at range RT which corresponds (approximately) to range cell k∗. The Q (mixed down)

signal samples at range cell k∗ corresponding to the target reflection are

ψq = ψ0e
−iφ (2.1)

where phase

φ = 2πfTx(q)
2RT

c
=

4πRT fTx(q)

c
(2.2)

and carrier frequency

fTx(q) = f1 + (q − 1)∆f (2.3)

i.e. it is assumed each sample has the same phase reference, which could be achieved via calibration

between frequency steps and phase locking during a burst.

Hence

ψq = ψ0e
−i 4πRT

c
(f1+(q−1)∆f) (2.4)

= ψ0e
− 4πiRT (f1−∆f)

c e−
4πiRT∆f

c
q (2.5)

Let us compute the Discrete Inverse Fourier Transform3 (DIFT) of these samples to generate a Q

component vector with elements {yn} . For a derivation of the last step, see the Appendix.

yn =
ψ0
Q
e−

4πiRT (f1−∆f)
c

QX
q=1

e
2πi(q−1)(n−1)

Q
− 4πiRT∆f

c
q (2.6)

=
ψ0
Q
e−

4πiRT (f1−∆f)
c

− 2πi(n−1)
Q

QX
q=1

e
2πiq
Q

n−1− 2RTQ∆f

c (2.7)

=
ψ0
Q
e−

4πiRT (f1−∆f)
c

− 2πi(n−1)
Q

⎛⎝eix sin
n³

1 + 1
Q

´
x
o

sin
³
x
Q

´ − 1

⎞⎠ (2.8)

where x
π = n− 1− 2RTQ∆f

c . If range cells are defined

R(n) =
c

2Q∆f
(n− 1)

3A Discrete Inverse Fourier Transform (DIFT) is a linear filter of the form yn =
Q
q=1 wn,qψq where ψq are the

set of signal samples and wn,q =
1
Qe

2πi(q−1)(n−1)
Q are the filter weights.
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Figure 2.1: Stepped frequency HRR profile of a static point reflector using Q = 32 frequency steps
of ∆f = 3.2MHz. No windowing has been used to reduce sidelobes. Peaks have range width of
δR ≈ c

2Q∆f and are aliased at intervals of ∆R = c
2∆f (46.8m).

then

x(n) = π

µ
2Q∆f

c
R(n)− 2RTQ∆f

c

¶
=

2πQ∆f

c
(R(n)−RT )

Since the complex numbers
©
ψq

ª
amount to frequency domain samples of the reflector, the DIFT

of these is an approximation to its temporal signature, and since Radar range is proportion to signal

delay, the filter output power Ψ = |yn|2 can be thought to be a range profile. (See figure 2.1) The
peak of this repeats periodically when x = πQZ, where Z is an integer, and has value at the peak(s)

of Q2.The peak half width of Ψ(R) can be shown to be c
2Q∆f [88].

In summary, the power of the DIFT of a set of samples of a point reflector, (where each sample

derives from a transmission whose carrier is stepped in frequency by ∆f) is a function with periodicity

in range R of c
2∆f and peak width

c
2Q∆f . We can infer from this the Q length vector output of the

DIFT will be spaced in frequency by c
2Q∆f and occupy the range window

h
0, c
2∆f

i
. Hence if the

parameters are chosen appropriately, one can achieve a sub-metre resolution range profile of a target,

albeit ambiguous at integer multiples of c
2∆f . The problems of forming profiles of targets with range

extents longer than c
2∆f will be discussed in section 2.2.4 below.

2.2.2 The practical need for stepped frequency waveforms

The range resolution of a Radar system which uses waveforms defined over bandwidth B can be at

most

δR =
c

2B
(2.9)
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i.e.

δR/m =
149.9

(B/MHz)
(2.10)

where c = 2.998× 108 ms−1 is the speed of light and B is the bandwidth of the waveform trans-

mitted.4 A modern system is likely to employ a digital signal processor which requires the sample

rate fs to be at minimum equal to B by the Shannon-Nyquist criterion. (See Richards [88] pp27). For

sub-metre resolution, the waveform bandwidth must therefore be greater than 149.9 MHz and the re-

ceiver sample rate must be greater than or equal to this. This is well within the capabilities of modern

tracking Radar systems [103] which often operate at X band (9-10 GHz) and fix all of their attention

upon a single target. Tracking Radars are typically cued from another surveillance sensor. Modern

analogue to digital converters can run at a sample rate in excess of 100 Mega-samples per second at

14 to 16 bits per sample.5 However, for a number of design choice reasons, the S-band multi-function

system MESAR2 can only sample at 5 MHz. In MESAR2 the limitations upon fs are twofold. Firstly,

the relatively low transmission duty cycle6 (pulse length divided by pulse repetition interval) implies a

very high time fraction of continuous data sampling. Data processing has to introduce minimal latency

in order to keep up with this near ceaseless torrent of data. Unlike a tracking Radar, in surveillance

mode all range cells are processed. Secondly, a phased array system will naturally have a degree of

loss resulting from the scanning of a beam as the pulse bandwidth is swept. (See section 2.7). For

lower carrier frequencies, the fractional change of ≈150 MHz becomes more significant. Hence the
amount of inter-pulse scanning of an S-band system will be greater than an equivalent X-band sensor.

Note this is not so much of an issue with reflector antennas, which do not squint as phased arrays

do. Phased array squint can be corrected for using True Time Delay techniques (see section 2.7.3) or

equivalently sub-microsecond changes to the phase shifters to account for deviations in instantaneous

frequency of the transmitted pulse from the carrier. However, these corrections can add significant

extra cost, and possibly weight, to a Radar.

In summary: since MESAR2 is limited to sample rates of the order of 5 to 10 MHz, to achieve sub-

metre range resolution one requires a stepped frequency waveform approach since True Time Delay

or sub-microsecond phase shifter changes are not implemented.7

2.2.3 ‘Classical’ method stepped frequency processing

Stepped frequency high range resolution profiling, as described in section 2.2.1 can be practically

achieved by transmitting frequency coded pulses which are mixed with a carrier whose frequency is

stepped between bursts. The frequency coding is used to enable the range resolution achieved with

each set of receiver samples to be better than 1
2cτ where τ is the pulse length. This is achieved by

cross-correlating the combined in-phase and quadrature representations of the received signal (i.e. as

a complex number) with a static point target reference.8 This method is commonly known as Pulse

4Unless super-resolution algorithms [117] have been applied, obtaining extra resolution while trading signal to noise
ratio. [103]

5www.analog.com. October 2006.
6Even if it were to rise to say 50%, a surveillence sensor will process everything received (i.e. 50% of total Radar

time) which will still equate to an overall high data rate.
7 If the within-pulse squinting problem can be resolved, stretch techniques (see section 2.7.4) can yield high range

resolution using a wide bandwidth waveform (i.e. not stepped in frequency) but without the need to sample at frequency
equal to or above the waveform bandwidth. However, stretch techniques have their own limitations and require major
changes to the receiver hardware.

8The static point target reference is typically weighted by an amplitude taper. This has the effect of reducing the
range sidelobes of the pulse compressor output, albeit at the expense of a slight broadening of the range resolution (set
by the main lobe width) beyond c

2B
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Compression (Richards [88] pp43) and can achieve a theoretical range resolution of δR = c
2B where

B is the swept bandwidth of the coded pulse. Applying pulse compression to an ensemble of stepped

frequency receiver samples can enable the most appropriate range cell to be chosen for the target. This

is clearly desirable since the Classical method requires a single complex sample per frequency step. In

this thesis we will refer to two popular frequency coding schemes. Linear chirp waveforms employ a

constant rate of change of frequency within the pulse length. These are required by Hybrid spectral

stitching method described in in section 2.3 below. A common alternative to linear chirp coding is to

use a non-linear frequency sweep9, such that the autocorrelation function of the pulse has intrinsically

low range sidelobes without having to resort to a weighting function. In Chapter 3 we demonstrate

that non-linear chirp waveforms can, compared to linear chirp waveforms, offer a slight improvement

in Classical HRR profile sidelobe levels.

As illustrated in figure 2.2, Q bursts of linearly swept ‘chirp’ pulses are alternately transmitted

and received, with the carrier frequency of each burst10 stepped by a constant interval ∆f . All

transmissions are steered at a target already being tracked (i.e. its range and range-rate are known)

and the opening time of the receiver is set such that the anticipated reflection can be fully captured.

Following a mix-down to baseband, digital sampling at rate fs results in sets of Q complex receiver

samples. These are pulse-compressed to yield a stack of Q target range profiles with range cells of

width c
2fs

, where c is the speed of light. If the target is well defined, i.e. resulting in a dominant

single peak in the range profile, a set of Q peak ranges can be determined. These measurements,

in conjunction with the target range-rate supplied by the tracking system, can be used to take Q

complex samples at the range of the target. Further motion compensation is applied by subsequently

correcting each sample by subtracting the phase resulting from any change in propagation distance to

the target as a result of target motion during the illumination period.

The Q complex numbers can be thought of as being the frequency domain samples of the target

since each corresponds to a carrier stepped in frequency by ∆f . Application of an inverse Fast Fourier

Transform to the target samples yields a set of time (and therefore range) samples bounded by a

‘window’ of c
2∆f . The range interval is thus δR ≈

c
2Q∆f . The range resolution obtainable following

pulse compression of a chirp of bandwidth B is δR ≈ c
2B

11 i.e. effectively limited by the instantaneous

bandwidth of transmission and thus the receiver sample rate. In an S-band system one is practically

limited to values of 5 to 10 MHz, which gives a range resolution of between 15 and 30 metres. The

corresponding resolution of a ‘Classical’ range profile is not bound by such restrictions as long as

the Radar can transmit over a much larger spectral domain, albeit in small segments during any one

transmission, and sufficient time is available to deliver the stepped frequency waveform. Sub-metre

range resolution is therefore obtainable with an S-band Radar. For example, Q =100 frequency steps

of ∆f =3MHz gives a resolution of ≈50cm.

2.2.4 Limitations of Classical stepped frequency processing

The range window provided by the Classical method of HRR processing is limited to ∆R = c
2∆f .

A frequency step of 3MHz will give a window of length ≈50m. A large aircraft such as a Boeing

9This can be approximated by an arctanh function f(t) = B
τ
tanh−1 2t

τ
given variables time t, frequency f , pulse

length τ and bandwidth B. The rate of change of frequency at the centre of the pulse (t = 0) is the same as a linear
chirp. i.e. df

dt t=0
= B

τ
.

10A set of coherently transmitted pulses; i.e. a continuous measurement of phase is measurable during times when the
burst pulses are received. In this document, all transmitted pulses within each burst will use the same carrier frequency.
11The receiver sample rate must exceed the Shannon-Nyquist criterion to avoid aliasing of target returns i.e. fs > B.

The width of a target response following pulse compression will therefore span one or more range cells.
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Figure 2.2: Classical method explained in pictures. Q complex samples are taken from the pulse
compressor output, (following motion compensation) at the range cell corresponding to the target
position. A HRR profile is formed from the output power of a Discrete Inverse Fourier Transform
(DIFT) of the complex samples.

747 (70.7m) or Airbus A380 (80m) will exceed this for many look orientations and yield a profile

of principal returns (‘scattering centres’) from, say, the nose, main engines and tail-fin out of their

actual range order, as illustrated in figure 2.3. Since any peak in the Classical profile will be a priori

range ambiguous by integer multiples of c
2∆f , this presents a significant challenge in post-processing to

disentangle the data set in order for the processes of feature extraction and ultimately, non-cooperative

target recognition, to work.

There is a additional problem. As target scattering centres become further separated, their gain

relative to those well within the c
2∆f window about the ‘range’ of the target will rapidly reduce. This

is because all the scattering centres which comprise the target contribute to a single complex sample

interpolated from the pulse compressor output of each of the Q frequency steps. If the separation of

the target’s scattering centres exceed the Radar compressed pulse width, the component scatterers

will be resolved by the pulse compressor. As a result, the method of ‘target sampling’ will tend to

ignore much of the target structure. Both these effects were observed during the MESAR2 static trials

described in Chapter 3. Figure 2.2 shows the Classical HRR profile of two dipoles separated by 58m.

In this example a frequency step of 3.2MHz was used which gives rise to a HRR window which is

less than the separation, causing wrapping and loss of gain effects. The latter is clearly evidenced by

the resolution of the two dipoles in the pulse compressor output and the target samples taken at a

significant separation from the second dipole.

2.2.5 Motion compensation

If the motion of a target is not corrected for prior to HRR processing, the resulting profile will be

corrupted. General effects may involve combinations of peak broadening (and resulting loss of resolu-

tion), range shifting of peaks and loss of dynamic range. To explain the source of these corruptions let

us consider a point reflector moving at (constant) range rate v. Between frequency steps (which occur
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Figure 2.3: Extended range targets (such as a Boeing 747) will ‘wrap’ into the Classical window if the
actual range extent is longer than c

2∆f .

at equal intervals ∆t) the target moves in range by v∆t and thus contributes extra phase 4πfTxv∆t/c

to target samples ψq

ψq = ψ0e
− 4πi

c
(RT+(q−1)v∆t)(f1+(q−1)∆f) (2.11)

= ψ0e
− 4πiRT {f1−∆f+v∆t(∆f−f1)}

c e−
4πi{RT∆f+v∆t(f1−2∆f)}

c
qe−

4πi
c
v∆t∆fq2 (2.12)

The linear term e−
4πi
c
{...}q is now shifted by the transformation RT∆f → RT∆f + v∆t (f1 − 2∆f)

which results in a range shift of the HRR peak formed from the Inverse Discrete Fourier Transform

of
©
ψq

ª
.

The quadratic term e−
4πi
c
v∆t∆fq2 results in a corruption of the profile. If v is modest the quadratic

term results in peak broadening.
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2.3 Hybrid stepped frequency High Range Resolution profiling

2.3.1 Requirements

The ‘Hybrid’ technique presented in this thesis is an attempt, via modified signal processing, to yield

range profiles obtained using stepped frequency waveforms12 which are not subject to the Classical

limitations discussed above. The requirements for the Hybrid technique might be summarized as

follows:

1. Yield identical range profiles within the range ± c
4∆f (about the profile maximum) as returned

via the Classical method for aircraft of Radar lengths ≤ c
2∆f

2. Extend the HRR profile to the full range available during conventional pulse compression. If

there are K receiver samples obtained with frequency fs this means a range13 of Kc
2fs

.

3. Scatterers resolvable in the conventional pulse compressor output (i.e. are separated by more

than c
2fs
) should not incur a loss in magnitude as a result of Hybrid processing, as observed in

the Classical method.

4. Offer a range resolution of c
2Q∆f throughout the Hybrid HRR profile.

5. Will not impart any processing artefacts which degrade the HRR profile significantly more than

the Classical method when subject to realistic motion compensation errors, frequency jitter etc;

i.e. must be shown to work with real targets.

2.3.2 Previous work

Initial development of the Hybrid technique, which culminated in an IEEE Radar 2006 conference

paper [31], was conducted during a BAE Systems research programme into Phased Array target

recognition techniques during 2004 and 2005. The static and Pod & Falcon experiments were con-

ducted during this time. The Hybrid concept was fleshed out from earlier work (circa 1990) conducted

at the BAE Systems Advanced Technology Centre at Great Baddow, Chelmsford, UK by Kite, Tait

et al and more recently by Miller, Shepherd & Newman [70]. The term ‘Hybrid’ originates from the

latter. Outside of BAE Systems, McGroary & Lindell (1991) [65] describe the theoretical frequency

domain synthesis of samples from two τ =1 μs, B =75MHz chirps spaced in frequency such that the

central section of each chirp forms a continuous bandwidth. Further refinements (i.e. the idea of

removing the edges of of the spectra of each chirp) are described in the method outlined by Walbridge

& Chadwick of DERA, Malvern in 1999. [109]. Additional references are discussed in the Literature

Survey.

2.3.3 Recent developments of the Hybrid technique

Below is a summary of work conducted by the author relating to the Hybrid technique. Details are

described in section 3.5.2.
12 i.e. based upon a frequency coded waveform of bandwidth B and duration τ transmitted in coherent bursts of P

pulses. Q bursts are transmitted using a frequency step of ∆f.
13 In the experiments conducted with MESAR2 described in this thesis, K is typically 150 and fs = 5MHz. This yields

a range extent of 4.5km, i.e. significantly higher than the Classical range windows quoted in this thesis, which are 47m
(∆f = 3.2MHz) and 187m (∆f = 0.8MHz).
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• Implementation of a signal processing scheme based upon the concepts described in the previous
section such that MESAR2 receiver samples could be processed using the Hybrid technique.

• Motion compensation algorithms (applied to Classical as well as Hybrid methods) which exploit
the Doppler spectra obtainable from each burst in addition to range walk and phase correction

based on prior knowledge (e.g. from the Tracking sub-system) of target range rate.

• Hybrid range profile alias minimization via frequency domain scaling using weights derived from
the Fourier Transform of a synthesized linear chirp of bandwidth Q∆f and duration τ .

• Hybrid de-aliasing via HRR power subtraction.

2.3.4 Overall method

Rather than applying pulse compression and then taking a set of ‘target samples’, receiver samples

are combined, following motion compensation, in the frequency domain to synthesize a ‘psuedo-chirp’

of bandwidth B = Q∆f . (See fig 2.4). This is converted back into the time domain and correlated

with the equivalent ‘spectrally-stitched’ receiver samples of a single static point target. The result of

this pulse compression is a range profile of resolution c
2Q∆f , i.e. the same as the ‘Classical’ technique.

However, because the entire set of receiver data is used, the range extent is only limited by the duration

of the receiver opening. This is typically several kilometers and thus the Hybrid technique offers

significantly greater unambiguous (high resolution) range coverage than the Classical method. The

waveform architecture which enables Hybrid processing is identical to that of the Classical technique,

but with the additional constraint that the frequency sweep B of consecutive transmitted chirps

overlap such the central portions of their spectra (of width ∆f) form a continuum over the total

stitched bandwidth Q∆f .

2.3.5 Mitigation of the problem of aliases

Fig 2.5 compares the Hybrid HRR profile of two static dipoles separated by 58m using a 3.2MHz

stepped frequency waveform with the corresponding Classical profile. The Hybrid profile unambigu-

ously resolves the dipoles with the correct separation and without the loss of gain experienced with

the Classical method. However, even in this static example14, aliases are clearly present at intervals

of c
2∆f at around 20dB below the main peak.

A three-fold mechanism has been devised to reduce the effects of aliasing:

1.1. Improved motion compensation

2. Frequency domain scaling

3. Hybrid de-aliasing via HRR power subtraction

Step 1 is discussed in section 3.5.2, but is obviously irrelevant for static targets. Step 2 involves

the scaling of the stitched spectrum by the ratio of a wideband chirp15 spectrum to the stitched

spectrum of a static point target. Hybrid processing of a static point target will therefore become

14Aliasing can be described as a (weighted) convolution of the range profile with a periodic ‘comb’ function spaced by
c

2∆f
. If motion compensation is imperfect there will be periodic disturbances in the stitched spectrum of interval ∆f.

Hence one would expect aliasing to be worse for targets in motion than for genuinely static targets.
15 of bandwidth Q∆f and duration τ



2. Background theory
38

Figure 2.4: Graphical representation of the ‘spectral stitching’ employed in the Hybrid method. In
this example a linear chirp waveform is transmitted upon a static point target and receiver samples
are stored for a range of carrier frequencies stepped by a constant amount, such that the central
(red) region of the spectra shown in the uppermost graph form a continuous bandwidth (shown in
the middle graph). Despite the ‘ears’ being removed from the spectrum, the stitching method yields
periodic amplitude (and phase) disturbances. These yield the aliases as shown in fig 2.5 , which can
be minimized (as shown in fig 2.8 and fig 3.14) by a combination of scalings in the frequency domain
and power subtraction in the time domain.

Figure 2.5: Hybrid and Classical HRR processing of two point targets separated by 58m. Aliases
separated by HRR window c

2∆f are indicated. Black rings indicate principal return and red rings
indicate aliases. The two targets are highlighted by orange and green filled circles. The limited HRR
window causes the Classical stepped frequency method to wrap the dipole into this window, therefore
underestimating its range by c

2∆f . The gain of first dipole is also reduced.
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the autocorrelation of the wideband chirp and therefore, by definition, yield the desired result. To

understand how this mechanism is applicable in the general case of multi-scatterer targets let us firstly

define a number of quantities.

• ψq(t) is the time domain complex signal which represents the transmitted waveform. This is

a linear chirp of bandwidth B and duration τ transmitted using carrier frequency fTx(q) =

f1 + (q − 1)∆f .

• Ψq(t) is the received signal (for frequency step q) resulting from the reflection of the transmit-

ted waveform off a target. Assuming a scattering center decomposition of this signal we may

construct Ψq(t) from ψq(t) and the ranges {Rn} and reflectivities {an} of the N scatterers.

Ψq(t) =
NX
n=1

anψq(t−
2Rn

c
) (2.13)

• Θq(f) = F [Ψq] is the Fourier Transform of the receiver samples from frequency step q.

Θq(f) = F [Ψq] =
NX
n=1

an=
∙
ψq(t−

2Rn

c
)

¸
(2.14)

By the Fourier Shift theorem F [y(t− a)] = e−2πiafF [y(t)], the expression above can be written as

Θq(f) =
NX
n=1

ane
−4πiRn

c
fF
£
ψq(t)

¤
(2.15)

• Ξ(f) is the stitched spectrum

The stitched spectrum is thus defined as

Ξ(f) =

QX
q=1

Λq (2.16)

where

Λq =

(
Θq(f) fTx(q)− 1

2∆f ≤ f < fTx(q) + 1
2∆f

0 otherwise
(2.17)

which yields

Λq =

⎧⎨⎩ F
£
ψq(t)

¤XN

n=1
ane

− 4πiRn
c

f f1 + (q − 3
2)∆f ≤ f < f1 + (q − 1

2)∆f

0 otherwise
(2.18)

Since the non-zero regions of Λq form a continuous frequency range without gaps or overlaps, we

can therefore write Ξ(f) as the product of a term involving the scattering center decomposition, and

a term which involves the transmitted waveform.

Ξ(f) =
NX
n=1

ane
−4πiRn

c
f

| {z }
Scattering center term (SCT)

×
QX
q=1

(
F
£
ψq(t)

¤
f1 + (q − 3

2)∆f ≤ f < f1 + (q − 1
2)∆f

0 otherwise| {z }
Waveform term (WFT)

(2.19)
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or

Ξ(f) =

(
SCT× WFT f1 − ∆f

2 ≤ f < f1 + (Q− 1
2)∆f

0 otherwise
(2.20)

The spectrum for a wide bandwidth chirp ψWB(t) (see fig 2.6) with carrier fTx = f1 + Q
2∆f (i.e.

a single scatterer at range R0) and central bandwidth16 Q∆f can be written as

ΞWB(f) =

(
a0e

− 4πiR0
c

fF [ψWB(t)] f1 − ∆f
2 ≤ f < f1 + (Q− 1

2)∆f

0 otherwise
(2.21)

whereas the stitched spectrum for the same target is

ΞPT (f) = e−
4πiR0

c
f

QX
q=1

(
F
£
ψq(t)

¤
f1 + (q − 3

2)∆f ≤ f < f1 + (q − 1
2)∆f

0 otherwise
(2.22)

= e−
4πiR0

c
f

(
WFT f1 − ∆f

2 ≤ f < f1 + (Q− 1
2)∆f

0 otherwise

If we define spectral scalings

W (f) =
ΞWB(f)

ΞPT (f)
(2.23)

then for a point target at range R0, Ξ(f)W (f) = ΞWB(f). Because of the decomposition of

target and waveform terms in Ξ, for multi-scatter targets we should obtain Ξ(f)W (f) equal to the

SCT multiplied by the band-limited = [ψWB(t)], i.e. the Fourier Transform of the wide bandwidth

waveform ψWB(t) multiplied by a ‘top hat’ of width Q∆f. In the time domain this is the convolution

of the wide bandwidth chirp, a sinc function of periodicity c
2Q∆f and a comb of unit impulses which

correspond to the scattering center decomposition. If this result is sampled with range cells of c
2Q∆f

then this result is effectively the receiver samples one would obtain using a wide-bandwidth waveform.

Figures 2.7 & 2.8 illustrate the application of the Hybrid method with spectral scaling. Compared

to fig 2.8, the 58m dipole result has almost non-existent aliases.17 In both examples the experimental

results are compared to (idealized) synthesized receiver samples, which assume no noise.

16 In practise this means the actual bandwidth BWB would likely exceed Q∆f
17The return at -37dB is likley to be a genuine target reflection resulting from imperfections in the False Target

Generator setup since it doesn’t match up in range with any alias of the two dipoles
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Figure 2.6: The principle goal of the stepped frequency method is to yield a comparable range profile
to that which could be obtained with a pulse whose bandwidth equates to the total bandwidth covered
by the stepped frequency waveform. In this figure we show a wide bandwith waveform in the time and
frequency domains. The red region corresponds to the stitched spectrum of a corresponding stepped
frequency variant. To minimize aliases caused by stitching periodicity, we scale the stitched spectrum
by the stitched spectrum of a point target reference and multiply by the corresponding region of the
wideband waveform (which is synthesized from a model). A point target (as shown in fig 2.7) should
correspond perfectly to the wideband result. More realistic targets should have minimal aliases unless
motion compensation or other receiver effects cause additional distortion.
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Figure 2.7: (Above) Overlay of the HRR profiles of a single dipole reflector obtained using a waveform
of 128 linear chirps of bandwidth -4.5MHz stepped in frequency by 3.2MHz. The red trace is generated
using the Classical method described in the previous section. The blue trace is generated by the Hybrid
method using the same data. For this calibration target, the Hybrid technique has significantly lower
sidelobes than the those of the Classical technique (where a 40dB Dolph-Chebychev amplitude taper
has been applied prior to application of the IFFT). (Below) Noiseless modelled data is fed into the
same Classical and Hybrid signal processing, yielding very similar traces. Notice the Hybrid technique
yields range asymmetric profiles below -80dB. (i.e. below the noise floor of the above example which
may explain why it cannot be observed here).
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Figure 2.8: (Above) Overlay of the HRR profiles of two static dipoles spaced by 58m obtained using a
waveform of 128 linear chirps of bandwidth -4.5MHz stepped in frequency by 3.2MHz. The red trace
is generated using the Classical method described in the previous section. The blue trace is generated
by the Hybrid method using the same data. Unlike the Classical technique, the Hybrid method can
unambiguously separate both targets at the correct range. (Below) Noiseless modelled data is fed into
the same Classical and Hybrid signal processing. The aliases at c

2∆f are almost non existent in the
modelled example, compared to 10dB in height above the main trace for the above example, which
was generated using trials data obtained via MESAR2. Interestingly, the experimental dipole profiles
are actually sharper at -50dB than the ideal profile.
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2.4 Doppler processing and Jet Engine Modulation

2.4.1 The Doppler Filter & its associated ambiguities

A coherent Radar alternately transmits and receives a burst of P pulses using a common phase

reference. This effectively means no jumps in signal phase are introduced by the mixing down process

in the receiver. Let us assume a reflector is initially placed at range R and is illuminated using a

pulsed Radar which operates at pulse repetition frequency fPRF and carrier fTx. The phase shift of

a received reflection from what was transmitted is φ = 2πfTxtdelay where tdelay = 2R/c is the time of

flight between transmission and reception, i.e.

φ =
4πfTxR

c
(2.24)

Let us now assume the reflector is moving with range rate Ṙ. Between consecutive pulses the difference

in phase ∆φ will be accounted for by the change in target range. If the target is moving with uniform

range rate, the range change during the pulse repetition interval is Ṙ/fPRF hence

∆φ =
4πfTxṘ

cfPRF
(2.25)

The instantaneous frequency of a signal of general form s(t) = cos (2πfTxt− φ(t)) is given by

f(t) = fTx −
1

2π

dφ

dt
(2.26)

Hence we can assign a Doppler Shift fD of frequency resulting from (constant range rate) target

motion

fD = − 1

2π

∆φ

1/fPRF
= −2Ṙ

c
fTx (2.27)

In summary, a moving target in range will result in a non-zero rate of change of phase in the

received signal. This is equivalent to a physical frequency shift of the carrier by the Doppler Frequency

fD = −2Ṙc fTx. This result allows one to discriminate a target reflection from potentially larger returns
that do not have the same Doppler frequency by application of a filter. The simplest design is one

which combines P subsequent sets of receiver samples
©
ψp

ª
in a linear fashion to produce a single

output y =
PP

p=1 ψpwp. The weighting of each set {wp} is set to either suppress signals with Doppler
frequencies characteristic of clutter (as in MTI) or maximize the target to clutter ratio (as in an MTD

system).

The frequency response of a filter is the frequency dependence of the output power given a pure tone

as the input. Let samples of the input be ψp = e2πitpf where tp are the sampling times corresponding

to each of the P receiver intervals. The frequency response is therefore

|y(f)|2 =

¯̄̄̄
¯̄ PX
p=1

wpe
2πitpf

¯̄̄̄
¯̄
2

(2.28)

with a corresponding phase response

arg [y(f)] = tan−1

⎧⎨⎩
PX
p=1

wpe
2πitpf

⎫⎬⎭ (2.29)
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For example, the frequency response of an MTI filter designed to suppress ground clutter may

have weights similar to {wp} = {1,−2, 1} . If no stagger is used (i.e. the pulse repetition interval is
uniform at fPRF ) then the frequency response of the filter is

|yGCF (f)|2 =

¯̄̄̄
e
2πi(1−1)f
fPRF − 2e

2πi(2−1)f
fPRF + e

2πi(3−1)f
fPRF

¯̄̄̄2
(2.30)

=

¯̄̄̄
1− 2e

2πif
fPRF + e

4πif
fPRF

¯̄̄̄2
(2.31)

The most basic form of an MTD system uses a bank of filters and utilizes the filter with the

maximum gain to provide the input to a target signal threshold detector. The filter weights are

defined such that the bank of filter outputs are the Discrete Fourier Transform (DFT) of a vector of

signal samples from the P contiguous pulses. This is a good idea as the DFT of a vector of complex

numbers can be efficiently coded (a Fast Fourier Transform) if P is an integer power of 2. The DFT

filter weights (for output k) are

wp,k = e−
2πi(p−1)(k−1)

P (2.32)

The frequency response using a uniform PRF is

|yk(f)|2 =

¯̄̄̄
¯̄ PX
p=1

e
− 2πi(p−1)(k−1)

P
+
2πif(p−1)
fPRF

¯̄̄̄
¯̄
2

(2.33)

=

¯̄̄̄
¯̄e2πi k−1

P
+ f
fPRF

PX
p=1

e
2πip
P

1−k+ fP
fPRF

¯̄̄̄
¯̄
2

(2.34)

=

¯̄̄̄
¯̄ PX
p=1

e
2πip
P

1−k+ fP
fPRF

¯̄̄̄
¯̄
2

(2.35)

=

¯̄̄̄
¯eix sin

©¡
1 + 1

P

¢
x
ª

sin
¡
x
P

¢ − 1

¯̄̄̄
¯
2

(2.36)

where18 x
π = 1− k + fP

fPRF
.

This has a maximum of P 2 when 1− k + fP
fPRF

= 0 i.e.

fmax =
k − 1

P
fPRF (2.37)

The kth filter bank therefore has a frequency response that peaks at the fraction of the PRF defined

by the ratio of k to the number of input samples P . One can therefore use the output of this filter

bank as an approximation to the Fourier Transform19 of the input signal if k = 1...P, albeit that we

restrict the spectrum to frequency extent [0, fPRF ] . Note that the frequency response is periodic in

fPRF , i.e. the transformation f → f + ZfPRF where Z ∈ Z has no effect on the frequency response.

18 z
n=1 e

2ixn
z =

eix sin((1+z−1)x)
sin(z−1x)

− 1 where z is integer. This result is proved in the Appendix.
19The Fourier Transform ψ̃(f) of a signal ψ(t) is defined as ψ̃(f) = +∞

−∞ ψ(t)e−2πiftdt. The output of a Fourier

Transform is the spectrum (frequency content) of the signal. A pure tone ψ(t) = e2πif∗t has a delta function Fourier
Transform at frequency f∗ i.e. a frequency content at f∗ only and zero elsewhere.
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yk(f + ZfPRF ) = e
2πi k−1

P
+ f
fPRF

+2πiZ
PX
p=1

e
2πip
P

1−k+ fP
fPRF

+2πipZ
(2.38)

= e
2πi k−1

P
+ f
fPRF

PX
p=1

e
2πip
P

1−k+ fP
fPRF (2.39)

= yk(f) (2.40)

since p is also integer and e2πiJ = 1 when J is any integer. This means any characteristic frequency

inferred from the DFT will be ambiguous by fPRF .

Armed with this bank of filters (which we shall call a Doppler Filter from now on), let us consider

the effect of a the received signal ψp being represented as a complex number I + iQ and take the form

ψp = ψ0e
−i(p−1)∆φ where ∆φ = 4πfTxṘ

cfPRF
= −2πfD/fPRF . The envelope ψ0 is the part of the signal

return which is unchanging between pulses, i.e. in this example we shall neglect for the moment the

effect of clutter and focus purely on the target. Comparing this to the samples of a pure tone used to

define the frequency response above we have

ψp = ψ0e
2πi(p−1)fD

fPRF Signal from uniformly moving target

ψp = ψ0e
2πi(p−1)f
fPRF Pure tone

(2.41)

Since these take the same functional form, by substituting f by the Doppler Shift fD in the

frequency response we derive the variation of the filter output yk with fD, or equivalently for a given

target range rate Ṙ, we determine the signal Doppler spectrum ‘measured’ by the filter by considering

the variation of filter amplitudes vs k.

Of course we could dispense with the concept of a discrete set of filters and

• Use a continuous variable f = k−1
P fPRF and plot an interpolated Doppler spectrum

y(f) =
PX
p=1

ψpe
−2πi(p−1)f

fPRF (2.42)

This would be useful for visual analysis of the frequency content of a sampled signal.

• Design a filter with a single output that has its maximum response when the signal has a tone

component of the Doppler frequency. This occurs when fD = k−1
P fPRF . The filter weights are

therefore

wp = e
−2πi(p−1)fD

fPRF (2.43)

This would be useful in adapting signal processing to a target whose range-rate is already well

known; e.g. a tracking waveform which follows surveillance and range rate estimation from

analysis of the Doppler spectrum of the received signals.

2.4.2 Sources of target Doppler: HERM & JEM

In the previous sections we have discussed how bulk target motion can lead to an effective frequency

shift fD resulting from a continuous change in the propagation distance, and therefore change in phase

of the returning waveform from pulse to pulse. In addition, internal motions superposed upon bulk
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movement can lead to detectable signal modulations which, if correctly interpreted, can assist classi-

fication of the overall target. Significant research (for example by Martin & Mulgrew [103],[67],[68])

has been conducted on the signal variations (and resulting Doppler spectrum) resulting from rotating

blades. This has applications to propeller driven aircraft as well as jet engines20, helicopters and wind

turbines. Indeed, the absence of rotating blade effects can also help to distinguish other flying objects

such as missiles, ballistics and gliders from their ‘air breathing’ counterparts.

In the Appendix a model of JEM (which is equally applicable to all other single stage21 rotating

blade systems) is derived and is essentially the Martin & Mulgrew result described in [67] & [68].

ψ(R, t) ≈ ψ0 (L2 − L1)

R2
e2πifTxt−

4πiR
λ

N−1X
n=0

ζne
1
2 i(L1+L2)ξnsinc

¡
1
2 (L2 − L1) ξn

¢
(2.44)

Ωn = 2π
³
frott +

n

N

´
(2.45)

ζn = − a

R
(zE cosφP + (yE sinΩn − xE cosΩn) sinφP ) ·R (2.46)

ξn = − 4π

Rλ
(yE cosΩn + xE sinΩn) ·R (2.47)

ψ is the JEM modulation of the original signal ψ0 , R is the target range, fTx is the carrier

frequency, λ is the corresponding wavelength, L1 is the radius of the blade root, L2 is the radius of

the blade tip, N is the number of blades, θ is the angle between the Radar look vector R and the

plane of blade rotation {xE, zE}, φP is the pitch angle of the blades and frot is the blade rotation or

‘spool’ rate.

Martin & Mulgrew consider the special case of R = −R (zE sin θ + xE cos θ) i.e. the Radar line of

sight is in a plane which is at right angles to the plane of blade rotations.

ζn = a
2 [sin (θ + φP ) + sin (θ − φP )] (1− cosΩn) (2.48)

ξn =
4π

λ
sinΩn cos θ (2.49)

Assumptions are:

• Each engine blade acts as a homogeneous, linear, rigid antenna.

• The jet engine is in the far-field of the Radar, i.e. RÀ L22
λ

• The only significant contributions to the received signal derive from reflections off the equi-spaced
engine blades at the inlet. Hence the analysis is identical to that of a propeller. Reflections from

the housing and rotating shaft are not considered since they will not result in any time varying

effects, assuming the received signal is compensated for the bulk motion of the jet engine (i.e.

the motion of the aircraft that bears it).

• The aspect ratio of each blade is such that the length is much greater than the width.
20Although jet engines are just one type of rotating blade system that give rise to detectable modulation of microwaves,

the generic term for this effect is Jet Engine Modulation (JEM). The exception are helicopters which have their own
HElicopter Rotor Modulation (HERM). The physical effect is the same however, although the rotation speed and number
of stages are very different in a typical jet engine.
21Actual jet engines may have two or more stages of blades. However, at S-band frequencies, penetration beyond

the first stage is more difficult than at K-band (or higher). Hence a single stage JEM model is thought to be quite
appropriate at S-band for a wide set of aero-engines.
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The major results of the Martin & Mulgrew model are as follows

• Major spectral lines at Doppler frequencies fJEM = ZfrotN where Z is an integer. These are

known as ‘JEM lines.’ See figures 2.9 & 5.11. Note a practical Doppler filter using a pulsed

Radar will be ambiguous by integer multiples of the PRF. Hence the actual position of JEM

lines will be

fJEM = ZfrotN + Y fPRF (2.50)

where both Y and Z are integers. The even or oddness of the number of blades N further

constrains the JEM lines. Tait [103] explains that Z can be effectively any integer (subject to

bandwidth envelope BJEM ) for an even bladed system whereas a rotor with an odd number of

blades will have JEM lines only when Z is even.

• The spectral extent or bandwidth BJEM of the JEM envelope is bounded by the Doppler fre-

quencies resulting from the motion of the blade tips, which are the fastest moving surface upon

the blade relative to the Radar.

BJEM =
8πfrot(L2 − L1) cos θ

λ
(2.51)

• Blade pitch will cause asymmetry in the JEM spectrum, and this asymmetry varies with aspect

angle a = π
2 −θ. To investigate the detailed changes, a MATLAB program jem_plot.m has been

constructed. Fig 2.11 gives a screen shot.

In addition the Radar Cross Section (RCS) of the blade will strongly peak when the blade is

fully face on to the illuminating beam. If the blade projected area in the direction of the Radar

beam is L long and W wide, Tait [103] pp 186 shows the RCS to be

σblade =
4πL2W 2

λ2

"
sin
¡
2πL
λ sin a

¢
2πL
λ sin a

#2
cos2 a (2.52)

which confirms blade flashes to occur with a peak width of approximately λ
L radians about a = 0.

In summary, the effect of rotating blades upon microwave Radar is measurable by computing the

Doppler spectrum resulting from a burst of coherent pulse returns from the range cell which contains

the target. The resulting separation of JEM lines, bounded by bandwidth BJEM , can be used to infer

the product of blade number and spool rate Nfrot which is likely to be a useful characteristic to aid

classification, especially if it is zero. Figure 2.9 demonstrates what is possible to achieve using a much

higher (36 GHz) carrier than discussed in this thesis. In addition to the JEM lines it is possible to

resolve lines at integer multiples of the spool rate. Hence in this case both N and frot could be inferred

from the spectrum. An S-band example (using MESAR2) is provided in fig 5.11.

Examining the JEM spectrum over time, i.e. from burst to burst, can yield additional information

notably another estimate of the spool rate, and whether more than one rotors are contributing (in the

case of a Chinook helicopter, where the spectrum will alternate between ‘towards’ and ‘away from’

Doppler spectrum biases). The blade flash effect causes quite a severe amplitude modulation which in

turn will modulate the spectrum. In fig 2.9 one can clearly determine the period of blade flash from

the variation in spectrum between bursts (whose individual Doppler spectra are stacked). So what

would be a practical waveform to determine a JEM spectrum? A typical jet aircraft has a first stage

spool rate of around 12 - 13,000 RPM ≈ 200 Hz. Many of the A380 engines (some of the largest in
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service) use the Rolls Royce Trent 900 design22 which has a first stage fan diameter of 2.94m. If a

carrier of 3 GHz is used, λ ≈ 10 cm, which should be small enough to resolve features in the first stage

of the jet engine. If N =25 blades are used, JEM line spacings are Nfrot = 5kHz with a maximum

bandwidth of BJEM ≈ 74 kHz. So to faithfully represent the entire spectrum unambiguously one

requires a PRF of in excess of 74 kHz. This is unlikely to be practical because a PRF this high limits

the unambiguous range23 to be just over 2 km.24 A compromise solution which allows the first few

JEM lines to be recorded might require a PRF of 5 - 10 kHz. In addition, the number of pulses P

per burst must be sufficient to resolve the JEM lines. 16 to 32 pulses are thought to be a minimum

to achieve this based on practical experiments with MESAR2. P = 32 pulses with a PRF of 10kHz

yields a burst repetition frequency of 10,000/32 = 300 Hz which might be just sufficient to resolve the

spectral periodicity resulting from blade flash if one expects an effect once a revolution.

22See Trent 900 specification. www.rolls-royce.com.
23 c
2fPRF

24 It is possible to use PRFs which result in ambiguous ranges - see Chapter 7.
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Figure 2.9: (Above) Spectral power of 36 GHz microwaves reflected off a rotating propeller.
The principal JEM (Jet Engine Modulation) lines are spaced by Nfrot where N is the num-
ber of engine blades in the (first fan stage typically) and frot is the rotation or ‘spool’ rate
of this engine stage. The smaller spaced lines are at the spool rate. In this case the JEM
lines occur at approximately 600Hz and there are about 25 spool lines between consecutive JEM
lines. This means the propeller has 25 blades and rotates at 600/25 = 24 Hz = 1440 RPM.
(Below) HElicopter Rotor Modulation. (HERM). A Short-Time Fourier Transform (STFT) is dis-
played of Radar returns from a helicopter. This is achieved by processing bursts of coherent pulses
and stacking the result burst by burst. The resulting surface oscillates at the burst level as the blade
RCS varies relative to the area, peaking in a ‘blade flash’ when the blade surface is perpendicular to
the incoming wavevector. From the Tutorial notes of Cohen [20].
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Figure 2.10: (Above) Three stage jet engine typified by the Rolls-Royce Trent-800. Each shaft can
rotate or spool independantly at its own optimum rate. Illustration from http://www.brunel.ac.uk/
338/cem/cem3/seminar110106Main.pdf. (Below) Artists impression of a Jet engine. In this exam-
ple the fan main stage has ≈ 25 pitched blades. If the spool rate frot = 200Hz this implies JEM lines
spaced by 5kHz.
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Figure 2.11: Screenshot of a MATLAB utility used to plot the signal modulations predicted by the
Martin & Mulgrew model of Jet Engine Modulation (JEM). The signal is represented in both time
and frequency domains.
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2.5 Feature extraction methods

2.5.1 Effect of target aspect and elevation

Azimuth φ, elevation ε and altitude h are computed from the U,V target coordinates determined from

monopulse [88] measurements and target range R. The conversion is made for MESAR2 using the

following parameters:

• Antenna tilt in degrees δ = 15o

• U,V scaling factor S = 32768 ,

• Antenna height ha= 10m

• Antenna base altitude hb = 57m,

• Radius of Earth RE = 6.37×106m

and the following series of formulae:

U → U/S (2.53)

V → V/S

A =
p

1− U2 − V 2

δ −→ πδ

180

a = R2 − 2(RE + ha + hb)R cos
³
ε +

π

2

´
φ = tan−1

µ
−U

A cos δ − V sin δ

¶
ε = sin−1 (A sin δ + V cos δ)

h =

q
a + (RE + ha + hb)

2 −RE

2.5.2 Use of target kinematics

Target range rate is supplied by the track extraction system in MESAR2. Additional motion com-

pensation is employed (see section 3.5.2) to refine this value based upon the observed peak position

of the skin return in the target Doppler spectra. Target aspect angle is also supplied and is quantized

in intervals of 10o. In this thesis the focus is upon radially inbound trajectories; such that the Targets

of Opportunity recordings can be readily compared to the Pod & Falcon data (which were all radially

inbound). Range rate, and possibly its rate of change, could be used as feature measurement inde-

pendent of length and Doppler fraction.25 This possibility is not considered any further in this thesis,

but shall be reiterated in the recommendations.
25Although one might expect a correlation with Doppler fraction; Jet aircraft are typically faster than Propeller driven

aircraft).
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2.5.3 Radar Cross Section

After formation of the HRR profile (via either Classical or Hybrid methods), the constituent complex

signal samples are firstly converted to powers and then scaled using a calibration function based

upon the Radar Equation. (See section 3.5.2). The calibration function was originally designed to be

consistent with the pulse compressor output, hence an empirically determined RCS offset in dBm2

has been determined for each waveform to yield the same peak RCS for Classical, Hybrid and pulse

compressor range profiles. During the trials there was unfortunately no direct calibration using a

target of known RCS. Hence all RCS figures quoted are likely to be systematically in error by an

unknown, but constant, number of decibels. To add a degree of realism to the RCS figures quoted,

the point target references used for each waveform are all set at 10dBm2.

In the Appendix the maximum RCS values are plotted against target range for Classical & Hybrid

HRR profiles, using waveforms A,B & C. The first set of graphs contrast the max HRR power in dB

against the RCS measurements produced upon application of the calibration function. Although one

can see the inverse fourth power of range correlation is not present in the calibrated data, there is

still significant variability (some 20dBm2) within the measurements This observation is perhaps more

clearly evident in the latter set of figures which plot (calibrated) RCS against range for each waveform

and for a variety of class distinctions using recordings from six aircraft types, i.e. aircraft type, Long

or Short and Four Lengths. (See Chapter 4). All targets are significantly variable, and indeed many

targets of opportunity profiles have very small RCS values compared to the Pod and Falcon results.

A possible inference, which is is based upon the kinematic data evidenced in the Target data sheet

section of the Appendix, is that the overall RCS is very sensitive (i.e. up to 20dB) to relatively small

deviations in target aspect angle. An alternative hypothesis is that the absolute signal values which

emerge from the MESAR2 receiver are also subject to significant variation. Whether the truth is

explained by either (or both) these explanations is beyond the scope of this thesis. For the purposes of

classification analysis, maximum RCS measurements obtained in the trials are deemed too variable to

be of use. Instead we will focus on HRR length, scattering center range and Doppler spectral features.

2.5.4 Length from HRR profiles

Length measurements are computed from HRR profiles (in RCS /dBm2) via a threshold crossing;

i.e. length is defined to be the range distribution of all HRR profile RCS values above the threshold.

Given the variability of RCS measurements, coupled with the observation of relative stability in profile

shape in the trials data set, a below-maximum threshold is employed.26. Fig 2.12 demonstrates length

feature extraction using a HRR profile of a Falcon jet aircraft.

2.5.5 Scattering center extraction using HRR profiles

Scattering centres are extracted from HRR profiles and their ranges compared (via a barcode matching

algorithm27) to the radial projections of scattering centres which are marked upon the plan views of

the aircraft drawings, as illustrated in fig 2.14. In this thesis the library of profiles is restricted to

the set of aircraft under test. Scattering centres are selected from the HRR profile via the following

26e.g. if the peak of a particular HRR profile is 10dBm2 and the threshold is set at 20dB, the absolute threshold for
length measurement is an RCS of -10dBm2.
27The nearest aircaft is selected based upon the maximum value of the peak power of the cross-correlation of the

projected scattering centre barcode (i.e. a binary vector) for each item in a database of aircraft, and the barcode derived
from HRR profile scattering centre extraction.
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Figure 2.12: Classical HRRP of a radially inbound Falcon aircraft using a 5MHz non linear chirp
waveform transmitted in 128 bursts of 8 coherent pulses, with each burst stepped in carrier frequency
by 3.2MHz. The physical length of ≈17m matches the radar length, which in this case is defined to be
the extent of the profile 20dB below the maximum. Distinct front and back scatterers of the Falcon
aircraft, coupled with the low sidelobes of the non-linear chirp, are likely to be the major factors in
this positive agreement of radar and optical measurements.
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Figure 2.13: Overlay of 42 Classical HRR profiles of a radially inbound Falcon aircraft. Profiles are
normalized such that the maximum power is 0 dB and aligned in range to the start of the range
profiles (i.e. the first range where the profile exceeds the relative threshold, -20dBm in this case).
Magenta circles indicate the positions of major peaks. These can be related to the ranges of scattering
centres (indexes are printed at various projected ranges below the range axis). The latter are defined
manually based upon a plan view of the Falcon aircraft (see fig 2.14)

method:

1. Determine HRR profile power peaks based upon selecting samples y(n) whose power is greater

than the previous sample y(n− 1) and the following sample y(n + 1).

2. Filter these to those peaks which exceed the length threshold.

3. Using a rolling window of ∆Rmin, select the maximum peak value and pass this to the final set

of scattering centres. This last step prevents a single peak being fragmented into many closely

spaced peaks due to the effects of signal processing artifacts and noise. In this thesis a ∆Rmin
of 3m has been chosen.

Fig 2.13 represents an overlay of normalized HRR profiles of a Falcon aircraft. The (four) scat-

tering centres are marked with magenta circles at the corresponding peaks. Below the graph are the

(numbered) locations of the radial projections of the scattering centres, which are defined in fig 2.14.

In this example these elements match up. One may speculate that the rear pair of scattering centres

are actually ensembles of scattering centres at the same range. Only the first scatterer is unique,

which is most likely that of the nose cone.
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Figure 2.14: Scattering centre models of all the aircraft discussed in this thesis are defined using the
tool illustrated. This is done by eye using plan views of each aircraft. The tool is also the entry
point to set the anticipated range rate and physical length of each aircraft, which can be used in
classification methods. Although not used in this thesis, crude (eight sector) values for directivity can
be set to help generate more realistic model profiles.
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2.5.6 dfrac and efrac from Doppler spectra

The Doppler fraction (dfrac) feature is defined as the fraction of samples of the (normalized28) target

Doppler spectra which exceed a fixed threshold. In fig 2.15 a threshold of -25dBm is set which gives

a dfrac value of 0.35 for the Boeing 777 aircraft, which appears to display a clear set of JEM lines.

An alternative Doppler Energy Fraction (efrac) feature is defined to be the ratio � of integrals

� = 1−

Z fPRF
P

−fPRF
P

Θ(f)df

Z fPRF
2

−fPRF
2

Θ(f)df

(2.54)

Θ(f) is the Doppler filter output power sum over frequency steps29 and f is the Doppler frequency.

This is computed numerically from an array of {Θ(f), f} using the methods of Duane & Hanselman
[40]. Coefficients of cubic splines are computed for each Θ(f) data point and frequency pair and the

resultant series of splines are integrated exactly over the integral range desired in the denominator

and numerator of the above fraction. This feature may help to distinguish aircraft which have a broad

Doppler spectrum, but no clear JEM, from those exhibiting very little motion (beyond bulk velocity)

in the radial direction.

2.5.7 Major peaks in Doppler

This feature is the Doppler domain equivalent to scattering center extraction in the HRR profile. The

same algorithm has been used to determine the peaks (represented by the magenta circles in fig 2.15).

The rolling window is set at 2.5/16 kHz, i.e. two Doppler bins for a 32 pulse waveform with a PRF of

2.5kHz. Doppler peaks could be used to infer the position of JEM lines. However, since the PRF is

much lower than the expected JEM bandwidth for typical aircraft (see section 2.4.2), JEM lines are

likely to be highly ambiguous. Hence ‘spectral shape’ features rather than JEM line spacing is used

for classification in this thesis.

28 i.e. maximum spectrum power is set at 0dBm.
29This should increase the signal to noise ratio since post motion compensation one would expect the Doppler filter

output powers to be very similar for each frequency step.
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Figure 2.15: Overlay of 10 (normalized) Doppler power spectra of a Boeing 777 aircraft using a 32
pulse waveform of -4.5MHz linear chirps of duration 25.6μs. The black trace is the mean spectra. Jet
Engine Modulation (JEM) can be clearly observed at intervals of approximately 500Hz. For the mean
spectrum, the fraction of total power above -25dB is 34% and the ‘non skin energy fraction’ is 60%.
Moderate values allow JEM to be distinguished from No Non Skin Doppler (which might result from
a missile or obscured engine) and Propeller modulation (which tends to result in a broader doppler
spectra) using a simple three class, scalar parameter classifier.
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2.6 Methods of target classification

One of the goals of this research is to investigate what classification performance is achievable using

features taken from NCTR mode recordings of airborne targets using MESAR2. To provide a mecha-

nism for this, three well established schemes will be used. Each scheme employs the same fundamental

logic. A discriminant function gi(x) is computed from each feature vector x (i.e. a single feature such

as length or an ensemble of features such as length & Doppler fraction) for each class wi of a defined fi-

nite alphabet {wi....wN} of length N. The assigned class wj to x , where wj ∈ {wi....wN} , corresponds
to the maximum discriminant gj(x) such that gj(x) = max [g1(x)...gN(x)].

In the Pod & Falcon and Targets of Opportunity aircraft trials described in this thesis, the class

origin of every measurement is known; i.e. a length measurements may derive from either a Pod,

Falcon, Boeing 747, 757, 777 or Dash 8 aircraft. We can therefore compute a statistical measure of

classification performance by comparing the number of features which are correctly classified to those

which are not. Let us define a (square) confusion matrix C where element [C]ij ≡ Cij corresponds to

the ratio of the number of features ni (sourced from class wj) and classified as class wi to the total

number of features mj =
X

i
ni which are sourced from class wj . Perfect classification is when

Cij =
ni
mj

=

(
1 i = j

0 i 6= j
(2.55)

i.e. when C is an identity matrix. A scalar performance metric can therefore be sensibly defined

as the ‘off diagonal extent’ ξ of the confusion matrix.30 This has value 0 when classification is perfect

and value 1 when there are no correct classifications.

ξ = 1− Tr [C]XN

i=1

XN

j=1
[C]ij

(2.56)

Fig 2.16 describes the spreadsheet used in the analysis described in the following chapters. As illus-

trated, a set of target data is assigned a ‘truth’ classification (based upon knowledge of aircraft type,

physical length, knowledge of engine type...) using class sets (defined in the following two Chapters)

• Aircraft type

• Long or Short Four Lengths

• Prop, JEM or No-Non Skin Doppler (NNSD).

Classifier performance is assessed against these assignments.

2.6.1 Choice of classifier

A major aim of this thesis is to investigate the variation of classification performance with key pa-

rameters of the signal processing and feature extraction methods applicable to measurements made

using a multifunction phased array Radar. The emphasis is not the assessment of novel classification

algorithms. To this end the classifiers employed to determine performance are very well known and

have been chosen for their simplicity. Three types of scheme are alluded to (with the classifiers used

in brackets):

30Similar to the ‘error rate’ described in many publications.
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Figure 2.16: Screenshot of spreadsheet used to assign classes to radar data from known aircraft
types. The performance of the classification methods is assessed by the proportion of classifications
automatically made by the classifier which agree to those assigned in this spreadsheet.

1. Expert parametric classifier (Bayesian Gaussian, Fuzzy logic). Prior knowledge regarding the

parameters and functional form of the underlying feature probability distribution is assumed,

rather than inferred from a training subset of the feature data set. For the Gaussian classifier

this corresponds to a definition of the mean and standard deviations of each class distribution.

For the fuzzy logic classifier this corresponds to a definition of the membership function of each

class.

2. Data driven parametric classifier (Bayesian Gaussian). In this case the parameters of each

classifier are derived from a training subset of the recorded data. However, an overall functional

form of the underlying feature distribution is assumed (e.g. a two parameter Gaussian probability

distribution).

3. Data driven non-parametric classifier (k-means). Classifier inputs are derived from a clustering

of training data; i.e. no assumption regarding the functional form of the underlying feature

distribution is assumed.

In Chapters 4 and 5, classification performance using scalar features is assessed via Bayesian and

Fuzzy Logic classifiers which are constructed from ‘Expert’ training data established using the tool

described in fig 2.17. This decision was made for two reasons:

1. The features chosen were ‘physical’ in nature and therefore could be easily characterized. e.g.

expect Radar length to be strongly correlated with physical length. Dash8 has a propeller, a

B747 has jet engines etc.

2. The number of feature measurements obtained form the MESAR2 trials are relatively small, i.e.

insufficient data to train a classifier and assess its performance.31

31How many looks do you need to construct a viable training data set? This is a difficult question to answer from a
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Figure 2.17: Inputs to the scalar Bayesian & Fuzzy logic classifiers are set using the tool illustrated.
In this example, the (unormalized) Gaussian probability density function used to define the ‘expert’
training data in the Bayesian classifier, and the Fuzzy Logic ‘membership’ function are overlaid. In this
example, the (scalar) feature is the fraction of Doppler spectrum power above a defined threshold. One
might expect subtle differences in performance between between Fuzzy Logic and Bayesian classifiers
in this case given the difference in their function forms.

The (Expert) Bayesian Gaussian classifier is adopted as the parametric classifier of choice due to

its simplicity and formulation using feature vectors of arbitrary dimensions.32. To check its implemen-

tation the highly intuitive but crude ‘Fuzzy logic method’ is also employed for classification of scalar

features. In Chapter 6 a two-parameter feature vector is considered (length and Doppler fraction) for

aircraft type classes. Classification performance in this case is considered using the (Expert) Bayesian

Gaussian method.

In the recommendations of this thesis it is suggested that further experiments be conducted to

enable a training data set to be constructed. A simple extension might be an further day of ‘targets

of opportunity’ trials. If the original data set (collected in 2006) is used as training data then one

could argue quite a strong case for independence of training and measurement data! If this extra

experiment is conducted then the Bayesian Gaussian and k-means methods described below could be

fully exploited in their ‘data driven’ rather than ‘Expert’ form.

theoretical standpoint in general terms. An empirical approach based upon previously reported successful experiments
is probably the best point of departure. Regular data gathering and analysis of target recognition algorithms applied in
an operational system will surely improve upon this estimate. Zyweck & Bognor [118] present a classification analysis
comparing Boeing 727 and Boeing 737 aircraft. Approximately 40% of the data collected was used for classifier training.
(48 looks for B727 and 66 looks for B737. Measurement data was 96 looks for each aircraft type). In the experiments
reported in this thesis, around 50 looks is the maximum per (inbound) aircraft type per waveform. Hence the decision
to use an ‘expert’ classifier and classify all the looks rather than take a training subset.
32 i.e. the method is readily extensible to include multiple dimension features such as length & Doppler fraction (dfrac).



2. Background theory
63

2.6.2 Bayesian classifier

Friedman (1989) proposed Regularized Discriminant Analysis (RDA) (see Webb [110] pp37) which is

a mixture of linear and quadratic terms (in feature vector x) in the expression of the discriminant

gi(x). This derives from the assumption of a Gaussian distribution of M dimensional features x for

each class wi

p(x | wi) =
1

(2π)
M
2 |Ξi|

1
2

exp

½
−1

2
(x−μi)

T Ξ−1i (x− μi)

¾
(2.57)

where μi is the feature mean and Ξi the covariance matrix. The discriminant function is defined

to correspond to the logarithm of the posterior probability p(wi | x ), i.e. classification based on

the largest discriminant corresponds to the highest probability of the chosen class, given the feature

measurement. Applying Bayes rule p(wi | x )p(x) =p(x | wi) p(wi), noting p(x) is independent of

class wi, yields the discriminant

gi(x) = log (p(wi))−
1

2
log (|Ξi|)−

1

2
(x− μi)

T Ξ−1i (x− μi) (2.58)

Given a training data set
n
t
(i)
1 ....t

(i)
Zi

o
, Webb [110] pp35 shows that maximizing the Likelihood

function

L
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=
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(2.59)

i.e. finding solutions to ∂ log(L)
∂μi

= 0 and ∂ log(L)
∂Ξi

= 0, yields the following estimates for the mean

and covariance matrix

μi ≈ mi =
1

Zi

ZiX
z=1

t(i)z (2.60)

Ξi ≈ Σi =
1

Zi

NX
z=1

(tz−mi) (tz−mi)
T

where mi is the sample mean and Σi is the sample covariance. Using the assignment of the prior

probability to be p(wi) =Zi
Z where Z =

X
i
Zi , one arrives at the Gaussian classifier

gi(x) = −1

2
(x−mi)

T Σ−1i (x−mi)−
1

2
log (|Σi|) + log

µ
Zi

Z

¶
(2.61)

Friedman improves upon this with RDA using the parameters 0 ≤ μ, λ ≤ 1 to account for situations

when Σi becomes singular, i.e. |Σi| → 0. RDA apparently offers superior performance (for suitably

chosen μ, λ) than a linear approximation33 for higher dimensional features and smaller sample sizes,

when there is danger of singular Σi . Note μ, λ = 0 yields the (quadratic) Gaussian classifier and

μ, λ = 1 yields the linear version. In this thesis we will use μ, λ = 0.01 to guard against possible

singularity, but in the main approximate the Gaussian discriminant function. The full RDA recipe is

as follows:

33 i.e. gi(x) = − 1
2m

T
i S

−1
W mi+x

TS−1W mi + log
Zi
Z

where the ‘within class pooled covariance’ SW =
N

i

Zi
Z Σi
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Figure 2.18: Overlay of the (unormalized) probability density functions for the Long or Short classes,
and the Four Lengths classes. These are used to generate ‘expert’ data for use in the Bayesian classifier.
In both examples, a fixed standard deviation but variable mean is used.

gi(x)= − 1

2
(x−mi)

T
h
Σλ,γ
i

i−1
(x−mi)−

1

2
log
³¯̄̄
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i
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+ log

µ
Zi

Z

¶
(2.62)

Σλ,γ
i = (1− γ)Σλ

i + γci(λ)I
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Figure 2.19: Overlay of the (unormalized) probability density functions for the Long or Short classes,
and the Four Lengths classes. These are used to define the membership functions used in the Fuzzy
Logic classifier. In this example, the form of the membership functions has been designed to match
those of the Bayesian probability density functions illustrated in fig 2.18.

2.6.3 Fuzzy logic classifier

This method (Moruzzis 1998 [75]) relies on the form of the discriminant function to be user defined,

as illustrated in fig 2.19. For scalar features this is implemented as an interpolation of a membership

function Ω(x) defined over the likely feature range, whose values are constrained to be in the range

[0,1]. For multidimensional feature vectors a multi-value discriminant is used. For simplicity we will

define this to be the product of the scalar membership functions for each feature, and assume these

are independent.

gi(x) ≡gi([x1....xM ] ) =
MY
j=1

Ω
(i)
j (xj) (2.63)

2.6.4 k-means classifier

The k-means fuzzy classifier is a popular non-parametric method which is based upon the iterative

Generalized Lloyd algorithm (Karayiannis 1995). The version described here is an application of the

methods of Bezdeck, Ehrlich & Full cited in Bowden [14] and Wong [113] and clearly described (in

the context of other clustering and classification techniques) in the textbooks by Webb [110] and

Duda [27]. Unlike Bayesian methods, the k-means technique does not depend upon knowledge of the

underlying likelihood probability distributions of the feature measurements.

k-means is an M dimensional non-parametric classifier based upon K hyperspheres of radius R(i)k
and origin vector c(i)k determined to optimally cluster feature training data for each class wi.The

algorithm for this clustering approach is described in the Appendix. The discriminant function gi(x)

is computed from the clusters formed from the training data set using the following formula:

gi(x) =max
k

⎧⎪⎨⎪⎩exp

⎛⎜⎝−
¯̄̄
x− c(i)k

¯̄̄2
2R

(i)
k R

(i)
k

⎞⎟⎠
⎫⎪⎬⎪⎭ (2.64)
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i.e. find the maximum association exp

Ã
−

x−c(i)k
2

2R
(i)
k R

(i)
k

!
of the feature vector with each cluster hyper-

sphere k (of K) defined by radius R(i)k and origin vector c(i)k , as illustrated in (Appendix) fig I.4.
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2.7 Features & limitations of an S-band multifunction phased array
Radar used for NCTR

In this section the physical characteristics of the S-band multifunction phased array Radar MESAR2

are summarized, in particular those attributes which can constrain NCTR performance. Although

MESAR2 is a unique experimental sensor, the discussion below should be generally applicable to most

S-band phased array systems.

2.7.1 Multi-function phased array Radar

A phased array Radar such as MESAR2 is one that possesses an antenna composed of an ensemble of

radiating elements. The net electric field is shaped by the phase and amplitude relationship between

each component part. If these relationships can be controlled this can allow for a steering and re-

shaping of the main beam produced by the antenna without having to mechanically rotate or deform

its shape. If electronic control is possible, this can allow for rapid functional changes. This key

attribute allows systems such as MESAR2 to act as multifunction Radars; for example, enabling the

simultaneous tracking of targets with wide area surveillance. An important feature of MESAR2 is an

automatic scheduler which effectively maintains a dynamic prioritized ‘to do’ list of activities. The

stepped frequency NCTR waveforms described in this thesis were added to the scheduler alongside the

other waveforms representing the tracking and surveillance functions. Each activity in the schedule is

assigned a priority rating which depends on a number of user defined factors34 as well as increasing

in urgency with delay since the last update. Since the schedule at any one time is dependant on the

status of the environment, (i.e. a large number of targets being tracked may reduce the ‘occupancy’,

or schedule time available for NCTR looks) this means the rate of particular looks is governed by a

probability distribution rather than being deterministic, as indicated in figure 2.20.

2.7.2 Frequency stability

If the standard error in carrier frequency (‘jitter’) is σfTx , a HRR profile will be severely affected if the

jitter results in a phase change between signal transmission and reception of around π at the range

of interest R. The logic behind this stems from the qualitative statement that a stepped frequency

HRR technique effectively assesses the phase change of a signal reflected from a target at fixed range35

between frequency steps36.

Therefore in order not to corrupt a HRR profile with random phase errors:

2πσfTx
2R

c
¿ π ⇒ σfTx ¿

c

4R
(2.65)

Hence if a target is at R = 100km, carrier frequency jitter σfTx ¿ 750Hz. Since carrier frequencies

are of the order of a few GHz at S-band, this requires frequency stability of better than 1 part in 106.

34 for example one can set a fast moving inbound target, which might be a missile, to have a high priority (which is
likely to result in a high tracking update rate).
35 i.e. motion compensation assumed.
36Which are required to be constant if a Discrete Fourier Transform method is used to compute the HRR (as is the

case with both Classical and Hybrid methods).
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Figure 2.20: Times /s of NCTR looks (four waveforms) delivered by MESAR2 on 14th October 2005
against a Falcon trials aircraft. Note periodicity between NCTR looks is not constant since MESAR2
is a multi-function radar which operates with an adaptive scheduler.
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2.7.3 Beam position, scanning losses & true time delay

In this section we briefly summarize the practical constraints applicable to phased array radars such

as MESAR2. In Appendix A we show that one can steer the main beam of a phased array to angle φ

using an inter element phase shift of

∆Ω = −2πf

c

µ
L

N − 1

¶
sinφ (2.66)

where f is the transmitted frequency, L is the antenna length, N is the number of elements, c is

the speed of light. For optimal beamshapes, i.e. without excessive sidelobes and grating lobes, the

inter-element spacing must be half a wavelength i.e.

L

N − 1
=

c

2f

If the transmitted signal comprises of a swept bandwidth of B then this will result in a squint δφ

of the peak if ∆Ω is fixed during the transmit of the pulse, which is typical.37 If the carrier frequency

is fTx and instantaneous frequency is f ∈ [fTx − 1
2B, fTx + 1

2B]

δφ(f) = sin−1
µ
fTx
f

sinφpeak

¶
− φpeak (2.67)

There is also a change in directivity38 with frequency and a reduction in the projected antenna

area radiating in the look direction. Balanis [7] pp273 shows the directivity of a large39 planar array

antenna to be

D = π cosφDxDy (2.68)

where Dx,y are the directivities of broadside linear arrays in orthogonal directions x, y. Balanis

pp234 gives40

Dx,y =
2Ndx,y

c
f ≈ 2Lx,yf

c
(2.69)

where dx,y are the inter-element spacings in (respectively) x and y directions. Hence one expects

a one-way scanning loss41 proportional to the cosine of the look angle, since this is the reduction

in projected area. In practice this is the minimum loss since mutual coupling between elements

can result in directivity nulls. These can result in disastrous consequences if the beam is steered to

these directions; the radiated power is reflected back upon the antenna face and can result in the

destruction of the radiating elements. The reduction in directivity with scan angle also has the effect

of broadening the beam, so angular resolution will degrade. Scanning loss is mediated by a gain

proportional to frequency f (for a linear array) and f2 (for a planar array).

37 i.e. ∆Ω = −π sinφpeak and L
N−1 =

c
2fTx

.
38Directivity is the distribution of radiated power in an angular sense. In a particular azimuth φ and elevation ε the

directivity gives the fraction of total radiated power per unit solid angle dΩ = R·dS
R3

= cos εdεdφ. Directivity is effectively
the angular variation of antenna gain G.
39The number of elements is such that the distance between elements is much smaller than the overal array size.
40Note end fire arrays can have geater directivities than this. The Hansen-Woodyard design is greater by 1.789×2.
41The loss on receive is of course two way. This will be the square of the one way losses. Skolnik [95] pp2.56 states

squinting loss to be

Lsq int ≈
1

cos2φpeak
(2.70)

which is consistent with the result from Ballanis, but does not include the effects of frequency. The latter is conven-
tionally incorporated in the gain terms of the Radar equation.



2. Background theory
70

Perhaps more serious than a loss in directivity is the possibility that the scanning of the beam due to

the frequency sweep will cause the target not to be illuminated. This effect can be mediated to a certain

extent if the frequency sweep causes a squint which opposes the rotation of the antenna, an effect

exploited in the AR327 (Commander) series of Air Defence slotted waveguide Radars manufactured

by BAE Systems. To illustrate squinting effects, (see figures 2.21 to 2.24) consider a linear phased

array of length L = 0.948 m with N = 20 elements delivering a linear chirp of bandwidth 400MHz

about a carrier of fTx = 3GHz. The far field beam pattern of the linear array power, including

directivity, (see Appendix) is proportional to

|ψ(φ)|2 ∝ Lf

c
cosφ

¯̄̄̄
¯eiω sin

¡¡
1 +N−1¢ω¢
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¯
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where

ω =
πNfL

c
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2πfL
+

sinφ
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¶
(2.72)

∆Ω = −2πfTx
c

µ
L

N − 1

¶
sinφ (2.73)

The losses inherent in a phased array architecture can be overcome by using ‘True Time Delay’

elements rather than phase-shifters. To synthesize a wavefront at a particular angle from the array

face the waveform supplied to each of the constituent elements is time delayed by the difference in time

of flight from the element to the wavefront. If the distance from the array42 centre to the wavefront

is R then the distance RD to the wavefront from an element at a distance D from the array centre is

R −D sinφ where φ is the angle of the wavefront from the normal to the array face. (See fig 2.25).

The time delay for element at D is therefore

∆TD =
D sinφ

c
(2.74)

Implementation of True Time Delay (TTD) is described in Tait [103]pp 293 and Skolnik [95] pp7.56.

Optical delay line components are one means of achieving TTD. Given the time accuracy required so

not to introduce additional phase shifts, and the desire to scan at a variety of angles of boresight, this

solution is far from simple and as a result an expensive modification with current technology.

42assumed to be planar
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Figure 2.21: Azimuth deviation from initial look direction as a function of frequency for a linear
phased array L = 0.948 m, N = 20, fTx = 3GHz ± 200MHz.

Figure 2.22: Beam power (including frequency proportional directivity) for a linear phased array
computed as a function of azimuth. L = 0.948 m, N = 20, fTx = 3GHz ± 200MHz. Phase shifters
are set to give a look angle φ = 0.
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Figure 2.23: Beam power (including frequency proportional directivity) for a linear phased array
computed as a function of azimuth. L = 0.948 m, N = 20, fTx = 3GHz ± 200MHz. Phase shifters
set to give a look angle of φ = −60o.
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Figure 2.24: One way squinting loss (including frequency proportional directivity) computed as a
function of frequency and initial look direction for a linear phased array L = 0.948 m, N = 20,
fTx = 3GHz ± 200MHz.
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Figure 2.25: The time of flight difference between elements on a phased array and the wavefront is
explicity accounted for in a True Time Delay (TTD) system. In many non-TTD systems a phase shift
is used instead. This is ambiguous by integer multiples of 2π radians and subject to quantization
errors whose size depend on the number of bits in the phase shifter. For example, a 12 bit device will
have intervals of 2π/4096 radians.
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2.7.4 Stretch processing - an alternative to stepped frequency

An alternative to stepped frequency methods is the use of stretch processing. Rather than sampling

the (mixed down) signal directly, the mixer itself is modified to be a replica of what was transmitted.

The differential time delay (and thus range) between scatterers relative to some central reference point

on the body of a target can be shown to be proportional to a frequency modulation of the ‘stretch’

mixer output, if a linear frequency modulated waveform is used. If samples of this are taken and

then processed using a Discrete Fourier Transform, the result will be a HRR profile of the target. In

Appendix F the beat frequency (for target scattering center at range Rn) of the output of the stretch

mixer is shown to be

fsm =
2B(R0 −Rn)

cτ
(2.75)

where τ is the transmitted pulse length and B is the pulse bandwidth. Let us define the HRR

range window to be R0± 1
2L. In order for peaks of the Fourier Transform of the stretch mixer output to

appear correctly within this window; by the Shannon-Nyquist criterion, the output must be sampled

at a rate greater than or equal to the frequency difference between the component beats. Hence:

fs ≥
2B(R0 + 1

2L)

cτ
−

2B(R0 − 1
2L)

cτ
(2.76)

≥ 2BL

cτ
(2.77)

Note also that the stretch mixer must sweep for 2L/c+τ in order to collect the signal contributions

from all scatterers in the HRR window prior to the computation of the Fourier Transform of the mixer

output samples. This means the mixer must be physically able to sweep through a bandwidth of

Bsm =

µ
1 +

2L

cτ

¶
B (2.78)

In summary, stretch processing allows for the production of a HRR target profile without necessar-

ily having to sample at the bandwidth of the transmitted signal, as in conventional pulse compression.

It therefore allows for high range resolution to be obtained from a single burst rather than having to

wait for the transmission of an ensemble of burst stepped in frequency. To achieve δR =1m range

resolution, the bandwidth B = 149.9MHz. If a maximum sample rate of 5MHz is possible, since

L ≤ cτ
2Bfs this means the HRR window must be less than 100m using a chirp pulse length of 20μs.

Setting L = 100 m gives a mixer sweep of Bsm = 154.9 MHz. The outputs of the stretch mixer begin

at time since transmission

tstart =
2
¡
R0 − L

2

¢
c

(2.79)

and finish at time

tstop =
2
¡
R0 + L

2

¢
c

+ τ (2.80)

The potential limitations of stretch processing are:

1. Require modification to RF hardware to implement mixer. Mixer must be adaptive to changes in

R0 which would vary as the target moves. The mixer must also be able to sweep over bandwidth¡
1 + 2L

cτ

¢
B. The time variable in the mixer must be aligned with precision to that of the Radar

clock which starts at the time of transmission; i.e. the mixer is phase locked to the transmitted

signal.
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2. Given a practical sample rate, to achieve finer range resolution will restrict the size L of the

HRR window.

3. A separate mixer channel must be provided for each target, if separations are greater than L.

4. Since a stretch waveform is intrinsically wide bandwidth, an S-band phased array will sweep

the beam significantly within the pulse. To alleviate this effect (and mitigate resulting losses

of energy on target) true time delay corrections must be applied during pulse transmission and

reception. This could be an expensive modification to the antenna



Chapter 3

NCTR experiments using MESAR2

3.1 Chapter summary

Four NCTR trials (on and off boresight static, Falcon&Pod and Targets of Opportunity) are described,

including a detailed account of the waveforms used, leading to a statement of the extent of the trials

data collected. This is supplemented by a tour of the software suite used to process the trials data. The

journey of a target data recording is charted from the MESAR2 data logger, through signal processing

and finally to the extraction of features and classification. The implementation of stepped-frequency

HRR and Doppler processing is described in addition to other practical aspects such as calibration,

data visualization and testing.

3.2 Trials rationale

A four stage trials programme (summarized in fig 3.1) was devised to test out whether NCTR wave-

forms could be successfully applied against aircraft, ultimately in an experimental context which is

operationally realistic. This is assessed via analysis of HRR and Doppler profiles and overall classi-

fication performance. The following two chapters describe the latter. In order to help characterize

processing artifacts, each stage of the trials programme represented a gradual evolution in target

complexity and/or environmental context.

Trials began with single point target positioned on-boresight. This would serve as calibration

reference for subsequent experiments and could be used as a check that the NCTR signal processing

Figure 3.1: Description of the four trials using MESAR2 alluded to in this thesis.

77
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was correctly implemented. A second set of experiments involved two dipoles spaced in range between

0 and 60m. The aim of this was to investigate whether the stepped frequency waveforms transmitted

could be used to deliver a sub-metre range resolution and thus resolve the dipoles when this was not

possible (at least for separations less than 30m) using the conventional pulse compressor output for each

frequency stepped burst.1 The longer separation dipoles (which could be resolved using conventional

pulse compression) were used to probe the limitations of the Classical method (see section 2.2.4 above)

and assess the potential benefits of the Hybrid technique described in section 2.3. The on-boresight

experiment was repeated with the dipoles moved -45o in azimuth off-boresight in order to assess

the effect of electronic beam scanning upon the target profiles obtained using the stepped frequency

methods.

The next logical progression was to illuminate a moving point target with the NCTR waveforms

that had been proven upon static targets. In this case the NCTR mode would be cued from the

surveillance and then target tracking functions of MESAR2 and therefore would also be an operational

test of the NCTR mode in conjunction with the other functions of MESAR2. The moving point target

would test the motion compensation algorithms as well as providing further confirmation of the results

of the static trials. Since the practical mechanism for flying a point target was decided to be a repeater

pod mounted upon a trials aircraft, the moving point target experiment also yielded a large number

of recordings of a (small) jet aircraft, a Dassault Falcon. The signature of this was compared to

the point target and an initial assessment made of target features (such as length, maximum Radar

cross section). This experiment also investigated whether NCTR waveforms could be automatically

delivered upon multiple targets, which is not often possible for conventional tracking radars.

Finally, a series of ‘Targets of Opportunity’ were illuminated using the NCTR mode. This was done

automatically by MESAR2, although targets of interest were manually chosen (and later extracted

from the data logger). The experiment was conducted by operators at MESAR2 and at the National

Air Traffic Service (NATS) at Swanwick working jointly to record track numbers and corresponding

identities of aircraft. These experiments would build upon the previous trials and serve as a data set

to enable classification experiments to be performed. It was hoped this data set would additionally

yield (i) evidence of Jet Engine Modulation and (ii) signatures of aircraft with range-projected length

in excess of the classical range window set by the waveform frequency step. Processing of the latter

would be a further test of the ‘Hybrid’ method, as well as comparing the performance of different

stepped frequency waveforms; i.e. a 3.2MHz frequency step and 0.8MHz frequency step.

1The bandwidth of individual waveforms employed in NCTR modes was in all cases ≈ 5MHz, yielding a resolution
of 30m.
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Figure 3.2: Description of the five NCTR waveforms transmitted by MESAR2

3.3 Waveforms

During the trials programme, five different NCTR waveforms were used. These are described in fig

3.2.

MESAR2 NCTR experiments Waveforms

On & Off boresight static trials A

Pod & Falcon aircraft trials A,B,C,D

Targets of Opportunity trials A,B,C,E

Four different NCTR waveforms were used in each of the aircraft trials. They were added to the

MESAR2 scheduler like any other activity (such as surveillance and tracking looks) so one would not

expect an exact cycle of A,B,C.. as illustrated in fig 2.20. The ‘Hybrid’ waveform used in the static

trials (Waveform A) was used in addition to three waveforms used in previous NCTR experiments

with MESAR2. Waveform B was designed to yield a wide (Classical) range window (187m) by virtue

of the 0.8MHz frequency step. Compared to waveforms A (and C) resolution is traded to achieve this

extra window size.
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Waveform Resolution c
2Q∆f /m

A 0.37

B 1.46

C 0.37

D 1.46

Waveforms B, C & D employ non-linear chirps (see fig 3.3) rather than the linear chirps used in

waveforms A & E. This is to achieve a lower sidelobe level following pulse compression. [88]. However,

this does not allow for the spectral-stitching required of the Hybrid method, hence Hybrid processing is

restricted to waveforms A & E. All waveforms were Classically processed. Waveform C (∆f = 3.2MHz)

was the forerunner of Waveform A, prior to the requirement to enable Hybrid processing. Waveform

D was initially designed as a Doppler waveform. The higher number of pulses (32) was chosen to give

a four-fold increase in spectral resolution compared to the 8 pulse bursts used in waveforms A,B & C.

It was initially planned that each of the 32 burst should be stepped in frequency, hence the resulting

High Range Resolution range-Doppler profile (see fig 3.4) could present target length and Doppler

information in a single image. Unfortunately this was not implemented prior to the trial and the end

result was all 32 burst being at the same frequency. In the targets of opportunity trial (see below),

this waveform was changed to the linear chirp waveform (E) to enable Hybrid processing but with 32

frequency steps of 3.2MHz and 32 pulses per burst. For pure Doppler processing Waveforms D and

E are equivalent, which enables the Pod & Falcon and Targets of Opportunity Doppler results to be

directly compared. (See Chapter 5). For each look (of 1024 pulses), a PRF of 2.5kHz was used.

3.4 Overall extent of data

A total of 1498 NCTR looks using five stepped frequency waveforms (A,B,C,D & E) were recorded

relating to 17 distinct aircraft. Many targets were captured in multiple (radially inbound) runs.2

During processing of the trials data (which amounts to an archive size of 56.8GB including processed

.mat files, M2DATS output ASCII text files and original DRAS files) the pulse compressor power is

used to assess whether the data is ‘good’ or not. (See section 3.5.2). Overall 83% of data was deemed

to be ‘good’ based on a peak to median pulse compressor power ratio of 30dB or higher.

Fig 3.5 describes the distribution of recordings amongst targets and waveforms. Note that the

number of outbound and inbound looks is somewhat comparable to the number of ‘crossing looks’

for the targets of opportunity recordings. Typically this reduces the number of looks per aircraft to

between 10 and 40 per waveform. This is an order of magnitude less than the number of signatures

used in classification analysis by Zywek & Bognor [118] and therefore one must make our conclusions

with an appropriate degree of uncertainty. However, one might argue that a more modest number of

looks (prior to the need for some form of classification) is more relevant in an operational context.

In this thesis we shall focus upon the inbound data for the purposes of understanding classification

performance relating to length and Doppler feature measurements, since this represents the best case

for obvious signatures, and then contrast this with outbound data.

The trials data can be re-processed and classification analysis completed using the automated tools

described in the following section in approximately five hours using a PC laptop3. This requires user

2The Falcon aircraft was captured in seven inbound runs, a total of 243 looks.
33GHz Pentium 4 with 1GB RAM, accessing data from a 250GB 7200 RPM external USB2 hard-drive
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Figure 3.3: Phase (real) & Quadarature (imaginary) parts of the transmitted waveforms deployed
in the MESAR2 trials. The upper plots illustrate the difference between the -4.5MHz, 25.6μs linear
chirp (wfc2, model generated) and the 5MHz, 20μs non-linear chirp (wfc3, from Pod) waveforms. The
bottom left plot is the wfc2 result from the single diple reference target. The bottom right plot is the
wfc2 result for two dipoles separated by 58m in range. The interference between the two reflections is
clearly manifested in the distorted receiver I,Q values. In all cases, a sample rate of 5MHz was used.
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Figure 3.4: Variation of carrier frequency and duration of the stepped frequency waveforms A,B,C
& E is shown against the corresponding (Classical) High Range Resolution Range-Doppler profiles
obtained using static point target references. Waveforms A,B,C offer cruder reslution in Doppler (on
account of the broad sidelobes) than Waveform E beacuse the latter has 32 pulses per burst compared
to 8 for the former three. A pulse repetition frequency of 2.5kHz is used in all examples. Note: In
the frequency vs frequency step plots, the vertical red bars represent the bandwith of the waveforms
transmitted and hence illustrate the overlap in frequency between steps for waveforms A & E.
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Figure 3.5: Extent of NCTR looks scheduled upon aircraft via MESAR2 during the trials described in
this thesis. Data was deemed to be ‘good’ based on a peak to median pulse compressor power ratio of
30dB or higher. Histograms are colour coded by waveform (and ‘bad’ looks) and further subdivided
into inbound, outbound and crossing via aircraft aspect angle. Inbound corresponds to an aspect
≤ 20o and outbound ≥ 160o.

intervention for the first ten minutes and then for another ten, forty five minutes before the end, to

set the classification settings. The time taken to extract data from the MESAR2 data logger, filter

in DRAS4, convert to ASCII using M2DATS and then import into MATLAB compatible files was

considerable (estimate several weeks full time). Given the difference in effort to access data at various

stages of post-processing and the relative abundance of storage capacity, it was decided to retain copies

of the data at the DRAS, ASCII, MATLAB imported and MATLAB processed stages. Although the

same information is effectively stored four times, the speed of access and the ability to implement

changes in final processing vastly outweighed the cost of data duplication.

4See following section for a description of the NCTR processing.
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3.5 NCTR signal processing

3.5.1 Flow diagram of analysis methodology

MESAR2 was designed as an experimental system and was equipped with a mass storage data logging

facility. A trials record could be fully captured consisting of:

• Screenshots of the display (as in fig 3.21)

• Recordings of all plot and track messages (via the CADS system)

• I,Q data direct from the output of the analogue to digital converter + all associated system

parameters associated with a particular look.

In the experiments described in this thesis, receiver samples5 were captured for each pulse repetition

interval (PRI) for every look issued by MESAR2 upon a target being tracked.6 Data was actually

captured at the sub-array level for sum, difference and sidelobe-blanking receive beams. As described

in Appendix H and in fig 3.6, recordings were extracted from the data logger using the Roke Manor

DRAS software and then converted into ASCII files (one per look) using a Visual Basic tool called

M2DATS7. From this point onwards data is manipulated using the MATLAB environment, using a

series of bespoke tools devised by the author which enable automated:

• Formation of low resolution range profiles via pulse compression

• Formation of High Range Resolution profiles using Classical (and where possible) Hybrid stepped
frequency methods

• Formation of Doppler spectra and range-Doppler profiles

• Extraction of length, scattering centres and Doppler spectrum features

• Assembly of range, Doppler and kinematic profiles into a set of target data sheets for each
aircraft

• Classification analysis

This process is illustrated in fig 3.6. In addition to the target data sheet and classification statistic

outputs, data viewing tools have been constructed to display the output of the signal processing stage;

i.e. load data files (representing individual looks) that have yet to be combined for feature extraction

and classification analysis. cview (figs 3.8, 3.9) and tsee (fig 3.7) have proved to be important

diagnostic tools as well as a convenient means of generating illustrations.8

5The In-Phase and Quadrature signal samples following mix down, analogue to digital conversion and beamforming.
6Surveillence activities such as Normal radar, MTI and MTD looks could also be captured in the same way, but these

are not discussed in this thesis.
7Written by Graham Biggs, formerly of BAE Systems Integrated System Technologies.
8 In the target Doppler spectrum display of tsee.m one can see JEM lines if (a) the target possesses unshielded

rotating reflectors which will give rise to JEM and (b) the number of pulses per burst and PRF are both high enough
to resolve JEM lines from the Doppler filter sidelobes. To assist in the automatic capture of target features a JEM
line estimation function tjem.m is used by tsee.m. The lines highlighted (in black) can be seen in figure 3.28 This
operates by sequentially subdividing the Doppler spectrum in to finer and finer bins. For each binary division, the
Doppler frequencies of the maximum signal values are recorded. In a method similar to track initiation and update
algorithms [95], new JEM lines are only initiated if these peaks exceed a minimum frequency difference from already
established peaks. The minimum distance is set to be twice the Doppler resolution of the filter, that is 2fPRF /P. Note
the actual Doppler spectrum is interpolated to have distinct spectral samples of number greater than P (typically 100)
so the position if each JEM line can be estimated to a greater precision than fPRF /P. Finally, only JEM lines which
correspond to peaks which exceed a defined threshold in dB below the skin return are returned by the function.
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Figure 3.6: Diagram describing the processing chain which begins with data stored on the MESAR2
data logger and ends with a series of target data sheets containing montages of Range and Doppler
profiles of aircraft alongside relevent kinematic parameters. Feature data from a defined subset of trials
data (e.g. six aircraft, as in this thesis) are then used to feed a classifier, whose outputs are recorded
and plotted graphically as colour coded confusion matricies. tsee and cview allow for individual
looks to be analysed visually. tmodel allows for synthetic data to be generated as an alternative to
experimental data. All methods within the apricot coloured box have been written by the author
in the MATLAB environment. Green boxes denote the use of graphical user interfaces. Blue boxes
denote setup files, which are constructed using Microsoft Excel.
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Figure 3.7: Screen capture of the visualisation software tsee (‘Target See’) implemented in MATLAB.
The data displayed are processed recordings of the returns from a Falcon aircraft.

Figure 3.8: Alternative look data viewing tool to tsee. cview "Classical Viewer" includes the algo-
rithms for Classical HRR processing and allows the user to dynamically change the range of the pulse
compressor output that the ‘target samples’ are taken from.
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Figure 3.9: This this figure, target samples are taken 5 range cells (150m) away from the main peak,
resulting in 20dB degredation of the Falcon range profile. This is exemplific of one of the flaws of the
Classical method: if a target has structure on the pulse compressor scale, scatterers away from the
peak will contribute to the resulting HRR with a lower signal to noise ratio.
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Figure 3.10: Graphical user interface to MATLAB code fproc, which converts I,Q receiver samples
to Classical & Hybrid High Range Resolution profiles. fproc can be applied to any number of files
with a single button click since it is designed to operate on a defined directory structure labelled by
(defined) waveforms. Once general settings are applied a large data set can be processed without
further intervention. This is useful in the context of this research, where the 58GB trials data set
takes about four hours to process. The effect of signal processing settings (upon HRRP quality, and
ultimately classification performance) can be practically investigated using overnight batch processing
runs.

3.5.2 NCTR signal processing

The NCTR signal processing chain has been encoded as a MATLAB function fproc and is applied via

a graphical user interface which enables batch processing of data of arbitrary size, so long as the data

is firstly deposited in a defined directory structure which matches the names of waveforms that appear

in a setup document written using Microsoft Excel. Processed data are stored in a structured array

processed_data, which is appended to the same MATLAB .mat file created upon conversion from

ASCII to the MATLAB domain.9 Each time process_data_gui or fproc_gui updates a file, the

imported_data part is left untouched. Although this increases the file size by retaining earlier steps

in the processing mechanism, it means signal processing modifications can be tried out on the same

files without worry of overwriting the source data. fproc_gui is, as the name suggest, an interface to

fproc. The key stages of NCTR signal processing are illustrated in figures 3.10,3.11 & 3.12 and can

be summarized as the following:

Initial processing

1. Pulse compression. The three dimensional array of complex receiver samples (rows being

pulses, columns being frequency steps and pages being receiver samples for a given pulse) are

cross correlated in the page (3rd) dimension with the corresponding receiver samples of the

calibration measurement for the waveform. In the case of waveform A, the calibration target

was the static single dipole positioned on-boresight. By the convolution (and Wiener-Khinchine)

theorems [112] this can be efficiently implemented as a multiplication in the frequency domain

of the Discrete Fourier Transform (DFT) of the receiver samples and the DFT of the conjugate

of the calibration reference, followed by an inverse DFT to convert back to the time (or range)

domain.
9Currently, conversion from ASCII to MATLAB is a slow process, up to a minute per look. Once in the MATLAB

domain, signal processing can be completed in a matter of seconds. In cview, the Classical processing stage can be
achieved in near real time.
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Figure 3.11: The (Classical) NCTR signal processing applied in fproc is described pictorially using
recording taken from a Falcon jet aircraft. The waveform is A.
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Figure 3.12: The (Classical) NCTR signal processing applied in fproc is described pictorially using
example data taken from a ‘pod’ moving point target. The waveform is A.
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2. Apply NCTR scalings. The pulse compressed receiver samples are then divided by the am-
plitude and phase corresponding to the (burst averaged) complex samples corresponding to the

peak of the pulse compressed calibration reference. This division corresponds to a complex sam-

ple for each frequency step. These NCTR scalings are computed in advance from the calibration

reference (using automated calibration software written as part of fproc) and are normalized

to prevent excessive signal size change, i.e. the mean scaling amplitude is unity. Additionally,

the scalings are modified by a unit magnitude phase factor which corrects for the difference in

phase between the start range of the target and the range of the calibration reference.

3. Estimate range rate. In most cases the MESAR2 tracker provides a good estimate of the
target range rate to an accuracy of a few ms−1. However, occasionally this estimate is not

sufficiently correct to yield a focussed range profile. (See fig 3.13). To perform a fine correction,

the pulse compressor outputs are firstly put through motion compensation, ‘get target sample’

and Doppler filtering stages. The Doppler filter output is averaged over frequency steps and

the peak frequency determined via interpolation in the region
h
−2fPRFP , 2fPRFP

i
. This restricted

region is to avoid contamination from JEM which may be present. The peak is assumed to

correspond to the skin return and therefore the Doppler frequency of the peak can be used to

determine a range rate correction ∆v ≈ −c∆f
2fTx

where ∆f is the Doppler shift of the skin return.

This method only works well when the tracker range rate is near to the correct result. Practically,

if the velocity deviation exceeds the magnitude cfPRF
2PfTx

then the corrective mechanism will not

work.10 This corrective mechanism can be applied iteratively. The Hybrid method aliasing

effects appear to be somewhat sensitive to errors in range rate11. It was found that modifying

the number of iterations from one to five significantly reduced the aliasing effects. In contrast, the

Classical result was more robust, only requiring a single iteration. In fproc, additional options

allow for data with corrupted tracker range rate to be processed. In this case the peak positions

of the pulse compressor output are used to estimate the range rate using (respectively) curve

fitting and regression of the peak ranges. Provision is made to estimate the target acceleration

in range as well as range rate to allow the software to cope with non uniform motion. Although

this modification was made in anticipation of ballistic targets, experiments by Neil Campbell

(2005) using data with known, constant range rate seemed to suggest that (incorrect) small

estimated accelerations can have drastic effects upon the resulting range profile. Hence it was

recommended to apply the linear approach described above rather than attempt to guess an

acceleration via polynomial curve fitting.

4. Apply motion compensation. The best estimate of target range rate is used to remove (i) the
additional phase to the targets between pulses and (ii) the shift in (fractional) range cells of the

target samples between pulses. (i) is achieved via a complex multiplication of exp
³
4πifTx

c tpqṘ
´

where tpq the time of pulse p of P and frequency step q of Q since the start of the look. (ii) is

achieved by application of the Fourier shift theorem [112]; i.e. multiplying the DFT of receiver

samples by a phase ramp corresponding to the target range shift 12 tpqṘ , then converting back

to the time (range) domain, results in ‘range walk’ correction that is not limited to whole range

cells.
10For a carrier frequency of 3GHz, fPRF of 2.5kHz and P = 8 this is of the order of 16 ms−1.
11Experiments conducted by the author seem to indicate > 1ms−1 motion compensation errors may result in significant

aliasing which can cause erroneous length measurements from the Hybrid HRR profiles.
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Figure 3.13: For certain looks the range-rate supplied from the tracker is insufficient to correctly
account for bulk target motion. The lower profile shows the Doppler filter output and Classical HRR
profile using a 32 pulse and 32 frequency step Waveform E. Since the skin return is offset from 0Hz,
the resulting HRR profile is significantly degraded. The range rate correction is determined using this
Doppler offset. The upper figure demonstrates the application of this method, resulting in a much
improved range profile.
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Classical HRR processing

5. Get target samples. The range cell is determined which corresponds to the maximum (motion
compensated) pulse compressor output power. The maximum is taken over all pulses, frequency

steps and receiver samples to account for the possibility of interference effects between multiple

scatterers which may result in a null at a particular frequency step. For each pulse and frequency

step a complex number is taken from the vector of receiver samples at this particular range cell.12

6. Apply Doppler filter. The P × Q matrix of complex samples is passed through a P pulse

Doppler filter, with outputs at Doppler frequencies from −12fPRF to
1
2fPRF spaced by

fPRF
P .This

is mathematically implemented as a Discrete Fourier Transform preceded by multiplication by

a low sidelobe (40dB) Dolph-Chebychev windowing function.

7. Apply weighted inverse Fourier Transform to form Classical HRR profile. The Q

complex samples corresponding to the zero Doppler output of the filter are weighted by a 40dB

Dolph-Chebychev weighting function and inserted into an inverse DFT. The magnitude of this

result is the Classical HRR profile. Filter outputs away from 0Hz can be processed in an identical

fashion to form a HRR range-Doppler profile.

8. Interpolation. fproc interpolates in range and Doppler dimensions (in magnitude and phase)
to yield profiles that clearly show up sidelobe features that could otherwise be confused with

genuine target signatures. For the trials data processed, 128 range and Doppler values were

chosen for all waveforms.

9. Determine whether data is ‘good’. Data is deemed corrupted if the conventional pulse
compression process does not yield distinct peak(s). Average peak to noise floor ratios (in dB)

are computed and compared to a set threshold. (30dB for the trials data processed). If the

threshold is not exceeded then data is deemed corrupt. The noise floor is defined as the median

pulse compressor signal power, averaged over pulses within each burst. The average peak to noise

floor ratio is computed jointly as the mean of the ratios computed for each frequency step, and

the ratio of the mean target sample values and the mean noise floor values (which are averaged

over all frequency steps). When both means exceed the threshold, the data is deemed ‘good.’

The peak values are taken to be the complex samples used for Classical HRR processing (i.e. a

single sample for each frequency step). Goodness of data is indicated by a binary flag appended

to the processed data file.

12 In fproc there is the potential to apply a non-linear (Lorentzian) curve fitting algorithm to determine the fractional
range cells corresponding to the peak, then use spline interpolation in magnitude and phase to yield the peak samples.
However, very little refinement to the resulting HRR profiles has been observed as a result of this extra effort!
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Hybrid HRR processing

10. Pad receiver samples. The bandwidth segment ∆f corresponding to the Nstitch samples

extracted from the central portion of Discrete Fourier Transform of the (motion compensated

and NCTR scaled) receiver samples must form a continuous (linear) progression; otherwise the

Hybrid range profile shall suffer aliasing resulting from periodic discontinuities in the frequency

domain. To achieve this the number of receiver samples K must satisfy the following conditions:

Nstitch =
K∆f

fs
∈ Z± (3.1)

Noverlap =
1

2
(K −Nstitch) ∈ Z±

where Nstitch + 2Noverlap = K and Z± represents the set of positive integers. In fproc these
criteria are met in the general case of a non-compliant13 K by padding the receiver samples

with m zeros until K → K +m satisfies the above criteria.

11. Spectral stitching and scaling. As alluded to in the previous step, the receiver samples
are firstly transformed to the frequency domain. The central Nstitch = K∆f

fs
samples are then

extracted and added to the correct slot in an array of lengthQNstitch appropriate to the frequency

step. After applying this process for all Q frequency steps the array will be filled and the wide

bandwidth spectrum (of bandwidth Q∆f) will be stitched together. (Recall fig 2.4). These

complex samples are then multiplied element-wise by a set of spectral scalings specially created

for the waveform. These are spectral samples of a synthetic wideband chirp of bandwidth Q∆f

divided by the stitched spectrum of the point target reference for the waveform. The stitched

spectrum of a point target reference will therefore be a perfect wideband chirp. (See fig 2.6). For

more complex targets, the effect of the scalings helps to reduce aliases in the resulting Hybrid

range profile. A mechanism for the latter is discussed in section 2.3 above. Following stitching,

the array of samples are converted back into the time domain via an inverse Discrete Fourier

Transform.

12. Hybrid pulse compression. The Hybrid HRR profile is computed by determining the cross
correlation between the time domain samples of the stitched spectrum and the corresponding

samples derived from the point target reference. For display purposes, fproc truncates the end

result to a defined number of Classical HRR windows either side of the maximum power in the

Hybrid profile.14

13. Hybrid dealias. Aliases in the Hybrid method at intervals of c
2∆f appear to result from periodic

disturbances which result from stitching spectra at intervals of ∆f. Modelling suggests this can
13 In the model code, which generates synthetic reciever samples, K is chosen to satisfy the criteria for spectral stitching.

It is computed using the iterative padding and integer criteria checking as described and starts from an initial value set
to include maximum target extent ∆L, the range equivalent to the pulse length τ plus τ

2
as a safety factor; i.e. K =

ceil fs 3
2
τ + 2∆L

c
. If the overall range of the target is R0, the receiver opening times can be computed as

topen =
round fs

2R0
c
− 1

4
τ

fs

tclose = topen +
K − 1
fs

14 5c
2∆f

either side of the Hybrid HRRP maximum power seems to be sufficient to investigate the progression of aliases
that may manifest. Clearly this should also exceed the target maximum range window ∆L if the waveform has been
designed (and receiver opening times chosen) in the manner discussed above.
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occur due to imperfect motion compensation plus any receiver distortions which cause deviation

from calibration. Aliases which manifest following Hybrid signal processing can be minimized

by subtracting copies of the central c
2∆f power from subsequent (and prior, in range) intervals

of c
2∆f . The central region is multiplied by the maximum power within the aliases region and

divided by the maximum power in the central region. As demonstrated in fig 3.14 for a Hybrid

profile of a Pod moving point target (the green and red regions were the original Hybrid profile),

power subtraction can be effective as long as the central region contains well defined peaks,

which lead to obvious aliases, and a ‘distant’ scatterer does not fall close to an integer multiple

of c
2∆f in range from the highest peak. In summary:

(a) Start with a high resolution range profile (power vs range) produced via the ‘Hybrid’

technique. Determine the range Rmax corresponding to the maximum power Pmax.

(b) Define the nth alias region to be ± c
4∆f about Rmax+n c

2∆f , where n 6= 0. Let the maximum

power in the nth alias region be A(n)max.

(c) Apply ‘de-aliasing’ by subtracting the region Rmax ± c
4∆f , scaled by

A
(n)
max

Pmax
from the alias

regions.

14. Determine Radar cross section (RCS) of pulse compressor output and HRR profiles.
The profile power is passed through a function which applies the Radar Equation (See Appendix)

to estimate RCS σ from the signal to noise power ratio, thermal noise and estimates of various

system gains and losses.

σ =
4πc2LkBToNfR

4

A2η2nEi(n)τPtf2Tx |FtFr|
2 (S/N) (3.2)

where S/N is the signal to noise power ratio kB is Boltzman’s constant, R is the target range, A

is the antenna aperture area, η is the ‘antenna effectiveness’, fTx is the carrier frequency, T0 is the

ambient temperature, Nf is the receiver noise figure, L is the product of system loss factors (and

reciprocal of any processing gains) Ft, Fr are (respectively) transmission and reception propagation

factors, τ is the pulse length, n is the number of integrated pulses, Ei(n) is the integration efficiency

and Pt is the transmitter power.

An empirically determined calibration factor (a constant in dB) is added to the result to ensure

consistency between waveforms and between pulse compressor and Classical HRR profiles. In the

absence of any absolute calibration, the point target reference RCS was set to be 10dBm2 for each

waveform. The deviation between this and the computed RCS for the reference target yields the

calibration factor for each waveform and profile type. The benefit of this empirical approach is that

the Radar equation can be used to correct for differences in range between measurements, but accuracy

in computing the loss factors is not required.
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Figure 3.14: Aliases in the Hybrid method at intervals of c
2∆f appear to result from periodic distur-

bances which result from stitching spectra at intervals of ∆f. Modelling suggests this can occur due to
imperfect motion compensation plus any receiver distortions which cause deviation from calibration.
Aliases which manifest following Hybrid signal processing can be minimized by subtracting copies of
the central c

2∆f power from subsequent (and prior, in range) intervals of c
2∆f . The central region is

multiplied by the maximum power within the aliases region and divided by the maximum power in
the central region. As demonstrated for a Hybrid profile of a Pod moving point target (the green and
red regions were the original Hybrid profile), power subtraction can be effective as long as the central
region contains well defined peaks, which lead to obvious aliases, and a ‘distant’ scatterer does not
fall close to an integer multiple of c

2∆f in range from the highest peak.
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Figure 3.15: Cartoon descriptions of on and off boresight static trials using MESAR2.

3.6 On & off boresight trials

3.6.1 Trials description

Trials proceeded by illuminating (using a stepped-frequency waveform) a set of three dipoles mounted

on a mast (fig 3.16) some 100m directly in front of the MESAR2 antenna. RF energy is only permitted

to enter the central dipole, from which a delay (equivalent to a cable length of several tens of kilometers)

is connected. After propagation through this, the signal is split between the outer dipoles with one

of these attached to a variable extra length of cable. The net result of this setup is the provision of

two point targets at an effective distance of many tens of kilometers separated in range between 0 and

60m.

The mast was positioned by eye on-boresight, using as a guide the four vertical lightning conductors

mounted on each corner of the MESAR2 antenna. (You know you are on-boresight when you cannot

see the two lightning conductors behind). The off-boresight (-45oin azimuth) position was determined

using a theodolite sited next to the antenna face, and confirmed using a handheld Global Positioning

System (GPS) receiver. MESAR2 was run in Experimental (X) mode and the beam was configured

electronically (from a computer terminal within the control cabin) to point at the on and off boresight

positions, illustrated by fig 3.15. The on-boresight trials were conducted during August 2004 and

off-boresight trials during October 2005.

Uncompressed In-phase I and Quadrature Q data for the P (pulses) × Q (frequency) sets of

receiver samples comprising each look, plus additional ‘header’ waveform parameters, were extracted

from the MESAR2 data logger and transferred to a PC for analysis using the software described in

the previous section.
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Figure 3.16: (Left) Schematic of the False Target Generator (FTG) used in the On & Off boresight
MESAR2 trials. RF is permitted to enter dipole 2 from which it is allowed to propagate through several
kilometers of cable. After this the signal is split between two paths to dipoles 1 & 3, whereupon the
RF exits in the direction from where it originated. The path to dipole 3 can be lengthend using extra
cable to generate two reflections spaced in range. In the trials, separations between 0 and 58m were
used. (Right) Pump-up mast used in On & Off boresight trials using MESAR2. The mast was placed
approximately 100m in front of the antenna. The three dipoles used in the experiment are mounted
behind plastic windows on the horizontal bar at the top of the mast. The cabling used in the False
Target Generator (FTG) is contained in the green shed to the right of the mast.
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Figure 3.17: Table of added cable lengths and corresponding effective dipole range separations used
in the on & off boresight static trials.

3.6.2 Waveforms and dipole spacing

In both on and off boresight experiments, Waveform A, (a B = −4.5MHz15 linear chirp waveform of

duration τ = 25.6μs) was transmitted in bursts of P = 8 pulses + G = 2 guard pulses. Q = 128

bursts stepped in frequency by ∆f = 3.2MHz constituted each look. The carrier frequency was 2.705

GHz for the first activity and 3.1114 GHz for the last. A uniform PRF of 1kHz was used which meant

each look was composed of 1280 transmit-receive cycles containing 1024 processed pules with overall

duration 1.92s. Although the total duration is likely to be excessive for operational use (see Chapter 7)

the other parameters were chosen to maximize the possibility of resolving the two dipoles. Following

High Range Resolution (HRR) processing over all 128 frequency steps, the theoretical range resolution

was ∆R ≈ c
2Q∆f = 0.37m. The pulse compression ratio of each chirp was ≈ Bτ = 20.6dB which was

expected to be sufficient to extract a clear target sample, using the Classical method described in

section 2.2.1.

The simulated target range16 corresponding to the fixed dipole path (MESAR2 to dipole2 to FTG

optic fibre to dipole 1) was set at R0 = 23.384km. Extra cable was added in the split between the False

Target Generator (FTG) and dipole 3. As described in fig 3.17, cables at lengths 0, 3,6,12,30,60 & 90

metres were used, resulting in target separations between 0 and 58m. Given the unambiguous length

of the HRR profile for the waveform used was c
2∆f ≈ 46.8m, the 90m cable (58m dipole separation)

experiment would allow the Hybrid method to be tested out in a situation where the Classical result

would yield an erroneous result for dipole separation. In addition to the two dipole experiments,

separate recordings were made using the fixed range dipole (dipole 1), and also the variable range

dipole (dipole 3) for each cable length.

15A ‘down’ chirp was transmitted. Over the 25.6μs duration the instantaneous frequency varied from +2.25MHz to
-2.25MHz about the main carrier (which was stepped by 3.2MHz between the 128 bursts from 2.705GHz to 3.1114 GHz).
16Propagation time in homogeneous cable of length L is L

c√
�r

where �r is the dielectric constant. Hence the extra target

range of the dipole 3 path resulting from cable length L added is ∆R = 1
2
c L

c√
�r

= 1
2
L
√
�r. One can therefore estimate

the effective dielectric constant (or ‘relative permittivity’) from the equation �r = 4 ∆R
L

2
where ∆R is the measured

dipole separation.
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3.6.3 Summary of results

Trials data was successfully collected for all added cable lengths. For brevity let us simply compare

Classical & Hybrid results for the dipole 1 reference and 58m dipole 1 & dipole 3 separation experi-

ments. In figures 3.18 & 3.19 Hybrid results (blue) are overlaid with the Classical range profiles for

on boresight (upper plot) and off boresight (lower plot) scenarios. For the dipole 1 reference result

one can observe a total lack of Hybrid aliasing at integer intervals of c
2∆f . The Hybrid result appears

to have significantly lower range sidelobes17 than the Classical method. The latter are fixed at 40dB

via the use of the Dolph-Chebychev windowing function applied prior to the inverse Discrete Fourier

Transform. Perhaps a more realistic result is the off boresight example. The remnants of aliasing can

be seen at around 40dB below the peak and in the Classical region there is good agreement between

profiles. However, as observed for the Pod recordings in fig 3.24, the Hybrid result is approximately

5dB worse in ‘close in’ sidelobe performance. Fig 3.19 illustrates a clear difference between Classical

& Hybrid profiles. The Hybrid method enables both dipoles to be correctly separated using the HRR

profile. In the Classical method, dipole 1 appears at an erroneously short range, with a reduction in

gain of nearly 20dB. Signal to noise ratios of between 20 and 30dB are observed between on and off

boresight scenarios. This result suggests a below-max length measurement threshold of between 20

and 25dB may be optimal for Waveform A.

17Although this statement requires some perspective: the Hybrid profie appears to have a noise floor at around 70dB
below the peak, but the peak width increases significantly after about 40dB. So by peak width comparison, the Hybrid
result and the Classical result are equivalent.
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Figure 3.18: Hybrid (blue) and Classical (red) range profiles are compared for a single point target
reflector. (Which is used to generate the pulse compression weights for Classical & Hybrid methods -
i.e. this plot represents the autocorrelation function for these techniques). Waveform is A. In the upper
graph the targets are positioned at boresight, i.e. aligned with the front face of the antenna as viewed
from above. In the lower graph the targets are positioned 45 degrees left from this position. In order
to illuminate the latter targets, MESAR2, being a fixed installation, was required to electronically
scan its main beam by 45 degrees.
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Figure 3.19: Hybrid (blue) and Classical (red) range profiles are compared for two static point target
reflectors separated in range by 58m. In the upper graph the targets are positioned at boresight, i.e.
aligned with the front face of the antenna as viewed from above. In the lower graph the targets are
positioned 45 degrees left from this position. In order to illuminate the latter targets, MESAR2, being
a fixed installation, was required to electronically scan its main beam by 45 degrees. The signal to
noise ratio for the off boresight example is approximately 10dB less than the on boresight equivalent.
This is more than might be expected from scanning loss alone: −10 log10(cos

π
4 ) ≈ 3dB.
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Figure 3.20: Cartoon of MESAR2 pod & falcon trials

3.7 Pod & Falcon trials

3.7.1 Trials description

Following successful On and Off-boresight static trials with MESAR2, a more complete test of the ‘Hy-

brid’ and ‘Classical’ stepped-frequency High Range Resolution processing techniques was performed

in the actioning of NCTR looks upon a ‘Falcon’ jet aircraft. The Falcon contained a repeater ‘pod’

mounted in a missile-like container stored under one wing. The Pod is essentially a flight-worthy ver-

sion of the False Target generator (FTG) used in the static experiments. Microwaves enter, propagate

along several kilometers of cable before emerging and propagate back towards the source. From the

perspective of a Radar system, the Pod will appear as a point target co-moving with the Falcon, as if

connected by a rigid wire. The length of this imaginary wire is given by 1
2c∆tpod where ∆tpod is the

time delay between microwaves exiting and entering the Pod.

In the context of the MESAR2 trial, which was conducted on Friday 14th October 2005 (with

preliminary experiments conducted on Monday 10th October 2005) the Falcon and Pod were tracked

as separate targets on an inbound trajectory between 50 and 20 km west of the Isle of Wight. (See

fig 3.21) The tracks were established and maintained from plots obtained using the surveillance mode

of MESAR2. NCTR waveforms were scheduled alongside these activities, and additional dedicated

tracking tasks.

On Friday 14th October, 8 circuits were flown by the Falcon & Pod ensemble. NCTR waveforms

were successfully delivered during the inbound sections of runs 1,3,4,5,6 and 8. In-phase (I) and

Quadrature (Q) channel digital receiver samples were captured using the MESAR2 data logger. A

sample rate of fs = 5MHz was used in all instances. Data captured from all runs was converted into

a human readable text-file format using software developed by BAE Systems. These files were then

processed and visualized using MALAB.
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Figure 3.21: (Above) Screenshot of the MESAR2 ‘Man-Machine Interface’ (MMI). The Falcon and Pod
targets are successfully tracked, and illuminated using NCTR waveforms, along inbound trajectories
flying off the Dorset coast towards The Needles to the west of the Isle of Wight. In this figure, the
Falcon (nearest) is at an altitude of 1801m and a slant range of 51.4km and is travelling with an
(inbound) range-rate of ≈130 ms−1. To the top left of the picture, a commercial airliner at altitude
10,184m and range 78.5km is also being successfully tracked. (Below) Tracks of the Falcon trials
aircraft on an outbound (Westwards) trajectory from the Isle of Wight along the south coast of
England. Blue dots indicate the position of the aircraft as determined by MESAR2. Range rings are
km.
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3.7.2 Summary of results

Fig 3.22 compares the receiver samples for pulse 1 of Waveform A (stacked over frequency steps)

obtained for the Falcon and Pod targets. The interference effects caused by the multiple scatterers in

the Falcon target are clearly evidenced by the non uniform power distribution with frequency step.

Fig 3.23 compares the Classical & Hybrid range profiles of the Falcon & Pod targets, obtained using

waveform A. Both targets are clearly displayed and it is possible to resolve four major Falcon scatterers

and measure its length at approximately 17m. (The projected physical length was computed to be

17.8m). As suggested for the static targets, a below-maximum length threshold of 20 to 25dB appears

to be appropriate for the Hybrid method. A lower threshold would cause aliases to corrupt the length

measurement. By contrast, the Classical method appears to have a lower noise floor by approximately

5dB. (See fig 3.24). For targets which are genuinely shorter than c
2∆f it would appear the Classical

result should yield a better length estimate. A full set of trials results are presented as target data

sheets in the Appendix. These include HRR profiles using waveforms B & C plus Doppler profiles

(which for both targets are devoid of JEM) using waveform D.
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Figure 3.22: Stack of receiver sample power for burst 1 (of 8) using waveform A applied to Falcon
(above) and Pod (below) targets. The stacking is over the 128 frequency steps (of 3.2MHz). In the
Falcon example one can cearly see the result of interference effects due to multiple scatterers. In the
Pod example (where the aim is for it to appear as a point target) there is much reduced variation with
frequency.
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Figure 3.23: Overlay of Classical & Hybrid profiles for Falcon (above) and Pod (below). Hybrid
aliases for the Falcon are approximately 25dB below the main return. In the Pod example, much more
effective de-aliasing is in evidence, with levels down to 35dB below the peak. Waveform is A.
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Figure 3.24: Close up view of Pod & Falcon data shown in fig 3.23. Although there is generally good
agreement, there appears to be some asymmetry in the Hybrid result, causing the sidelobes to the
right of the profile to rise above those of the Classical result by about 5dB.
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Figure 3.25: Cartoon of MESAR2 ‘Targets of Opportunity’ trial, in which 15 distinct aircraft were
tracked over a (several hour) time interval. NCTR looks (waveforms A,B,C,E) were automatically
actioned by MESAR2 against targets being tracked.

3.8 Targets of opportunity

3.8.1 Trials description

On July 4th 2006, MESAR2 automatically tracked and scheduled NCTR waveforms A,B,C,E onto

targets of opportunity in the airspace of Southern England. MESAR2 operators at Cowes on the

Isle of Wight were in telephone contact with colleagues at the National Air Traffic Service (NATS)

in Swanwick to provide identification of aircraft associated with the tracks. In this way recordings of

15 types of known aircraft were made, starting with an Airbus A340 (callsign BWA900) at 0908 and

ending with a Boeing 747 (callsign BAW207) at 1150. Permutations of NCTR waveforms A,B,C & E

were automatically scheduled.

3.8.2 Summary of results

Following inspection of the individual range and Doppler profiles obtained during the targets of op-

portunity trial, there were four significant observations:

1. Using Waveform A, the Hybrid method can be used to generate a sub-metre range resolution

profile of an inbound 747 aircraft. As shown in fig 3.26, this is not possible using the Classical

method as the Classical HRR range window of waveform A is less than the length of the aircaft.

2. Waveform E, which uses a fourth of the frequency steps as waveform A, can (via the Hybrid

method) also be used to accurately measure the (physical) length of an inbound 747. (See fig

3.27). In Chapter 6 we shall assess this statement in more detail.18

3. Jet Engine Modulation (JEM) has been observed (i.e. clearly distinguished from the skin echo)

using waveform E. See fig 3.28.
18 i.e. does the standard deviation in length feature measurements appear to scale linearly with overall bandwidth? If

not, are their limits imposed by range sidelobes and tolerance of the waveform to errors in motion compensation and
calibration errors, freqency jitter & noise? Is there an optimal scheme which can be used to choose between chirp type
and processing method? i.e. non-linear chirp & Classical vs linear chirp & Hybrid?
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4. A propeller driven aircraft (Dash8) can produce a Doppler spectrum which is different from those

characterized by JEM. Rather than distinct lines, one observes more of a spectral continuum. In

fig 3.29 one observes this continuum (resulting from a blade flash) punctuated by periodic nulls

in what is effectively a frequency-time representation or ‘short time Fourier transform’. In this

example one can infer the flash rate to be of the order of 750RPM. The differences in overall

structure between the Doppler spectra of Jet aircraft with visible engines, propeller driven air-

craft and aircraft with obscured jet engines (or none at all) could be used in classification. Given

the PRFs for an S-band multifunction phased array Radar are likely to be too low to measure

target internal motion induced modulation unambiguously19, this cruder form of spectral classi-

fication may well be a more productive strategy than attempting to make a direct measurement

of specific engine rotational characteristics such as number of blades and spool rate, as described

in Tait [103].

The opportunistic nature of this trial meant there was inherent uncertainty in the possible scope

and quality of recordings. Indeed, many aircraft were on a crossing rather than radial trajectory. As

a result, the numbers of inbound or outbound looks which could be readily classified using a simple

length feature were modest (between 10 and 40 per waveform.20) However, since the overall goal is

to develop Radar systems which are operationally useful rather than simply theoretically possible, an

analysis of what could be observed in fairly realistic operating conditions is worthy of consideration. It

is possibly more valid to state observed performance based upon a limited but uncontrived sample, and

then infer what could be achieved with more looks, higher bandwidths etc; than report performance

of a theoretically ideal situation and then try and infer what degradation is likely in an operational

context. With this philosophy in mind, the classification performance reported (which is described

in the following chapters) should be strongly linked to the target data sheets, which are presented in

the Appendix. These describe the variability of the HRR and Doppler profiles for each target, and

corresponding extracted features such as length.

19As described in section 2.4.2
20 In this thesis the focus has been upon inbound aircraft, largely to make a fair comparisson of targets of opportunity

to the Pod & Falcon recordings (which were inbound). In the following Chapter, where Doppler analysis is discussed,
outbound aircraft are also considered based upon the effect upon JEM and therefore Doppler spectra based classification.
Given the wings of most commercial aircraft are perpendicular to the main fuselage, and wingspan is strongly correlated
to length (but perhaps not linearly related since longer aircraft are heavier and therefore require more lift, but longer
wings also have more mass) one might conjecture long aircraft could be discriminated from short even in a purely
tangential aspect. This question is not explored in this thesis.
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Figure 3.26: Overlay of Classical (red) and Hybrid (blue) high range resolution profiles of an inbound
Boeing 747 (length = 70.6m). For the Hybrid result, a below-max length threshold of 25dB yields
a radar length of 70.3m, which is in reasonable agreement with the optical length given the aircraft
was observed at an aspect angle of approximately 10o, yielding a projected optical length of 69.5m.
Since the aircraft projected length exceeds the Classical range window (for Waveform A it is 46.8m),
the Classical method cannot be used to give a sensible measurement. Wrapping of the front of the
aircraft to the rear is clearly evidenced.
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Figure 3.27: Classical & Hybrid HRRP overlays are presented for the same inbound Boeing 747 as
illustrated in fig 3.26. In this case Waveform E is used, using only 32 frequency steps rather than the
128 of Wavefom A. A 25dB below-max threshold yields a length of 71m.
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Figure 3.28: Stack of Doppler spectra /dBm for an inbound Boeing 747. Stack is over the 32 frequency
steps of Waveform E. Jet Engine Modulation (JEM) is clearly present at ±1 kHz. Although the limited
PRF (2.5kHz) suggests this is likely to be an ambiguous result, and therefore little may be inferred
with certainty about the number of blades or the spool rate, the presence of JEM is an identifying
feature in itself (albeit for a wider class of targets than a 747).
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Figure 3.29: Stack of Doppler spectra /dBm for a inbound Dash8 propeller aircraft. Stack is over the
32 frequency steps used in Waveform E. Non-skin spectral features are not as localised into distinct
peaks as in the 747 profile in fig 3.28, instead approaching a continuum at around -25dBm. Note in
this example one can use the stack of spectra to estimate the blade flash rate. There appears to be
roughly 25/4 = 6.25 frequency steps between flashes. Since there are 32 pulses per step and the PRF
is 2.5kHz this implies 12.8ms per frequency step. Therefore flashes occur with a periodicity of 80ms
which implies a flash rate of ≈ 12.5Hz or 750RPM. This is a rather curious result. A Dash8 uses a
six blade turboprop engine which typically rotates at 1500RPM. i.e. frot = 25Hz and Nfrot = 150Hz.
The observed flash rate therefore appears to correspond to once every two engine rotations. Intuitively
one might conjecture an interference effect between the two propellers is responsible for this result.
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3.9 Conclusions

Let us summarize the results presented in this chapter in the form of answers to the first key question

posed in the introductory chapter.

1. Can MESAR2 (and by inference other S-band multifunction phased array radars) be used to

record robust range (and Doppler) profiles of air targets?

• 1498 NCTR looks using 5 waveforms were scheduled by MESAR2 upon 17 different target
classes. Based upon a ‘goodness’ criteria of > 30dB peak to median signal level of the pulse

compressor output, 83% of recordings were ‘good.’

• On & off boresight static trials demonstrated that two static reflectors of separation 0

to 58m could be resolved unambiguously with a signal to noise ratio of between 20 and

30dB. The Hybrid technique allowed for an extension of the HRR profile window beyond

the ‘Classical’ extent. In the trials this was 47m as a consequence of a 3.2MHz frequency

stepped waveform being employed. (Waveform A). Signal processing refinements to the

Hybrid technique helped to reduce aliases at intervals of the Classical window to negligible

levels. Off boresight electronic scanning by MESAR2 did not corrupt the range profile to

any significant degree.

• A ‘robust’ set of NCTR measurements were taken of a moving point target and a small jet
(Falcon) aircraft during a fully operational MESAR2 trial; i.e. the NCTR looks were auto-

matically scheduled between surveillance and tracking functions. 211 looks were recorded

for the Falcon and 155 looks for the Pod, with approximately 40 looks for each of the four

waveforms used. Overlays of range profiles (see sections K to N ) indicate a variation in sig-

nal strength of between 10 and 15dB, but overall a consistent range extent and distribution

of major scattering centres.

• A limited set of measurements were taken of ‘targets of opportunity’, with measurements
for Boeing B747, B757 & B777 and Dash8 aircraft presented in this thesis. In this un-

controlled experiment, approximately a quarter were ‘inbound’ (<20o aspect), a quarter

were ‘outbound’ (>160o aspect) and half were of a ‘crossing aspect’. Between 10 and 40

looks per waveform were recorded for each aspect category and target data sheets were

constructed for each waveform, aspect category21 and aircraft. The plots of cumulative

range and Doppler profiles (see Appendix) indicate an acceptable degree of stability could

be achieved after around ten looks, assuming the target does not change aspect by a sig-

nificant amount. (By significant I mean make the transition from an inbound to a crossing

or an outbound aspect). The implication here, (which is alluded to by Zyweck & Bognor

[118]) is that the spatial location of major scatterers is only significantly variable over a

range of tens of degrees rather than degrees or fractions of a degree; i.e. classification of

aircraft based upon simple features such as length measurement is unlikely to be a fruitless

quest as long as multi-look averaging is done.

• The Doppler spectra of inbound jet aircraft consistently demonstrate the presence of Jet
Engine Modulation (JEM). The difference between inbound and outbound target aspects is

clearly evident in the Doppler spectra. The obscuration of the jet engines in the outbound
21 Inbound aspect range profile and inbound and outbound aspect Doppler spectra data sheets are presented. Crossing

aspect data is not presented.
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example is consistent with a reduction in the presence of JEM in the Doppler spectra. The

spectra of the propeller driven Dash8 is noticeably different from those arising from jet

aircraft. Whereas the JEM spectra consist of well defined peaks which persist from burst

to burst, the propeller modulations manifest as a spectral continuum, modulated on the

burst timescale by periodic ‘blade flashes.’

• The Hybrid technique is able to yield an unambiguous range profile of an inbound Boeing
747 (length ≈ 70m) using a stepped frequency waveform (Waveform A) with a ‘Classical’

range window of 47m. (See Fig 3.26). Fig 3.26 (which corresponds to the 32 pulse waveform

E) suggests that an accurate length measurement could be taken with a quarter of the

frequency steps.



Chapter 4

Target classification using HRR profiles

4.1 Chapter summary

This Chapter describes classification of length and scattering center range feature measurements ex-

tracted from High Range Resolution profiles obtained via stepped frequency waveforms A,B & C. Six

aircraft types are investigated (Pod, Falcon, Dash8, B747,B757 and B777). ‘Long or Short’, ‘Four

Lengths’ and ‘Aircraft type’ class sets are used and classification performance is computed using

Bayesian and Fuzzy Logic discriminant functions. Waveforms B and (Hybrid processed) A are used

to help classify the aircraft which would normally exceed the 48m (3.2MHz) HRR window, whereas

Waveform C is used to offer improved range profile sidelobe levels for shorter aircraft. Based upon

the data set obtained, Long or Short classification offered high performance, with a confusion matrix

Off Diagonal Extent (ODE) ξ of around 0.1. Four Lengths classification yielded a more modest per-

formance with a ξ of around 0.3; the higher result being largely attributed to the misclassification of

Long and Very Long classes. Scattering Center Model barcode matching (SCM compare classification)

of Pod & Falcon was nearly perfect, but performance was poor (ξ ≈ 0.6) using all six aircraft classes.
Whereas the Pod & Falcon length measurements are clearly distinguishable, the other aircraft length

measurements were observed to vary significantly. The Dash8 length was observed to be systematically

longer than physical dimensions would otherwise indicate. The presence of range sidelobes is the likely

cause of these effects1, in particular for the Dash8 where the low frequency propeller modulations are

likely to penetrate the eight pulse Doppler filters applied. In Chapter 6 we shall investigate the effect

of raising2 the length measurement threshold above the -20dBm used in this Chapter. Inspection of

the Target data sheets constructed from the range profile information suggests that, in the absence of

significant aspect angle change, a moving average of around eight HRR profiles can yield a stable range

profile. In most examples quoted, profiles were aligned to the start of the length extent. However for

the Dash8 example, (which suffers from high range sidelobes) alignment to the profile maximum was

preferable.

4.2 Target data sheets of six aircraft types

To simplify analysis, the fifteen types of aircraft observed using MESAR2 during trials were reduced to

six. Also, as discussed in the previous chapter, only inbound aircraft were used. The following target
1Since the Doppler spectra (see Appendix) indicates the other likely source of broadening and range profile corruption,

that is poor motion compensation, is not really an issue.
2and lowering!
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Figure 4.1: Total number of looks (by waveform) for the six aircraft used in classification analysis.

types were chosen to best capture the range of profiles obtained. In the table below, the number of

looks (per waveform) is presented for each target type.

Aircraft Why chosen? A B C D or E

Pod 1.5m/1.5m 3moving point target 42 34 33 46

Falcon 17.15m/16.3m jet aircraft (2 engines, low profile) 40 61 42 68

Dash8 22.3m/25.9m turbo-prop aircraft (2 engines) 8 39 6 41

Boeing 757 47.32m/38.05m jet aircraft (2 engines) 3 10 4 9

Boeing 777 63.7m/60.9m jet aircraft (2 engines) 10 9 8 10

Boeing 747 70.6m/59.6m jet aircraft (4 engines) 5 7 5 6

In this chapter we shall focus upon classification performance based upon length feature measure-

ments. Doppler spectra differences which result from no engines, low profile jet engines, propellers

or jet engines will be discussed and exploited in the following chapter. In Chapter 6 we consider

combinations of length and (Doppler) features.

As described in the table above and in fig 4.1, data is somewhat sparse for the Dash8, B757,

B777 & B747 aircraft. However, given the operational context in which the data was collected one

might actually regard the Pod & Falcon data set as being in excess! Either way, the small numbers are

unlikely to yield robust statistics and therefore one must be cautious in the interpretation of abstracted

measures such as overall classification performance. With this in mind, two styles of target data sheet

have been created for each of the six aircraft to enable one to investigate the cause of the classification

statistics. The first focusses on the range profile and the second upon the Doppler spectra. The target

data sheets (which are listed in the Appendix by waveform and in figures 4.2 & 4.3) are a montage of

the following:

1. Azimuth, elevation and aspect angle of target by look number

3The ratio X/Y corresponds to the length in proportion to the wingspan (in m); e.g. a Falcon is 17.15/16.3.
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2. Stack of HRR profile power (normalized such that maximum is zero dB4) by look number and

aligned in range either by (i) maximum or (ii) range of first length threshold crossing. Length

bounds and front to back difference are overlaid upon this.

3. Same as (2), but computed as a cumulative mean.

4. Plan view of aircraft with (manually assigned) scattering centres indicated and numbered. Sum-

mary of parameters including target name, mean projected length5, thresholds used, alignment

method etc.

5. Overlay of HRR profiles (normalized such that maximum is 0dB), length threshold, projected

scattering center ranges, computed peak ranges and mean HRR profile (with length bounds).

HRR profiles are colour coded by the product of the cosines of aspect and elevation angles; i.e.

a value of unity indicates a purely radially inbound trajectory.

6. Radar lengths and projected physical lengths plotted against the product of the cosines of aspect

and elevation angles.

7. Max and integrated RCS plotted against the product of the cosines of aspect and elevation

angles.

Figures 4.2 & 4.3 display target data sheets for, respectively, Boeing 747 and Dash8 aircraft.

Each figure is actually two representations of the same data. The upper is computed using range

of first length threshold crossing (start) alignment of HRR profiles and the lower using alignment

to the profile maxima.6 As these examples illustrate, depending on the target type, either method

may be preferable. In the 747 example, start alignment appears to yield a more consistent profile.

Indeed we might speculate that after 7 to 10 looks one may (based on the cumulative HRR stack) be

able to obtain a robust profile, assuming the target does not change aspect angle during this time.

The converse is true of the Dash8. In this case (as illustrated in fig 4.4, which uses a greater range

than the data sheets), range sidelobes exceeding the length threshold artificially extend the feature

measurement. The likely cause of such sidelobes are low frequency propeller modulations which

cannot be discriminated from the skin return via the 8 pulse Doppler filter employed with Waveform

B.7 The length feature measurement result will of course be the case for each profile regardless of

range alignment method. However, as fig 4.3 demonstrates, the cumulative average plot with max

alignment can enable a more reasonable length assessment when range sidelobes are a potential issue.

4.3 Range sidelobes resulting from low frequency propeller modu-
lations

In fig 4.3 the range profile of the Dash8 aircraft exhibits significant sidelobes which give rise to an

erroneously large length estimate. A model which predicts the spacing of these sidelobes can be
4Normalized power rather than RCS is used due to the observed variability in RCS discussed in section 2.5.3 and in

the Appendix.
5This is the maximum range difference between the projections of the scattering centres upon the radial line, based

upon estimation (via MESAR2) of the aspect angle of the target.
6The start range of the range profile is the range at which the range profile crosses the length threshold; e.g. 20dB

below the maximum. ‘Start alignment’ is a lining up of consecutive range profiles such that the start range of each profile
is set to be the same value. In contrast, ‘max’ alignment is when the range corresponding to the range profile maximum
is set to the same value for all consecutive looks.

7See following section.
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Figure 4.2: Target data sheets for an inbound Boeing 747 target illuminated with Waveform B. The
upper graphs were created by aligning the HRR profiles to the start of the target length extent, using
a threshold of 20dB. The lower graphs were aligned to the range of the maximum HRR power in each
profile. In this case, a more stable range profile can be obtained by using the start alignment method.
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Figure 4.3: Target data sheets for a (mostly) inbound Dash8 target illuminated with Waveform B.
The upper graphs were created by aligning the HRR profiles to the start of the target length extent,
using a threshold of 20dB. The lower graphs were aligned to the range of the maximum HRR power
in each profile. In this case, a more stable range profile can be obtained by using the max alignment
method due to range sidelobes outside of the normal target range causing the start range to be offset.
(Although in this case the likely cause is the change in aspect of the target to around 90 degrees
between looks 22 to 29).
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Figure 4.4: Classical HRR profile of a Dash8 aircraft using Waveform B (∆f = 0.8MHz frequency
step with P = 8 pulses per burst + G = 3 guard pulses, 2.5kHz PRF). Note the high range sidelobes
(the aircraft is 22m long) which exceed the 20dB below-max length threshold, thereby artificially
extending the length feature measurement. These sidelobes are likley to derive from low frequency
propeller modulations which cannot be discriminated from the skin return via the P = 8 pulse Doppler
filter. A simple model of this effect suggests a range periodicity of δR = cNfrot(P+G)

2fPRF∆f ' 0.824Nfrot. In
this figure one might interpret three aliases of the target range profile with start ranges of 22m, 80m
and 138m. Therefore we might conclude a δR of 58m which implies Nfrot ≈ 70.4Hz. Since a Dash8
turboprop has six bladed engines, this predicts a rotation rate of 704RPM. This seems to be about a
half of what it should be (around 1500 RPM). However, this result is consistent with the blade flash
observations presented in fig 3.29
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constructed as an extension to the Classical HRR theory described in section 2.2.1.

Using the same notation as in 2.2.1, a residual modulation of the (Doppler filtered) receiver samples

by frequency jNfrot (where j ∈ Z is the modulation line number, N is the number of propeller blades

and frot is the engine rotation frequency) will result in a modification of the ‘target sample’ for

frequency step q.

ψq → ψqe
−2πijNfrot

(G+P )
fPRF

(q−1)
(4.1)

i.e. an additional phase shift of magnitude 2πijNfrot
(G+P )
fPRF

during inter-burst period (G+P )
fPRF

. Recall

P is the number of pulses per burst used in Doppler processing and G is the number of guard pulses.

Following the same argument as in 2.2.1, one arrives at a modified expression for ψq

ψq = ψ0e
−4πiRT (f1−∆f)

c
+2πijNfrot

(G+P )
fPRF e

− 4πiRT∆f

c
−2πijNfrot

(G+P )
fPRF

q
(4.2)

i.e. the impact of the propeller modulation in the term e[...]q is the transformation

RT∆f

c
→ RT∆f

c
+

jNfrot(G + P )

2fPRF
(4.3)

Let us compute the Discrete Inverse Fourier Transform 8 (DIFT) of these samples to generate a Q

component vector with elements {yn} . For a derivation of the last step, see the Appendix C.
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. If range cells are defined
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i.e. we should anticipate aliasing of the range profile at integer intervals9 of

δR =
cNfrot(G + P )

2fPRF∆f
(4.7)

8A Discrete Inverse Fourier Transform (DIFT) is a linear filter of the form yn =
Q
q=1 wn,qψq where ψq are the

set of signal samples and wn,q =
1
Qe

2πi(q−1)(n−1)
Q are the filter weights.

9bounded by the maximum of JEM lines constrained by the JEM bandwidth defined in equation 2.51.
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4.4 Target classes based on scalar HRR profile features

Analysis of classification performance using features obtained from HRR profiles was conducted using

four sets of classes and (scalar) features. Given the aircraft type is known for all data recordings

discussed in this thesis, one can assign a ‘truth’ classification for each aircraft type. The ‘Long or

Short’ and ‘Four lengths’ truth classifications are determined using a physical length measure obtained

from plan drawings of each aircraft. In all the examples discussed below, the wingspan has been used

as this measure.10

4.4.1 Long or short (length)

Length measurement, based upon the range extent of the HRR profile exceeding a threshold defined

to be a fixed number of decibels below the profile maximum power, is used to discriminate between

two broad classes of aircraft ‘Long’ or ‘Short’. Note the Long class boundary is set to be below the

HRR window for the 3.2MHz chirps (47m); i.e. we would expect all stepped frequency waveforms

discussed in this thesis to be able to be used to enable ‘Long or Short’ class distinction.

Radar length Class

< 30m Short

≥ 30m Long

4.4.2 Four lengths (length)

Length measurement is used to discriminate between four broad classes: ‘Very Short’ (VS), ‘Short’ (S),

‘Long’ (L) and ‘Very Long’ (VL). The VL category takes advantage of the extended range capability

of the 0.8MHz and Hybrid processed waveforms.

Radar length Class

< 10m VS

≥ 10m, < 30m S

≥ 30m, < 50m L

≥ 50m VL

4.4.3 Pod vs Falcon (SCM compare)

Pod and Falcon aircraft are compared using the ‘scattering center barcode matching’ algorithm dis-

cussed in section 2.5.5. Classes are aircraft type, e.g. Pod or Falcon.

4.4.4 Six aircraft types (SCM compare)

The six aircraft are compared using the ‘scattering center barcode matching’ algorithm discussed in

section 2.5.5. Classes are aircraft type i.e. Pod, Falcon, Dash8, B747, B757 or B777.

10This option was set based upon the assumption that wingtip scatterers would be visible regardless of the aspect
of the aircraft. Rather than attemping to scale the length measurement by the reciprocal of the cosine of the aspect
angle (which →∞ for the tangential case), the length measurement could be used as-is for all angles. In the case of the
747 (wingspan 59.6m and length 70.6m), one would therefore expect an underestimate for inbound trajectories. For the
broad classifications discussed (long or short, four lengths), this makes no difference. However, for type classifications
(used in conjunction with Doppler spectra features in Chapter 7), possible improvements could be made if the actual
physical length is used. For example, this would enable better discrimination between the B777 and the B747. Their
wingspans are equivalent (within a metre) but their lengths differ by over 10m.
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4.5 Variation of length feature measurements

A qualitative assessment of likely (Long or Short, Four lengths) classification performance can be

made by plotting the length feature measurements against overall target range11; i.e. if the feature

data visually separates into classes, then high performance classification should be expected if the (a

priori or ‘Expert’) inputs of the classifier are suitably tuned to reflect this natural segmentation.

Figures 4.5, 4.7, and 4.6 show these measurements of the six aircraft types using a below maximum

length threshold of 20dB. In each figure the features obtained using Waveforms A, B & C (Classical

processing) and Waveform A (Hybrid processing) are compared. Each figure displays the same mea-

surements but the colour coding (based upon the truth classification) is different. Observations are

the following:

1. As expected, the 47m length limit imposed by the 3.2MHz Classically processed waveforms

cause a continuum of measurements above 30m for the B747, B757 and B777 aircraft, whereas

a noticeable separation is observed for the Hybrid and 0.8MHz results.

2. The Pod and Falcon aircraft yield visually separable lines for all waveforms. Wavefom C yields

the most robust measurements, followed by Waveform A (Classical), Waveform A (Hybrid)12 and

then Waveform B. This is roughly consistent with the hierachy of range resolutions associated

with each waveform and the observation that the Hybrid method offers ≈5dB less signal to noise
ratio than its Classical equivalent.

3. The Dash8 aircraft, although less than 30m, yields length features which are comparable with the

longer Boeing aircraft. These are considerably variable with Waveform B. One would therefore

expect the Dash8 features to be misclassified on the basis of length and therefore degrade any

overall classification performance. In the Appendix, (and fig 4.3) the Dash8 target data sheets

for the 0.8MHz and Hybrid waveforms can explain these results. In both examples we see

significant range sidelobes (above -20dBm) which extend the range artificially. After about 30

looks the cumulative (0.8MHz) profile appears to stabilize on a more reasonable length (≈25m),
whereas the Hybrid profile (with only 8 looks) yields a value of around 50m. The range sidelobes

can clearly be seen in the Hybrid profile, where a much larger (160m) range window is used.

One may conjecture that the range sidelobes are due to the effects of lower frequency propeller

modulations which are not effectively suppressed using the 8 pulse Doppler filter employed for

both waveforms. Note the 0.8MHz result is additionally degraded by a change of aspect from

≈ 20o to a maximum of 100o (and back) between looks 20 and 28. The disappearance of the

range profile in the Dash8 example can be explained by the use of the start alignment method,

as discussed in the second section of this chapter.

4. Both 0.8MHz and Hybrid results demonstrate significant variability in the non Falcon & Pod

results. Although one may expect acceptable Long or Short classification (Hybrid seems superior

to 0.8MHz in this example), one might not expect clear distinctions between L and VL classes

in the Four Lengths decomposition.

11 i.e. the range of the target in km at the time of the first pulse of the waveform.
12 If the effect of obvious outliers can be discounted. This analysis is based upon visual distribution rather than the

mean and standard errors quoted in the figures.
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Figure 4.5: Target length feature vs range of target computed from HRR profiles using a below
maximum threshold of 20dB. Each graph represents a different waveform. In this example, features are
colour coded by aircraft name. The visual distribution of feature measurements (mean and standard
errors are given in the legend) is a strong indicator of likely Classification performance. In this case
Pod & Falcon aircraft have distinct, fairly stable lengths. This is not true of the other aircraft, hence
one would predict poor overall classification performance.
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Figure 4.6: Target length feature vs range of target computed from HRR profiles using a below
maximum threshold of 20dB. Each graph represents a different waveform. In this example, features
are colour coded by one of four lengths. The visual distribution of feature measurements (mean and
standard errors are given in the legend) is a strong indicator of likely Classification performance. In
this case VS and S aircraft have distinct, fairly stable lengths. L & VL are less distinct. Note the
Classical 3.2MHz maximum length of c

2∆f = 47m causes many of the L and VL aircraft to be set at
this level. Hence the wfc2 Hybrid and wfc3 0.8MHz graphs are the only graphs which can offer useful
L and VL measurements.
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Figure 4.7: Target length feature vs range of target computed from HRR profiles using a below
maximum threshold of 20dB. Each graph represents a different waveform. In this example, features
are colour coded as Long or Short. The visual distribution of feature measurements (mean and
standard errors are given in the legend) is a strong indicator of likely Classification performance. In
this case we would expect low, but not zero, classification errors between classes due to the overlap
between the data in a number of cases plus a number of obvious outliers.
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4.6 Classification performance via range profiles of six aircraft

Bayesian and Fuzzy logic classifiers (see Background theory chapter sections 2.6.2 and 2.6.3) are used

to assign Long or Short and Four Lengths classes to particular length feature measurements. These

classifiers are trained using pre-determined ‘expert’ parameters which characterize the (respective)

probability density or membership functions for each class as shown in figures 2.18 and 2.19. For

the Bayesian classifier, the probability density functions are defined to be Gaussian distributions

with means μ and standard deviations σ as described in the tables below. (All length measurements

are metres). The values assigned for μ and σ for each class are motivated by the broad definitions

above; i.e. they are ‘sensible guesses’ rather than parameters derived from the statistics of a training

data set.13 The standard deviation of 10m is set to reflect both the expected variations of feature

measurements within each class (which could be estimated from figures 4.5, 4.7, & 4.6 ) and the variety

of the actual aircraft lengths within each class.

Class μ σ

Short 20 10

Long 50 10

Class μ σ

VS 0.1 10

S 20 10

L 40 10

VL 50 10

Figures 4.8 and 4.9 represent a montage of bar charts and confusion matrices by waveform type

for, respectively, Long or Short and Four Lengths classes. As predicted by the qualitative analysis of

the features in the previous section, one can clearly observe clear distinctions between the Long or

Short and VS, S, L/VL classes. However, there is significant misclassification of the L class as VL. In

fig 4.10 the Scattering center Model (SCM) compare algorithm yields perfect classification of the Pod

& Falcon data for Waveforms B & C and Off Diagonal Extents ξ (ODE) of 0.1 for the Waveform A

data. However, this algorithm gives poor performance against the six aircraft data set as shown in

fig 4.11. This observation may be explained by the variability of HRR profiles from look to look as

evidenced in the target data sheets in the Appendix. The cumulative (aligned) set of HRR profiles

indicates that an averaging of eight or more profiles, assuming aspect angle stability, may yield a more

robust set of scattering center positions. In this thesis there are insufficient measurements to back

up this claim. However, positive results using this approach have been published. (Zyweck & Bognor

[118], Miller et al [71]). In [71] ξ values of below 0.1 are obtained for three aircraft classes, albeit

using actual range profiles to derive the scattering center models. When "non Radar referents" (i.e.

a scattering center model derived from aircraft plan views) were used, ξ values rise to 0.58, which is

similar to the values computed here for six aircraft. Miller et al suggest the over emphasis of the tail

scatterer (which may be obscured) is a possible factor. Indeed ignoring the tail scatterer lowered the

ξ to 0.32.

Classification performance based on length and SCM features is summarized in figures 4.13, 4.14

and 4.12. In each case (which represents a different set of target data), ξ values are plotted against

13 If a training data set were used then the μ and σ parameters for each class would be computed directly from the
data using the Friedman Regularized Discriminant method described in the Background Theory chapter.
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waveform type for a variety of classifier. The following observations and inferences can be taken:

1. Bayesian and Fuzzy logic classifiers appear to offer very similar classification performance. This

is not surprising given the form of the fuzzy membership functions (see fig 2.6.3) were designed

to match those of the Bayesian probability density functions.

2. Long or Short classification is on average around 0.1, Four Lengths around 0.3 and SCM compare

around 0.5 to 0.6. Outbound data adds around 0.1 to ξ and waveform choice can modify the

result by a similar amount. This is most significant in the outbound example for the 0.8MHz

Waveform B, which offers a 0.2 reduction in ξ. One may conjecture that the nose scatterer may

be partially obscured in the outbound result, therefore yielding length measurements which are

more variable than the inbound case. Due to the competing virtues of superior range resolution

and sidelobe level of waveform C, and extended range of waveforms B and (Hybrid processed

A), it is not clear at this level of analysis whether any one waveform offers the most overall

benefit. We may conclude from this that an adaptive approach may be desirable. The length

of an aircraft could be measured initially with a Hybrid 3.2MHz or Classical 0.8MHz waveform.

If the measured length was less than, say, 40m (i.e. the 3.2MHz window minus a safety factor)

one could switch to Waveform C.

3. Due to the modest data set, no averaging of HRR profiles was conducted prior to feature ex-

traction.

In summary, Long or Short classification is high performance14, Four Lengths classification is viable

but in need of optimization and SCM compare classification is poor (for six aircraft).

14One could quote 90% performance as a rough statistic, based upon the value of 100×(1-ξ)
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Figure 4.8: Long or Short classification of range profiles obtained from six different aircraft types,
using waveforms A,B,C (Classical processing) and Waveform A (Hybrid processing). The bar charts
show the absolute number of range profiles classified whereas the chequerboard above represents the
associated confusion matrix (from which the off diagonal extent metric ξ is computed). The horizontal
labels in both cases correspond to the asserted classification from knowledge of physical length; e.g a
Falcon is Short and a 747 is Long. The bar charts and the columns of the confusion matrix describe the
assignments of the classifier for each of these known results. If the confusion matrix has off diagonal
elements, or the bar chart multi-coloured columns, this implies errors in classification.
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Figure 4.9: Four lengths classification of range profiles obtained from six different aircraft types, using
waveforms A,B,C (Classical processing) andWaveform A (Hybrid processing). The bar charts show the
absolute number of range profiles classified whereas the chequerboard above represents the associated
confusion matrix (from which the off diagonal extent metric ξ is computed). The horizontal labels in
both cases correspond to the asserted classification from knowledge of physical length; e.g a Pod is
Very Short (VS) and a 747 is Very Long (VL). The bar charts and the columns of the confusion matrix
describe the assignments of the classifier for each of these known results. If the confusion matrix has
off diagonal elements, or the bar chart multi-coloured columns, this implies errors in classification.
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Figure 4.10: Pod or Falcon SCM classification using waveforms A,B,C (Classical processing) and
Waveform A (Hybrid processing). The bar charts show the absolute number of range profiles classi-
fied whereas the chequerboard above represents the associated confusion matrix (from which the off
diagonal extent metric ξ is computed).
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Figure 4.11: Scattering Centre Model (SCM) comparisson classification obtained for six different
(inbound) aircraft types, using waveforms A,B,C (Classical processing) and Waveform A (Hybrid
processing). The bar charts show the absolute number of range profiles classified whereas the chequer-
board above represents the associated confusion matrix (from which the off diagonal extent metric ξ
is computed). The horizontal labels in both cases correspond to the actual aircraft types. The bar
charts and the columns of the confusion matrix describe the assignments of the classifier for each of
these known results. If the confusion matrix has off diagonal elements, or the bar chart multi-coloured
columns, this implies errors in classification.
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Figure 4.12: Classification performance (metricated by the off diagonal extent ξ of the class confusion
matrix) using Pod & Falcon recordings for waveforms A,B,C (Classical processing) and Waveform A
(Hybrid processing). Four Lengths, Long or Short & Scattering Centre Compare classification schemes
are compared. ‘Max’ and ‘Start’ range alignment methods and Bayesian & Fuzzy Logic classifiers are
compared.

Figure 4.13: Classification performance (metricated by the off diagonal extent ξ of the class confusion
matrix) using inbound Pod, Falcon, B747, B757, B777 & Dash8 recordings for waveforms A,B,C
(Classical processing) and Waveform A (Hybrid processing). Four Lengths, Long or Short & Scattering
Centre Compare classification schemes are compared. ‘Max’ and ‘Start’ range alignment methods and
Bayesian & Fuzzy Logic classifiers are compared.
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Figure 4.14: Classification performance (metricated by the off diagonal extent ξ of the class confusion
matrix) using inbound Pod & Falcon + outbound B747, B757, B777 & Dash8 recordings for waveforms
A,B,C (Classical processing) and Waveform A (Hybrid processing). Four Lengths, Long or Short &
Scattering Centre Compare classification schemes are compared. ‘Max’ and ‘Start’ range alignment
methods and Bayesian & Fuzzy Logic classifiers are compared.



4. Target classification using HRR profiles 137

4.7 Conclusions

Let us summarize the results presented in this chapter in the form of answers to the second and third

key questions posed in the introductory chapter.

2. How robust are feature measurements taken from the trials data set? Do feature measurements

naturally segment into classes? Should certain features be combined, are they correlated?

• Depending on processing method, length measurement errors varied (for the Falcon) between
0.1 and 11.5m, with the latter (using the Hybrid technique) distorted by outliers. Excluding

outliers, errors of 2m are reasonable. (See fig 4.5). The average Radar length measurement of

the Falcon aircraft matches, within the measurement errors, its physical length of 17.2m.

• Fig 4.5 demonstrates a significant variability in length measurements of the targets of oppor-
tunity, as might be expected from (i) the limited number of looks and (ii) variations in aspect

angle.

• With the exception of Pod & Falcon data, the length measurements of aircraft do not naturally
segment into aircraft type classes. However figures 4.7 and 4.6 demonstrate a good degree of

segmentation into ‘Long’ and ‘Short’ classes and a moderate degree of segmentation into Four

Length classes.15

• Length measurements of Dash8 aircraft are often erroneously high. (As measured using the
Hybrid 3.2MHz waveform A and Classical 0.8MHz waveform B). The likely cause are high range

sidelobes resulting from low frequency propeller modulations which penetrate the Doppler filter.

Modelling suggests ‘propeller aliases’ of the target HRR profile occur at integer intervals of

δR = cNfrot(G+P )
2fPRF∆f .

• Variation of target Radar Cross Section derived from range profiles were so variable for the mea-
sured data (around 20dB) as to be unhelpful as a feature measurement. Further work is required

to understand why these RCS measurements should be so variable (see Recommendations).

3. Can we achieve acceptable classifier performance based upon the extraction of various target

features? How does the crudeness of class definition affect this result and how does performance depend

upon (i) the proportion of total pulse cycles used to form the target data set (ii) thresholds used in

feature measurement and (iii) the features used (and their possible combination) ?

• ‘Long or Short’ classification of length feature measurements from six aircraft types yielded a

confusion matrix off diagonal extent ξ of 0.1; i.e. high performance classification. Four lengths

classification was more moderate (largely due to the misclassification of Long and Very Long

classes) with a ξ of 0.3.

• Scattering Center Model (SCM) compare classification of Pod & Falcon was nearly perfect, but
performance was poor (ξ ≈ 0.6) using all six aircraft classes.

• In all cases, Bayesian and Fuzzy logic classifiers (based upon ‘expert’ pre-defined probability
density or membership functions) yielded consistent results as expected.

15Visual inspection seems to indcate three classes might be preferable to four. This is exemplified by the regular
misclassification of L and VL classes.



Chapter 5

Range-Doppler profiling & Doppler
spectra classification

5.1 Chapter summary

Classification of targets into No Non Skin Doppler (NNSD), Jet engine and Propeller classes is de-

scribed using the Doppler fraction (dfrac) scalar feature obtained using waveforms D & E. For the

inbound subset of the six aircraft under investigation, Bayesian and Fuzzy logic classifiers yield rel-

atively high (and similar) performance results.1 (A confusion matrix with an Off Diagonal Extent

(ODE) ξ of below 0.2). Outbound data results in lower performance (ξ ≈ 0.5), a result which is

consistent with full or partial obscurance of the rotating parts when viewed from the rear.

Up to this point we have considered methods of classification based upon features extracted from,

respectively, High Range Resolution profiles and Doppler spectra. In this chapter we consider the

feasibility of generating a range-Doppler image, i.e. combining these two ‘dimensions’. A benefit

of this approach is the possibility of range localization of jet engines. However, stepped frequency

waveforms cause a range-Doppler coupling effect; a JEM line of frequency fJEM will be shifted in

range by δR =
³

c
2∆f

´³
fJEMP
fPRF

´
where P is the number of pulses per burst, fPRF is the PRF and ∆f

is the frequency step. This formula allows for JEM peaks in the range-Doppler profile to be shifted

to the correct range if fJEM is known unambiguously. Unfortunately this is typically unlikely to be

the case since the PRF is often significantly less than the JEM bandwidth. (See section 2.4.2). A

potential solution is to transmit two Doppler waveforms in quick succession using a PRF multiplied

by an irrational number2 such as
√

2. Comparison of the JEM lines ‘folded out’ by integer multiples

of the PRF should yield the true value of fJEM .

The chapter concludes with a comparison of measured Range-Doppler profiles of Boeing 777 and

Dash8 aircraft with corresponding aircraft plan views. The latter are rotated by measured aspect angle

and aligned with the first threshold crossing of the range profile. These Jet Engine and Propeller class

examples describe two distinct manifestations of the stepped frequency range-Doppler coupling effect.

1 In this chapter, the difference between ‘Prop’ class fuzzy membership and corresponding Gaussian PDF appears to
make little difference to the overall classification performance. However, a noticable difference is apparent when Prop,
JEM or NNSD classification performance is evaluated for different number of pulses P per burst and different dfrac
thresholds. This result in presented and discussed in the following chapter.

2An irrational number such as
√
2 cannot be expressed as a fraction of integers, therefore the only possible alignment

of (folded out) JEM lines is when the frequencies match the unambiguous value.

138
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5.2 Prop, JEM and NNSD classes discriminated by the dfrac feature

Waveforms D & E offer 32 pulses per burst with a PRF of 2.5kHz. These are sufficient to generate

Doppler power spectra from which discriminating characteristics can be obtained.3. The dfrac feature

(see section 2.5.6) is used with a 25dB below maximum threshold. This value was chosen following

initial inspection of a limited selection of Doppler spectra. In the following chapter classification

performance is determined as a function of this threshold. Therefore at this point we should regard the

figure of 25dB as semi-arbitary rather than an optimal value, chosen merely to enable the methodology

of classification via Prop, JEM or NNSD classes to be demonstrated by practical example.

The dfrac feature aims to discriminate between No Non Skin Doppler (NNSD) profiles, exemplific

of targets without rotating elements, and targets with jet engines or propellers. In essence, a target

with no moving parts should have a single ‘skin’ Doppler spectrum peak at 0Hz if bulk motion

compensation is accurate. Any additional peaks are sidelobes resulting from the finite length of the

Discrete Fourier Transform which constitutes the mathematical machinery of the Doppler filter4. As

discussed in the Background theory chapter, one expects a number of distinct peaks in the spectra of

a jet aircraft which result from Jet Engine Modulation. At the PRFs used one expects these peaks to

be ambiguous; i.e. direct measurement of the JEM spacing will not yield the product of spool rate and

number of blades. However, one should nonetheless expect a ‘spiky’ profile away from the skin return.

As discussed in the Background theory section, propellers tend to cause a lower frequency modulation

than jet engines (a combination of a smaller numbers of blades, lower spool rates and consequently

lower airspeeds). The relatively small numbers of distinct blades (two for example) also means there

will be a more significant modulation in reflectivity during each cycle of the propeller rotation. This

amplitude modulation can cause a broadening of the Doppler spectra about the skin return. We can

summarize these qualitative observations of Doppler spectra structure as follows:

Class Qualitative description of spectra dfrac

Prop Continuum, or at least broad about 0Hz Near unity

JEM Spiky, i.e. a number of JEM peaks beyond skin return <1, > 0

NNSD Single peak at 0Hz ≈ 0

With this in mind, let us define mean and standard deviations of Bayesian classifier probability

density functions (PDFs) for NNSD, JEM and Prop classes as follows.

Class μ σ

Prop 0.7 0.1

JEM 0.4 0.2

NNSD 0.01 0.2

The actual PDFs are plotted in fig 5.2. Alternatively, let us define fuzzy membership functions

(see fig 5.1) based along similar class distinctions. The shape of both fuzzy logic and Gaussian PDFs

are defined as a ‘sensible guess’ based on the qualitative spectral descriptions above in conjunction

with inspection of a plot of dfrac vs range (fig 5.3) for all the target measurements which are described

3Variation of dfrac classification perfromance with number of pulses shall be discussed in the following chapter. In
this Chapter we use the maximum number for the MESAR2 trials data (which yields the most accurate resolution, which
equals the PRF divided by the number of pulses).

4The length of the DFT being the number of pulses per burst.
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in the following section.5 An investigation of whether these initial definitions are typical, or indeed

optimal, is beyond the scope of this thesis. As discussed in the previous chapter, the limited amount of

observations has forced a decision to opt for an ‘expert’ classifier (rather than one whose discriminant

functions are derived from training data) to enable a meaningful classification analysis to be conducted.

An obvious recommendation from this research is that future trials include a training phase. An

extension of the ‘targets of opportunity’ experiment could begin with a day of recordings used only for

determining the PDFs of Prop, JEM and NNSD classes. This could be practically achieved using the

Bayesian classifier recipe described in section 2.6.2. A following day of recordings could then be used

for classification performance analysis without concern regarding any lack of independence between

‘training’ and ‘measurement’ data.

In the previous chapter, the intuitive but crude ‘fuzzy logic’ classifier was used as a check upon

the implementation of the Bayesian Gaussian classifier. In this and subsequent chapters, the fuzzy

logic classifier is used in a different role; to examine the impact upon classification performance when

the fuzzy logic membership function differs in form from the Gaussian probability density functions

(PDF) employed in the Bayesian classifier. For the Prop class, the fuzzy membership illustrated in fig

5.1 is a logical first approximation based on the qualitative spectral characteristics defined above. To

achieve the same ‘leading edge’ for the Gaussian PDF, a mean of 0.7 and standard deviation of 0.1

were used. However, this results in an overall low probability density for dfrac values which approach

unity. A more logical Prop PDF might be defined by a mean of 1 with a standard deviation of 0.2;

i.e. symmetric with the NNSD definition and yielding a high Prop PDF for near unity dfrac values as

required.

5.3 Classification performance using the dfrac feature

As in the previous chapter, data from six different aircraft types are used to determine classification

performance. The following ‘truth’ classifications are used:

Aircraft type Class

Pod NNSD

Falcon6 NNSD

B747 JEM

B757 JEM

B777 JEM

Dash8 Prop

dfrac data from six aircraft are used to determine ‘Prop, JEM or NNSD’ classification performance.

Fig 5.4 plots the off diagonal extent ξ of confusion matrices computed using the ‘Prop, JEM or NNSD’

classes and 25dB dfrac features by waveform and classifier method. The following observations and

inferences can be made:
5Note: the ‘sensible guesses’ for the mean and standard deviation of the PDFs of Prop, JEM and NNSD classes were

not totally independent of the measured data. The values for the means were indeed influenced by the mean dfrac with
range for each Prop, JEM and NNSD class as illustrated in fig 5.3). Strictly speaking, this is a flawed analysis; a totally
independent data set should have been used to assess classification performance. However, the measured data were not
actually used in a direct sence in the generation of the covariance matrices employed by the Bayesian classifier. The
fuzzy logic membership functions were similarly ‘defined’ rather than computed directly from measurements.

6No JEM effects were observed for the Falcon data, hence the NNSD truth classification. This is consistent with the
Martin & Mulgrew JEM model [67] at a zero aircraft aspect angle. In the general case of ‘not purely radially inbound’
trajectories, one would expect to associate a jet aircraft such as the Falcon with the “JEM” class.
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Figure 5.1: Fuzzy logic classifier membership functions for Prop (Propeller), JEM (Jet Engine Modu-
lation) or NNSD (No Non Skin Doppler) classes. Scalar feature value is the proportion of the Doppler
spectrum power over a defined (dB) threshold below the maximum spectral power.

1. Pod & Falcon (i.e. NNSD or not) classification is highly successful; almost a zero ξ.

2. Classification performance of the 6 aircraft inbound data is modest, with an ξ of less than 0.2.

(See figures 5.6 and 5.5). The inbound result is not surprising given clear visual segmentation

of classes in the dfrac vs range plot in fig 5.3. The individual Doppler spectra from which these

measurements were taken are listed in the Appendix as Target data sheets (Doppler).

3. Classification performance of the six aircraft outbound7 data is poor with an ξ of ≈ 0.5.

4. Bayesian and Fuzzy logic methods yield very similar results.

The key message is that ‘Prop, JEM or NNSD’ classification is quite effective for inbound targets,

where ‘inbound’ covers a range of angles about zero aspect such that JEM and propeller modulation

effects can be measured. Outbound jet and propeller driven aircraft tend to be misclassified as NNSD

(see figures 5.7 and 5.8). This makes sense as the rotating blades of the jet engine are likely to be

obscured by the engine housing as viewed from behind. Similarly, propellers will be partially hidden

by the engine unit and/or the main body of the aircraft.

7This includes the Pod & Falcon NNSD data to avoid numerical problems (in the confusion matrix) as a result of
having no truth data from the NNSD class.
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Figure 5.2: Bayesian classifier (Gaussian) un-normalized probability density functions for Prop (Pro-
peller), JEM (Jet Engine Modulation) or NNSD (No Non Skin Doppler) classes. Scalar feature value
is the proportion of the Doppler spectrum power over a defined (dB) threshold below the maximum
spectral power.

Figure 5.3: Doppler fraction (dfrac) feature is plotted vs target range from data derived from inbound
Pod (NNSD), Falcon (NNSD), Dash8 (Prop), B747,B757 & B777 (Jet) aircraft. There appears to be
clear segmentation between NNSD, Jet (i.e. JEM) and Propeller classes.



5. Range-Doppler profiling & Doppler spectra classification 143

Figure 5.4: Prop, JEM or NNSD classification performance (metricated by the off diagonal extent ξ of
the class confusion matrix) using recordings taken of Pod, Falcon, B747, B757, B777 & Dash8 aircraft.
Waveform is D (wfc2 ∆f = 0MHz, P = 32, Q = 32) for Pod and Falcon, and E for the others (wfc2
∆f = 3.2MHz, P = 32, Q = 32). Bayesian and Fuzzy logic classifiers are compared.

Figure 5.5: Bar chart describing numbers of Prop, JEM or NNSD assignments against actual assign-
ments for six inbound aircraft (Prop : Dash8, JEM: B747,B757,B777, NNSD: Falcon, Pod). Classifier
is Fuzzy Logic and wavefoms are E/D. Feature is fraction of Doppler spectra above threshold, set at
25dB below the spectrum peak.
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Figure 5.6: Confusion matrix describing fractions of Prop, JEM or NNSD assignments against actual
assignments for six inbound aircraft (Prop : Dash8, JEM: B747,B757,B777, NNSD: Falcon, Pod).
Classifier is Fuzzy Logic and wavefoms are E/D. Feature is fraction of Doppler spectra above threshold,
set at 25dB below the spectrum peak.

Figure 5.7: Bar chart describing numbers of Prop, JEM or NNSD assignments against actual assign-
ments for four outbound and two inbound (NNSD) aircraft (Prop : Dash8, JEM: B747,B757,B777,
NNSD: Falcon, Pod). Classifier is Fuzzy Logic and wavefoms are E/D. Feature is fraction of Doppler
spectra above threshold, set at 25dB below the spectrum peak.
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Figure 5.8: Confusion matrix describing fractions of Prop, JEM or NNSD assignments against actual
assignments for two inbound and four outbound aircraft (Prop : Dash8, JEM: B747,B757,B777, NNSD:
Falcon, Pod). Classifier is Fuzzy Logic and wavefoms are E/D. Feature is fraction of Doppler spectra
above threshold, set at 25dB below the spectrum peak.
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5.4 Range-Doppler profiles from stepped frequency waveforms

Up to this point we have considered HRR profiles and Doppler spectra as separate entities, each

supplying its own set of features. In the NCTR processing chain described in Chapter 3, all outputs

of the Doppler filtering process undergo stepped frequency range processing, not just the filter output

corresponding to the skin return at 0Hz. This means we can form a single range-Doppler image of the

target as an alternative to the separate Doppler power spectra and HRR profiles. This image could

offer advantages over the latter if non-skin Doppler effects (e.g. JEM) could be localized in range

as this would infer the positions of engines (i.e. the source of the rotational motion) in range. The

scattering center decomposition could be appended with a ‘rotational part or non rotational part’ flag,

which could aid classification by aircraft type.

However, the ambiguities caused by the PRF being less than the typical JEM bandwidth and

the inherent HRR periodicity of c
2∆f can lead to range-Doppler coupling effects which can distort

the range-Doppler image. To quantify these coupling effects let us extend the single scatterer model

employed to explain the stepped frequency concept in section 2.2.1.

5.4.1 Classical stepped frequency model including JEM

The Martin & Mulgrew model [67] of JEM predicts spectral lines at fJEM = jNfrot within a band-

width BJEM = 8πfrot∆L sin(a)
c fTx where frot is the engine spool rate, N is the number of blades, a

is the aspect angle of the aircraft, fTx is the carrier frequency of the reflected waveform, ∆L is the

length of the engine blade (from the hub), c is the speed of light and j is an integer s.t. j ∈ [−J, J ]

where J =ceil
³
BJEM
2Nfrot

´
. If we imagine each JEM line to impart a modulation of frequency fJEM

to the waveform transmitted against the target, between pulses we would expect a phase shift of

∆φJEM = 2π × fJEM × 1
fPRF

. Therefore the total phase shift imparted upon pulse p from a burst of

P pulses and frequency step q of Q steps is (for a motion compensated ‘JEM line reflector’ j at range

RT )

φ(p, q, j) =
2π

fPRF
{(q − 1)P + p− 1} jNfrot| {z }

JEM term

+
4πRT

c
(f1 + (q − 1)∆f)| {z }
Range term

(5.1)

The resultant ‘target samples’ of the reflected signal are

ψp,q =
JX

j=−J
ηje

−iφ(p,q,j) (5.2)

A simple model of the skin return (j = 0) and JEM lines (j 6= 0) amplitudes could be parameterized

by fixed constants

ηj =

⎧⎪⎨⎪⎩
a+ 0 < j ≤ J

a0 j = 0

a− −J ≤ j < 0

(5.3)

In the NCTR signal processing chain described in Chapter 3, the (Classical) range-Doppler profile

is formed by firstly applying an inverse Discrete Fourier Transform over frequency steps and then a

Doppler filter (a Discrete Fourier Transform) over pulses within each burst. In the exact implemen-

tation amplitude weighting functions are used. However, let us assume a uniform weighting to make
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analytical progress towards our goal of deriving an expression for the range-Doppler coupling. The

expression for the resulting range-Doppler profile Θ(α, β) is

Θ(α, β) =
PX
p=1

1

P
e
−2πi(p−1)(α−1)

P

QX
q=1

1

Q
e
2πi(q−1)(β−1)

Q

JX
j=−J

ηje
−iφ(p,q,j) (5.4)

where range R = c
2Q∆f (β − 1) and Doppler frequency is f = fPRF

P (α− 1) . Θ(α, β) can be re-

arranged to yield an expression which is the product of the function χ (x, z) =
eix sin((1+z−1)x)

sin(z−1x) − 1,

making use of the result (proved in the Appendix) : “if z ∈ Z+, z ≥ 1 then χ (x, z) is the summation

of a geometric series of the form
Pz

n=1 e
2in
z
x = χ (x, z).”

Θ(α, β) =
1

PQ

JX
j=−J

ηj

PX
p=1

e
−2πi(p−1)(α−1)

P

QX
q=1

e
2πi(q−1)(β−1)

Q
− 2πi
fPRF

{(q−1)P+p−1}jNfrot− 4πiRT
c

(f1+(q−1)∆f)
(5.5)

=
1

PQ

JX
j=−J

ηj

PX
p=1

e
−2πi(p−1)(α−1)

P

QX
q=1

e
2iq
Q
xev

=
1

PQ

JX
j=−J

ηjχ(x,Q)
PX
p=1

e
−2πi(p−1)(α−1)

P
+v

Where

x

π
= β − 1− jPNfrotQ

fPRF
− 2RTQ∆f

c
(5.6)

v = −2πi(β − 1)

Q
− 2πi

fPRF
(−P + p− 1) jNfrot −

4πiRT

c
(f1 −∆f)

Hence

Θ(α, β) =
1

PQ

JX
j=−J

ηjχ(x,Q)
PX
p=1

e
−2πi(p−1)(α−1)

P
−2πi(β−1)

Q
− 2πi
fPRF

(−P+p−1)jNfrot− 4πiRT
c

(f1−∆f)
(5.7)

=
1

PQ

JX
j=−J

ηjχ(x,Q)
PX
p=1

e
2ip
P
vew

=
1

PQ

JX
j=−J

ηje
iwχ(x,Q)χ(y, P )

where

y

π
= −(α− 1)− jNfrot

fPRF
P (5.8)

w =
2π(α− 1)

P
− 2π(β − 1)

Q
+

2π

fPRF
(P + 1) jNfrot −

4πRT

c
(f1 −∆f)

The major peaks of |Θ(α, β)|2 are likely to coincide with the maxima of the χ(y,Q) and χ(x,Q)

functions. Appendix A shows this corresponds to

x = πQX (5.9)

y = πPY
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where X,Y are integers. Using the expression derived above, and substituting for β − 1 = 2Q∆f
c R

and α− 1 = Pf
fPRF

QX =
2Q∆f

c
Rpeak −

jNfrotQ

fPRF
P − 2RTQ∆f

c
(5.10)

PY = −Pfpeak
fPRF

− PjNfrot
fPRF

Hence8

Rpeak = RT +
c

2∆f
X +

µ
c

2∆f

¶µ
jNfrotP

fPRF

¶
(5.11)

fpeak = jNfrot + Y fPRF

i.e. the range peak ranges are ambiguous by integer steps of c
2∆f and the Doppler peaks by integer

steps of fPRF . This is consistent with the Background theory chapter relating to both the Classical

technique & Doppler processing. However, we now have an additional range-Doppler coupling (i.e. a

range offset) of

δR =

µ
c

2∆f

¶µ
jNfrotP

fPRF

¶
(5.12)

for the jth JEM line. This result is also consistent9 with the prediction of range profile aliasing

due to low frequency propeller modulations in section 4.3. Levanon & Mozeson [59], [58] derive the

ambiguity function χ (R, fD) for a waveform based upon a ensemble of Q linear FM pulses stepped in

carrier frequency by ∆f . The ambiguity function yields the autocorrelation function of the waveform

parameterized by range R and residual target Doppler fD. In the expression below, τ is the pulse

length and B is the pulse bandwidth,

χ (R, fD) =

µ
1− 1

τ

¯̄̄̄
2R

c

¯̄̄̄¶
sin
©
πτ
¡
fD + 2R

c
B
τ

¢ ¡
1− 1

τ

¯̄
2R
c

¯̄¢ª
πτ
¡
fD + 2R

c
B
τ

¢ ¡
1− 1

τ

¯̄
2R
c

¯̄¢ × ... (5.13)

...
sin
³

Qπ
fPRF

¡
fD + 2R

c fPRF∆f
¢´

Q sin
³

π
fPRF

¡
fD + 2R

c fPRF∆f
¢´ (5.14)

In [58] the range-Doppler coupling for this waveform is effectively stated as (following a conversion

of delay t into range via t = 2R/c)

δR =
cfD

2fPRF∆f
(5.15)

If we let fD = jNfrot and P = 1 then this result (which is computed assuming an analogue signal

processing methodology) is also consistent with the derivation above. A plot of the Levanon &Mozeson

ambiguity function is show in figures 5.9 and 5.10. Parameters for waveform E are used. In the second

plot, the PRF is reduced by 32 to model the effect of using 32 coherent pulses in between frequency

steps. In the first figure P should be taken as unity.

In principle, the analytic form of δR should mean that it is possible to correct for coupling effects

and therefore generate a range-Doppler image which can, if JEM is present, enable engine localization

8Since Y and j are integers, and j ∈ [−J, J ] the sign of Y and j can be exchanged without loss of generality.
9 In section 4.3 δR = cjNfrot(P+G)

2∆ffPRF
is derived; i.e. the same as the result shown here except that the number of guard

pulses G should also be taken into account.
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Figure 5.9: Ambiguity diagram of a stepped frequency linear FM waveform using Q = 32 frequency
steps. All other parameters are consistent with waveform E except there is no notion of a ‘burst’ of
pulses between frequency steps.

in range. However, peak measurements are (Rpeak,fpeak) . Although c,∆f, P, fPRF are known quan-

tities, to compute δR one needs to calculate X,Y and jNfrot. If the target length L is such that

L ¿ c
2∆f , or Hybrid processing is employed, then we may assume X = 0. To resolve the final two

unknowns one needs to view the target with two waveforms of differing PRF. The true value of jNfrot

can be found by comparing the JEM lines following a ‘folding out’ of a spectra limited to the rangeh
−fPRF

s , fPRF2

i
. In order to ensure the only match is at the true value of jNfrot, the PRFs should be

in the ratio of an irrational number such as
√

2 which cannot be expressed as a fraction of integers.10

10 i.e. constructing a repeated stack of spectra. For example, if spectra #1 is constructed using a PRF of 5kHz and
spectra #2 is constructed using a PRF of

√
2× 5kHz = 7.07kHz; a JEM line at 12kHz will appear at 4.93kHz in stack 2

of spectra #2 and 2kHz in stack 3 of spectra #1. Placing the stacks side by side will reveal the true JEM line frequency
(12kHz in this case) since this will be the only mutual alignment. None of the ambiguities (i.e. integer multiples of the
PRF) will align because the ratio of the two PRFs cannot be expressed as a fraction of integers.
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Figure 5.10: Ambiguity diagram of a stepped frequency linear FM waveform using Q = 32 frequency
steps. All other parameters are consistent with waveform E except there is no notion of a ‘burst’ of
pulses between frequency steps. In this case the number of pulses per burst P = 32 is ‘modelled’ by
reducing the PRF by a factor of 32 from 2.5kHz to 0.078kHz.
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5.4.2 Range-Doppler profiles from targets of opportunity

Typically, Nfrot is quite different for Propeller driven engines and Jet engines. A turbo-prop engine11

may typically rotate between 1500 and 2000RPM with a small number of blades. The Dash8 has

N = 6 blades yielding a typical value for Nfrot of the order of 0.2kHz. A jet engine (see section 2.4.2)

first stage may rotate at 12,000 RPM. An engine with 25 blades therefore yields a typical value of

Nfrot of 5kHz. This explains why we observe discrete lines (albeit ambiguous) in the Doppler spectra

described in this thesis. The 32 pulse waveforms D and E have a PRF of 2.5kHz and therefore a Doppler

resolution of 0.08kHz. One would therefore expect the propeller modulation to be very close to the

skin return of the aircraft, whereas the JEM line is more likely to be clearly separated.12 The difference

in typical values of Nfrot between Propeller and Jet engine aircraft is reflected in the structure of the

range-Doppler profiles. Using fPRF = 2.5kHz, ∆f = 3.2MHz and P = 32 we can compute typical

values for the coupling range offset δR for these two aircraft types. Note δR
jNfrot

= cP
2fPRF∆f ≈ 0.6

mHz−1.

Aircraft type Nfrot δR (j = 1)

Prop 200Hz 120m

Jet 5,000Hz 3,000m

Fig 5.11 is a stack of Doppler spectra of an inbound Boeing 747. JEM lines are clearly evidenced.

Waveform is E. Fig 5.12, is the corresponding Hybrid Range-Doppler profile and Fig 5.13, is the

corresponding Classical Range-Doppler profile. Notice in the Classical profile (and also possibly in

the Hybrid profile) how the coupling effects result in a complex dispersion of peaks away from 0Hz.

11Pratt & Whitney (Canada) construct the engine for the six blade turboprop used in the Dash8 aircraft.
http://www.pwc.ca/en/home
12Unless Nfrot

fPRF
is equal (or close to) an integer. In this case the JEM line would indeed be ‘wrapped’ onto the skin

return.
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Figure 5.11: Doppler spectra of an inbound Boeing 747 observed using a 32 pulse waveform (E) with
a PRF of 2.5 kHz. Notice the presence of JEM lines at ≈ ±0.9kHz
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Figure 5.12: Hybrid range-Doppler profile of an inbound Boeing 747. Waveform is E. (32 pulses at
a PRF of 2.5kHz and 32 frequency steps of 3.2MHz). The groups of peaks at ±0.9kHz are likely to
be attributed to JEM effects resulting from the four jet engines. However, there is clear disagreement
between the upper and lower Doppler frequencies with regard to the placement of these peaks. There
is also some evidence that aliases at c

2∆f are not well suppressed beyond the skin return. Note: white
spots on this figure indicate range-Doppler profile values < -70dBm.
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Figure 5.13: Classical Range-Doppler profile of a Boeing 747 constructed using waveform E. (32 pulses
at a PRF of 2.5kHz and 32 frequency steps of 3.2MHz). The inherent ambiguities in range of c

2∆f
coupled with the ambiguities of JEM peaks in Doppler due to the low PRF result in a complex
arrangement of peaks which do not easily lead a casual observer to infer the range localization of jet
engines.
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One might think of a JEM or propeller modulation peak in the Range-Doppler profile to effectively

sample the ambiguity function described above. We therefore might expect to see aliases of non-skin

peaks occurring in bands of lines for turboprop aircraft, and sparsely separated peaks for jet aircraft.

This result is consistent with the Dash8 and Boeing 747 profiles computed with waveform E in figures

5.15 and 5.14. However, in the Dash8 example, the gradient of the bands is not consistent with the

expected formula
¯̄̄
dR
dfD

¯̄̄
≈ cP

2fPRF∆f . The measured gradient is approximately -90m / 1.15kHz ≈ 0.08

mHz−1. This result is nearly an order of magnitude smaller than the expected gradient. The interplay

of the three ambiguity integers associated with propeller modulation, stepped frequency range and

PRF offer a plausible explanation for the result. Fig 5.16 compares the Dash8 (Hybrid) Range-Doppler

profile illustrated in fig 5.15 with all the possible peaks (Rpeak, fpeak) computed using

Rpeak = RT +
c

2∆f
X +

µ
c

2∆f

¶µ
jNfrotP

fPRF

¶
(5.16)

fpeak = jNfrot + Y fPRF

A spool rate of frot = 1650 RPM is guessed to achieve the best match of gradient.13 The maximum

number of modulation lines is constrained by the modulation bandwidth B. As discussed in the Back-

ground theory section B ≈ 8πfrot∆L cos(π2−a)
c fTx where a is the aspect angle and ∆L is the propeller

blade length. If ∆L ≈ 1m, fTx = 3GHz and a ≈ 45o, the number of spectral lines is approximately

2J + 1 ≈ 15 where

J ≈ floor
Ã

4πfrot∆L cos
¡
π
2 − a

¢
fTx

Nfrotc

!
(5.17)

13This is a valid proceedure since the spool rate of the Dash8 turboprop is unknown. (Although one anticipates a
maximum of 2000 RPM).
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Figure 5.14: Hybrid range-Doppler profile of an inbound Boeing 747 observed using waveform E. This
is compared with the Hybrid HRR profile (essentially a zero-Doppler cut of the Range-Doppler profile)
and a HRRP formed using a Doppler filter tuned to the frequency of the ‘loudest’ JEM. A plan view of
the B747 is presented incorporating a rotation via the inferred aspect angle. Whereas the range profile
appears to correspond to the physical length, the ‘JEM HRRP’ is perhaps not so readily aligned to
the physical positions of engines.
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Figure 5.15: Hybrid range-Doppler profile of an inbound Dash8 turboprop aircraft observed using
waveform E. This is compared with the Hybrid HRR profile (essentially a zero-Doppler cut of the
Range-Doppler profile). In this case the Doppler signature resulting from propeller modulation mani-
fests as a series of stripes of uniform gradient. This is quite different from the Range Doppler profiles
of jet aircraft which do not have this feature.
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Figure 5.16: (Above) Hybrid range-Doppler profile of a Dash8 propeller aircraft generated using
waveform E. The diagonal line ambiguities are consistent with theoretical predictions (see Lower plot)

using the formulae Rpeak = RT + c
2∆fX +

³
c

2∆f

´³
jNfrotP
fPRF

´
and fpeak = jNfrot + Y fPRF for the

(respective) range and Doppler peaks. X,N and Y are integers which define the ambiguities. In the
lower plot, values of X,N and Y are set such that peaks fall into the range and Doppler bounds
defined by the upper plot.
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5.5 Conclusions

Let us summarize the results presented in this chapter in the form of (additional) answers to the first,

second and third key questions posed in the introductory chapter.

1. Can MESAR2 (and by inference other S-band multifunction phased array radars) be used to

record robust range (and Doppler) profiles of air targets?

• Both Pod & Falcon aircraft yielded consistent Doppler profiles which were devoid of JEM as

expected due to (i) the Pod is a ‘point target’, (ii) the Falcon was observed at effectively zero

aspect angle and (iii) the jet engines of a Falcon are somewhat obscured by engine cowlings.

• Range-Doppler profiles of aircraft can be formed using the 32 pulse, 32 frequency step waveform
E. However, due to the low PRF and consequently ambiguous JEM modulation, the range-

Doppler coupling effect resulting from the stepped frequency processing result in a confusing

ensemble of peaks which do not allow for unambiguous localization of JEM (and therefore en-

gines) in range. Unless the JEM ambiguity can be resolved (see Recommendations), separate

stepped frequency HRR and single frequency high Doppler resolution looks appear to be superior

than a single ‘range and Doppler’ look.

• Propeller aircraft, with modest modulation line periodicities Nfrot have a characteristic ‘diag-

onal banding’ signature in the (Hybrid) range-Doppler profiles. The peaks within these bands

manifest from the interplay of propeller modulation, stepped frequency range and PRF ambi-

guities. It is possible to derive Nfrot from these bands using an iterative numerical method; i.e.

Nfrot is guessed and then the formulae derived in this chapter for peak coordinates are used to

predict the band structure. Using a number of guesses, the best fit of the modelled result to the

measured band structure yields Nfrot. A recommendation from this thesis is an investigation

into whether an efficient algorithm could be developed for this process.

2. How robust are feature measurements taken from the trials data set? Do feature measurements

naturally segment into classes? Should certain features be combined, are they correlated?

• Fig 5.3 demonstrates that ‘Doppler fraction’ (dfrac) features segment into three natural classes:
‘No Non Skin Doppler’ (NNSD), (dfrac close to zero), ‘Propeller modulation’ (dfrac close to

unity) and ‘JEM’ (dfrac somewhere between 0.3 and 0.7).

3. Can we achieve acceptable classifier performance based upon the extraction of various target

features? How does the crudeness of class definition affect this result and how does performance depend

upon (i) the proportion of total pulse cycles used to form the target data set (ii) thresholds used in

feature measurement and (iii) the features used (and their possible combination) ?

• Prop, JEM or NNSD classification yielded a ξ of < 0.2 for inbound aircraft. This rose to

0.5 for outbound aircraft, consistent with the obscuration of jet engines and propellers for the

non-NNSD targets.

• In all cases, Bayesian and Fuzzy logic classifiers (based upon ‘expert’ pre-defined probability
density or membership functions) yielded consistent results.



Chapter 6

Relationship between characteristics of
stepped frequency methods and overall
air target classification performance

6.1 Chapter summary

The variation of classification performance with parameters of the stepped frequency waveforms is

assessed via the plotting of confusion matrix off diagonal extent ξ against characteristic variables. For

the range profile and Doppler spectra based features and class assignments discussed in Chapters 5

and 6, ξ is plotted (as a surface) against, respectively, length measurement threshold and number of

frequency steps, and Doppler fraction (dfrac) threshold and number of pulses per burst. To achieve

these plots the entire data set was reprocessed using a different combination of P and Q values, and

then post-processed for each permutation of the length and dfrac thresholds. P and Q could only be

reduced from the values used during MESAR2 experiments; i.e. the analysis is of the classification

response to degradation of the waveform rather than what could be achieved given more pulses and

frequency steps. ξ is also plotted (for the non-degraded values of P and Q) against a measure of carrier

frequency jitter. An initial investigation into the possible combination of length and dfrac features in

a joint (Bayesian) classifier is considered. Data from waveforms A , D & E are combined to form two

dimensional feature vectors and used to classify against target types Pod, Falcon, B747, B757, B777

& Dash8. The (length,dfrac) data points are plotted to assess possible class segmentation and then

used to generate a surface graph of classifier ξ plotted against length and dfrac thresholds.

6.2 Variation of ξ with P,Q and length and Doppler fraction feature
thresholds

Figures 6.1 to 6.7 display the variation of confusion matrix off diagonal extent ξ as a function of

number of pulses P (Prop, JEM or NNSD classification) or frequency steps Q (classification based

upon range profiles) and either Doppler fraction or length feature below max 1 measurement thresholds.

The idea is to assess (i) how classification performance varies with degradation in resolution of the

profile used to derive the feature measurements and (ii) how classification performance varies with

1 i.e. the threshold is defined as the signal power in dB below the maximum. Therefore a ‘high’ threshold will be a
lower absolute value in dBm than a ‘low’ value.

160
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the threshold levels used to determine the feature measurements. The figures were computed using 15

scales of P,Q degradation2 and 15 levels of threshold between 15 and 35dB, resulting in a 225 point

surface which could be smoothed via interpolation. As discussed in section 2.6.1, an ‘Expert’ Bayesian

Gaussian classifier is chosen for the computation of classification performance. For the scalar feature

data, the implementation of the classifier is checked via the intuitive but crude Fuzzy logic method.

The following observations and conclusions may be inferred:

1. Long or short classification (figures 6.1 and 6.2)

ξ ≈ 0.1 is achievable within the length threshold region of 20 to 25dB. This is largely independent

of frequency steps within the range Q = 20...127 shown. Above 25dB there is a ‘modest crisis’

which intriguingly extends to lower thresholds during the middle frequency step values (Q ˜ 60).

Bayes and Fuzzy logic results are consistent.

2. Four lengths classification (figures 6.3 and 6.4)

A similar structure to the long or short case, except the crisis occurs at 2 or 3 dB lower in length

threshold and is far less modest. ξ values of 0.4 are obtainable with a threshold of around 20dB.

Intriguingly an ‘island of high performance’ exists within the range Q = 60...80. This result may

be serendipitous given the inherent variability of the targets of opportunity data, i.e. it may not

be a general result. However, it certainly proves that increasing the number of frequency steps

may not always result in higher classification performance. Increasing the number of frequency

steps, and therefore the resolution of the aircraft range profile, may expose scatterers which

otherwise would be merged with more dominant ones. Given the high variability of a HRR

profile with small changes in aspect angle (see Tait [103]), it is plausible that increased exposure

of scatterers may actually cause greater variability in the HRR profile and therefore the length

measurement. There might indeed be an optimum resolution for length measurement. In this

case about 80cm. The same argument may also help to explain the ‘V’ shaped profile in all

figures relating to features derived from the HRR profile. As Q increases, more scatterers are

exposed and the inherent variability of the HRR profile could mean a greater possibility for

classification performance degradation as the length threshold is increased in value. However,

unlike the ‘island of high performance’ at thresholds of around 20dB, for higher thresholds the

enhanced resolution with increased Q should eventually reduce the HRR variability (therefore

enhancing performance) once all the major scatterers (and their sidelobes3) are resolved.

3. Scattering center Model (SCM) compare classification (figure 6.5)

SCM measurements are taken from the location of major peaks which are above the length

threshold, hence the variation in both dimensions shown. Classification performance is univer-

sally poor. The trend of the crisis point being at lower threshold levels towards the middle of

the range of frequency steps is evident.

4. Prop, JEM or No Non Skin Doppler (NNSD) (figures 6.6 and 6.7)

The crisis for these plots is in the opposite dimension to the length results; i.e. the number of

pulses P is more significant than the dfrac threshold, certainly below P =16 pulses. This makes

2Which could be done independently on the same data set since length and dfrac measurements use different wave-
forms.

3 In the high performance region, the threshold is sufficient to capture the major scatterers (and thus infer a realistic
target length), but not so high that sidelobes are exposed.
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sense since JEM is likely to be masked by the sidelobes of the Doppler filter as P reduces. Below

16 pulses the ‘shape’ of the spectrum, which dfrac aims to characterize, is unlikely to change

between classes. Fairly high performance classification (ξ < 0.2) is obtainable above P = 27

and within the threshold range of 22 to 30dB. This also makes sense: if the absolute threshold

is too low then dfrac includes too much of the sidelobe region of the filter; variations due to

JEM and Doppler modulation become less significant in terms of the overall amplitude sum

since most of the spectrum will exceed the threshold. If the absolute threshold is too high then

variations due to JEM and Doppler modulation may not be large enough (relative to the skin

return) to be taken into account. In this example there is a significant difference between the

Bayes and Fuzzy logic classifiers for higher below-max thresholds (i.e. lower absolute thresholds)

when P is less than 16. This could be due to the fuzzy logic membership function (see fig 5.1)

being different for Prop classes than the Gaussian Bayesian equivalent (see fig 5.2). When P

is small and the absolute threshold is low, this will inevitably mean a higher dfrac value since

more of the spectrum exceeds the threshold. Since the Fuzzy logic classifier assigns a unity value

membership when dfrac is unity, this means many spectra will be ‘correctly’ classified as Prop.

This means that genuine Prop classes are likely to be correctly classified whereas the Gaussian

classifier could return random results given the probability density functions of all classes are

small in value at unity dfrac.4

4This argument also implies the JEM and NNSD classes may be misclassified as Prop, raising the overall value of ξ.
Therefore it is not surprising that the ξ values in the top left hand corner of the Fuzzy logic plot are of relatively modest
values. (Around 0.4).
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Figure 6.1: Surface plot of (Bayesian) classifier off diagonal extent (ODE) using a ‘Long or Short’ class
assignment as a function of length threshold and number of frequency steps, Q. The global minimum
ODE is marked with a white cross and corresponding Q and length threshold values are provided in
the title.
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Figure 6.2: Surface plot of (Fuzzy logic) classifier off diagonal extent (ODE) using a ‘Long or Short’
class assignment as a function of length threshold and number of frequency steps, Q. The global
minimum ODE is marked with a white cross and corresponding Q and length threshold values are
provided in the title.



6. Relationship between characteristics of stepped frequency methods
and overall air target classification performance 165

Figure 6.3: Surface plot of (Bayesian) classifier off diagonal extent (ODE) using a ‘Four Lengths’ class
assignment as a function of length threshold and number of frequency steps, Q. The global minimum
ODE is marked with a white cross and corresponding Q and length threshold values are provided in
the title.
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Figure 6.4: Surface plot of (Fuzzy logic) classifier off diagonal extent (ODE) using a ‘Four Lengths’
class assignment as a function of length threshold and number of frequency steps, Q. The global
minimum ODE is marked with a white cross and corresponding Q and length threshold values are
provided in the title.
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Figure 6.5: Surface plot of (Scattering Centre Model Compare) classifier off diagonal extent (ODE)
using an ’Aircraft type’ class assignment as a function of length threshold and number of frequency
steps, Q. The global minimum ODE is marked with a white cross and corresponding Q and length
threshold values are provided in the title.
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Figure 6.6: Surface plot of (Bayesian) classifier off diagonal extent (ODE) using a ‘Prop, JEM or
NNSD’ class assignment as a function of Doppler fraction (dfrac) threshold and number of pulses per
burst, P . The global minimum ODE is marked with a white cross and corresponding P and dfrac
threshold values are provided in the title.
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Figure 6.7: Surface plot of (Fuzzy Logic) classifier off diagonal extent (ODE) using a ‘Prop, JEM or
NNSD’ class assignment as a function of Doppler fraction (dfrac) threshold and number of pulses per
burst, P . The global minimum ODE is marked with a white cross and corresponding P and dfrac
threshold values are provided in the title.
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6.3 Variation of ξ with carrier frequency jitter

Frequency jitter is defined to be the standard deviation σfTx of (zero mean) Gaussian errors imposed

upon the carrier frequencies used in the stepped frequency waveforms discussed in this thesis. In section

2.7.2 the constraint σfTx ¿ c
4R was suggested as a criteria of carrier frequency stability sufficient to

enable the formation of HRR profiles using stepped frequency waveforms. c is the speed of light and

R is the target range of interest. R = 100km gives σfTx ¿ 750Hz. Since carrier frequencies are of the

order of a few GHz at S-band, this implies a frequency stability requirement of better than 1 part in

106.

The classification experiments described in Chapters 4 and 5 were re-run using twelve values of

σfTx between 0Hz and 2,560Hz. This was achieved by modifying the stored carrier frequencies prior

to NCTR signal processing; i.e. the effect of jitter should manifest in erroneous motion compensation.

This is thought to be representative of a realistic system, whereby the received signal is correctly mixed

down by the carrier, but the absolute value of the carrier may be different by σfTxfrom what is expected.

In all cases length and dfrac thresholds were set at 25dB. Confusion matrix off diagonal extent ξ is

plotted against σfTx in figure 6.8 for each experiment. Note for the length based classification, Hybrid

processed waveform A was used. For the Doppler spectra based classification, waveforms D & E were

used. The following observations can be made:

1. The imposed jitter (up to 2.56kHz) significantly affects classification performance based upon

range profile derived features (i.e. length) but not Doppler spectra derived features. This is to be

expected since the motion compensation algorithms always aspire to center the target skin return

at 0Hz for each frequency step. However, significant phase errors between frequency steps will

corrupt the HRR profile. Note carrier frequency jitter should not affect (motion compensated)

Doppler spectra since JEM effects are independent of carrier frequency.

2. Bayesian and Fuzzy logic classifiers give very similar results. Unless both classifiers are er-

roneously implemented, this suggests the Bayesian result makes sense given the Fuzzy logic

classifier is a crude but intuitive method.

3. The analysis suggests frequency jitter over 100Hz causes significant degradation in classifier

performance. One may conclude frequency stability at S-band better than 1 part in 108 (i.e.

a few tens of Hz) may be more appropriate. Is this requirement achievable? A modern 3GHz

oscillator may be rated at -80dBc/Hz at 100Hz offset.5 This statement refers to the ratio of

oscillator spectral power density η (in dB) within a 1Hz bandwidth at 100Hz from the carrier,

to a 1Hz bandwidth at the carrier. If the distribution of spectral power density p(f) is assumed

to have the same (Gaussian) functional form as the predicted probability distribution of carrier

5www.emresearch.com
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Figure 6.8: Plot of classifier off diagonal extent (ODE) vs frequency jitter for Bayesian & Fuzzy
logic classifiers and for a number of different class assignments. Frequency jitter is defined to be
the standard deviation of (zero mean) Gaussian errors imposed upon the carrier frequencies used
in the stepped frequency waveforms. Note the imposed jitter (up to 2.56kHz) significantly affects
classification performance based upon range profile derived features (i.e. length) but not Doppler
spectra derived features. For the length based classification, Hybrid processed waveform A was used.
For the Doppler spectra based classification, waveforms D & E were used.

frequencies6 one can directly relate the frequency jitter standard deviation σfTxto η.

p(foffset, σfTx) ≈
1

σfTx
√

2π
exp

Ã
−
f2offset
2σ2fTx

!
(6.1)

∴ η (foffset, σfTx) ≈ 10 log

µ
p(foffset)

p(0)

¶
= −

5f2offset
σ2fTx

log(e) (6.2)

∴ σfTx ≈

s
−

5f2offset
η

log(e) (6.3)

A graph (fig 6.9) of σfTx is plotted against η using an offset of 100Hz. A rating of -80dBc/Hz at

100Hz corresponds to a jitter of 16.5Hz. Therefore our requirement for a jitter less than a few

tens of Hz is achievable with modern oscillators. Indeed this requirement could be satisfied with

a poorer rating as -60dBc/Hz at 100Hz is equivalent to a 20Hz jitter.

6Note a Gaussian distribution is likely to be an approximation of the typical spectral density of an oscillator. Close to
the carrier oscillators tend to exhibit a 1

f
(rather than an exp −f2 functional form) (Skolnik [96] pp738) due to particular

characteristics of the semiconductors employed. Away from the carrier the noise becomes somewhat independent of
frequency, i.e. is broadband or ‘shot’ noise.
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Figure 6.9: Oscillator frequency jitter standard deviation σfTx (Hz) is plotted against the ratio η
(dBmc/Hz) of the oscillator spectral power denisty within a 1Hz bandwidth at foffset =100Hz from
the carrier, to the spectral power density within a 1Hz bandwidth at the carrier.
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Figure 6.10: Phase noise of the CLX series semiconductor oscillators constructed by EM Research.
www.emresearch.com. Specification is dated 19th June 2009. Up to a 1kHz offset the phase noise
is relatively uniform for the 3GHz oscillator of interest (the blue trace). Between 1kHz and 1MHz
the linear trace in the logarithmic space implies a power law phase noise frequency relationship ∝
1
fα .The exponent α is approximately

146dB - 83dB
60dB-30dB ≈ 2.1. This possibly indicates some modern design

improvements which better the expected α of unity. The 432MHz oscillator exhibits a similar ‘flicker’
noise characteristic but then becomes frequency independent ‘shot noise’ beyond a 100kHz offset. One
might assume a similar asymptotic behaviour for the 3GHz oscillator above a 10MHz offset.
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6.4 Classification using combined length and Doppler fraction fea-
tures

The Bayesian classifier7 described in section 2.6.2 is designed to admit feature vectors of arbitrary

dimensionality, assuming the distribution of all component features is Gaussian. Let us form a feature

vector x from both length L and Doppler fraction (dfrac) D measurements.

x =

Ã
L

D

!
(6.4)

Using the MESAR2 recordings of Pod, Falcon, B747, B757 & B777 aircraft, let us assemble columns

of feature vectors using dfrac measurements for waveforms D or E and length measurements for

waveforms A,B or C. This data is plotted in figures 6.11 to 6.14 using colour coded ellipses for

data from each aircraft type. The origin of the ellipses is set by the mean of the length and dfrac

measurements whereas the ellipse width, in respective dimensions, is set by the standard error. The

visual separation of the ellipses gives a clear indicator of likely performance of classification by aircraft

type. In all cases there is some degree of separation, which suggests a type classification using length

& dfrac will improve upon the somewhat poor performance observed using the Scattering center

Model Compare algorithm. (See Chapter 4). However, the width of the ellipses (in particular the

Hybrid example in figure 6.12) is somewhat large, characteristic of the spread in feature data from the

targets of opportunity trials. As discussed above, we must therefore expect rather modest classification

performance from such a limited, and inherently variable, data set.

The Classically processed waveform A and waveform C results in figures 6.11 & 6.14 offer limited

range discrimination due to their range window being limited to 47m. However, the dfrac measure-

ments clearly separate the aircraft.8 In particular the Dash8 (dfrac near unity) is clearly distin-

guishable from the Boeing aircraft (dfrac 0.2 to 0.6) and Pod and Falcon (dfrac less than 0.2). The

Hybrid processed waveform A data and Classically processed waveform B results in figures 6.12 &

6.13 demonstrate a greater separation in range, but also greater ellipse width in range. The waveform

B range profiles of the Dash8 aircraft are corrupted by the effects of Propeller modulation, resulting

in high range sidelobes which cause erroneous length measurements. The differences between these

length feature measurements are discussed in section 4.5.

Figure 6.15 shows a surface of aircraft type classification confusion matrix off diagonal extent ξ

plotted against length and dfrac thresholds. To generate the plot the classifier was applied 144 times,

i.e. for each permutation of 12 values of length and dfrac thresholds. The plot implies classification

performance is dominated by the length measurement. Indeed the surface is almost invariant with

dfrac threshold. Above a length threshold of 25dB, classification performance rapidly becomes poor.

To investigate whether the numerical differences between the features affected the classifier,9 a scaling

7The k-means classifier described in section 2.6.4 would be an alternative to the Bayesian method. A benefit of
k-means is that the assumption of Gaussian probability distributions of features is not required to be valid. However,
k-means requires an amount of training data from which its ‘association hyperspheres’ can be formed via clustering. In
this thesis the decision was made to opt for an ‘expert’ definition of what the feature probability distributions should
look like; i.e. Gaussian in form, parameterized by a-priori defined means and standard deviations. This decision was
largely forced given the data set was limited. In an operational system, which is able to run NCTR modes continuously,
it is possible sufficient data may be collected to warrant a training subset. A k-means classifier could then be applied.
The use of training data may also improve the performance of the Bayesian method.

8 i.e. the ellipses formed from the mean and standard errors of the two dimensional (length & dfrac) feature data from
each aircraft type are visually separable. Fig 4.5 demonstrates this was clearly not the case with length measurements
alone.

9 i.e. the apparent invariance of ξ with dfrac could be a spurious result, possibily an artifact of the finite precision
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Figure 6.11: HRR profile Length feature measurements (using a below maximum threshold of 20dB)
plotted against Doppler fraction (dfrac) features (using a threshold of -25dBm). Features are plotted
for each six aircraft types. HRR waveform is A (wfc2 ∆f = 3.2MHz, P = 8, Q = 128) and HRR
processing method is Classical. Doppler waveform is D (32 pulse wfc3) for Pod/Falcon and E (32
pulse wfc2 stepped by ∆f = 3.2MHz) for others. Ellipses represent distribution of features. Ellipse
origin is set to be the median feature value and ellipse height & width are defined to be the standard
error in the (respective) feature measurements.

of 70m was applied to the length feature measurements; i.e. a 70m length (the approximate length

of a Boeing 747) will yield a feature of 1 unit, numerically comparable with the highest dfrac value

(which is unity). Fig 6.16 presents the same surface as 6.15, but this time with the length scaling

applied. This plot shows a more understandable result. For very low (<15dB) and very high (>45dB)

Doppler thresholds we see a degradation in classifier performance, as expected from the qualitative

analysis in the previous section.

numerical methods employed.
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Figure 6.12: HRR profile Length feature measurements (using a below maximum threshold of 20dB)
plotted against Doppler fraction (dfrac) features (using a threshold of -25dBm). Features are plotted
for each six aircraft types. HRR waveform is A (wfc2 ∆f = 3.2MHz, P = 8, Q = 128) and HRR
processing method is Hybrid. Doppler waveform is D (32 pulse wfc3) for Pod/Falcon and E (32 pulse
wfc2 stepped by ∆f = 3.2MHz) for others. Ellipses represent distribution of features. Ellipse origin
is set to be the median feature value and ellipse height & width are defined to be the standard error
in the (respective) feature measurements.
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Figure 6.13: HRR profile Length feature measurements (using a below maximum threshold of 20dB)
plotted against Doppler fraction (dfrac) features (using a threshold of -25dBm). Features are plotted
for each six aircraft types. HRR waveform is B (wfc3 ∆f = 0.8MHz, P = 8, Q = 128) and HRR
processing method is Classical. Doppler waveform is D (32 pulse wfc3) for Pod/Falcon and E (32 pulse
wfc2 stepped by ∆f = 3.2MHz) for others. Ellipses represent distribution of features. Ellipse origin is
set to be the median feature value and ellipse height & width are defined to be the standard error in the
(respective) feature measurements. Note the (erroneous) length measurement of the Dash8 resulting
from the propeller modulation induced range sidelobes causes the Dash8 ellipse to not appear within
the chosen plot range.
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Figure 6.14: HRR profile Length feature measurements (using a below maximum threshold of 20dB)
plotted against Doppler fraction (dfrac) features (using a threshold of -25dBm). Features are plotted
for each six aircraft types. HRR waveform is C (wfc3 ∆f = 3.2MHz, P = 8, Q = 128) and HRR
processing method is Classical. Doppler waveform is D (32 pulse wfc3) for Pod/Falcon and E (32
pulse wfc2 stepped by ∆f = 3.2MHz) for others. Ellipses represent distribution of features. Ellipse
origin is set to be the median feature value and ellipse height & width are defined to be the standard
error in the (respective) feature measurements.
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Figure 6.15: Bayesian classifier off diagonal extent (ODE) computed for feature vectors with elements
of length and dfrac features. An ODE surface is plotted as a function of length and dfrac thresholds.
Length features are obtained using Hybrid processed waveform A.
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Figure 6.16: Bayesian classifier off diagonal extent (ODE) computed for feature vectors with elements
of length and dfrac features. An ODE surface is plotted as a function of length and dfrac thresholds.
Length features are obtained using Hybrid processed waveform A and are scaled by 70m; i.e. a 70m
length is a 1 unit feature.
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6.5 Conclusions

Let us summarize the results presented in this chapter in the form of (additional) answers to the

second, third and fourth key questions posed in the introductory chapter.

2. How robust are feature measurements taken from the trials data set? Do feature measurements

naturally segment into classes? Should certain features be combined, are they correlated?

• Figures 6.11 to 6.14 indicate the six aircraft chosen could be separately identified if length &
dfrac features are combined into a feature vector. However, combination of scalar features to

form other scalar features has not been explored. It is likely the aircraft airspeed is strongly

correlated with spool rate via some functional relationship which is characteristic of a particular

engine type. If spool rate could be obtained from the Doppler spectrum, its combination with

airspeed may assist in classification via engine type. However, this is beyond the scope of the

(ambiguous) Doppler spectral measurements reported in this thesis.

3. Can we achieve acceptable classifier performance based upon the extraction of various target

features? How does the crudeness of class definition affect this result and how does performance depend

upon (i) the proportion of total pulse cycles used to form the target data set (ii) thresholds used in

feature measurement and (iii) the features used (and their possible combination) ?

• Long or short classification ξ is lowest for below-maximum length thresholds of between 20 and

25dB and is largely independent of numbers of frequency steps within the range 20 < Q <

128 studied. Classification performance drops dramatically for thresholds above 25dB as range

sidelobes become exposed.

• Four length classification ξ appears to rise steeply from a plateau of 0.4 after thresholds of 23dB
for intermediate values within the frequency step range. Interestingly, the lowest ξ is for 60 to

80 frequency steps with a threshold of 20dB. Although possibly a serendipitous result due to

an inherent variability of measured HRR profiles, it does prove that increasing the number of

frequency steps may not always result in higher classification performance.

• Prop, JEM or NNSD ξ is lowest for number of pulses P > 27 with a 22 to 30dB dfrac threshold.

Below P = 16 classification performance drops rapidly with decreasing P, as expected due to

the reduction in Doppler resolution.

• Combined length & dfrac measurements yield a ξ of 0.4 for aircraft type classification (i.e. similar
to Four Lengths classification). Length thresholds of less than 25dB and Doppler thresholds

between 20 and 40dB are required10 to achieve this. Within this region, ξ is somewhat uniform.

4. Based upon the learning obtained in conducting this research, what are the recommendations

regarding the design of future NCTR modes?

• Carrier frequency stability 10 log10

³
σfTx
fTx

´
should be less than -80dB at S band (3GHz), i.e. a

typical carrier frequency jitter σfTx of less than one part in 10
8, which is a few tens of Hz.

10Following scaling of length features by 70m.



Chapter 7

NCTR waveform design
recommendations

7.1 Chapter summary

This chapter endeavours to offer a ‘reality check’ upon the concepts previously discussed. It is ef-

fectively a response to the question: "What is the parameter space for NCTR waveforms that could

feasibly be used in an operational context?"

From a list of generic operational requirements a set of constraints are derived which in turn enable

an NCTR waveform design chart to be constructed. The chart is a colour coded surface plot of dwell

time Tdwell, number of guard pulses G and expected target signal to noise ratio (S/N) as a function of

target range R and NCTR waveform PRF fPRF . All other target, Radar, waveform and environmental

parameters are held constant. Graphs of maximum viable PRF vs target range are derived from the

chart. Charts are produced for waveform A and also for ‘candidate’ HRR and Doppler waveforms

which represent the authors practical suggestions for viable NCTR modes.

7.2 Operational requirements of an NCTR waveform

The analysis presented to far is largely concerned with: (i) a discussion of NCTR waveforms A to E

used in experiments with MESAR2 and (ii) the effect upon classification performance resulting from

a degradation of these waveforms via the use of fewer pulses and frequency steps, and the ‘jittering’ of

carrier frequencies. From (i) we may conclude the formation of high range resolution (HRR) profiles

and Doppler spectra of aircraft targets is possible with a phased array system such as MESAR2, and

from (ii) to what degree one can one ‘trim’ a waveform in terms of number of pulses (and therefore

total duration) before classification performance becomes intolerable. The desire to reduce the dwell

time of an NCTR waveform is an example of an operational need. If a viable NCTR waveform could be

delivered in less time this means more time is available for (i) surveillance and tracking functions or (ii)

further NCTR looks. As discussed above, more NCTR looks (of the same resolution) leads to improved

classification. Let us qualitatively summarize the, possibly conflicting, operational requirements of an

NCTR waveform, whose (single PRI) schematic is illustrated in fig 7.1.

1. The higher the PRF fPRF , the reduction in potential ambiguity inherent in a target Doppler

spectrum. If the PRF exceeds the JEM bandwidth for an aircraft, and the Doppler resolution

is sufficiently fine, it may be possible to resolve both the spool rate and number of blades of a

182
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Figure 7.1: Schematic of a single PRI = 1
fPRF

of a generic NCTR waveform. It is assumed the
waveform is transmitted and received via the same Radar system which can switch between transmit
and receive modes in time tswitch. The receiver is open for duration tclose − topen = (1 + 2α)τ + 2∆R

c
where τ is the pulse length and ∆R is the maximum extent of HRR profiles which can be formed from
the single pulse or an ensemble of stepped frequency pulses.

jet engine. Otherwise one is limited to crude spectral characterizations such as the dfrac feature

described in this thesis.

2. The greater the number of pulses P per burst, the finer the resolution fPRF
P of the Doppler filter

(for a given PRF)

3. The higher the number of frequency steps Q, the finer the range resolution δR = c
2Q∆f of the

HRR profile, for a given frequency step ∆f .

4. The greater the frequency step size, the finer the range resolution of the HRR profile. If the

Hybrid technique is used, this does not necessarily imply a consequential shrinkage of the un-

ambiguous range window of the HRR profile. However, one must employ accurate motion

compensation to control the aliases at intervals of c
2∆f which will occur more frequently in range

as ∆f increases.

5. Sufficient pulses per burst must be provided to enable HRR waveforms to filter out the effects

of JEM. If in the presence of clutter, sufficient pulses must be provided to enable filtering1 prior

to NCTR signal processing. In the examples below a minimum P of 8 is used.2

6. Total NCTR waveform dwell Tdwell = (P+G)Q
fPRF

must be minimized to enable an NCTR waveform

to be scheduled effectively, and enable a target to be interrogated with as many NCTR looks as

possible to enable an increasingly confident classification in the shortest possible time. The latter

time constraint is not just for the convenience of the Radar scheduler. In a military scenario,

where an NCTR system is part of a point defence system, there is likely to be a maximum

1An aircraft detection at low elevation may be subject to significant clutter; e.g. ground, sea, rain... If a cascaded
MTI filter is used to remove ground and rain clutter, this may require M = four or more pulses. If a ‘rolling’ filter is
applied to all P pulses in the burst, this will leave P −M pules which can then be used for NCTR processing.

2 In all experimental results presented in this thesis, no attempt has been made to apply clutter filtering prior to
NCTR processing. However, the 8 pulse bursts were used to filter JEM from the HRR profiles in waveforms A, B and
C following motion compensation.
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interrogation time before a decision must be made whether to counter a perceived threat; e.g an

incoming aircraft or missile.

7. The waveform must be designed such that the target (whose range and range rate is known

from the tracking system) is not eclipsed, i.e. appears during the transmission phase of the pulse

repetition interval.

8. The product of PRF and pulse length τfPRF must not exceed the maximum duty cycle Dmax
of the Radar. In the examples below a maximum duty of 0.2 is used, which is probably on the

high side.3

9. The pulse repetition interval should be large enough to allow for a fixed extent∆R to be captured

in receiver samples beyond the leading edge of the pulse reflection. In the examples below a ∆R

of 200m is used.

10. The PRF and number of pulses must be set such that the target Doppler response is: (i) not

within β Doppler filter bins of the ‘edges’ of the filter and (ii) is sufficiently separable from any

clutter, whose maximum range rate
¦
Rc is specified. In the examples below, β is set as unity and

¦
Rc is set at 10ms−1.

3The PAVE Phase Array Warning System (PAWS) long range ballistic missile defence radar is a non rotating planar
phased array much like MESAR2, except is physically much larger (22.1m array face diameter) as a consequence of its
operating frequency of 420 to 450MHz. PAVE PAWS has a duty cycle of 0.18 which can rise to a maximum of 0.25.
http://www.fas.org/spp/military/program/track/pavepaws.htm
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7.3 NCTR waveform design chart

The list above can be used to generate an ‘NCTR waveform design chart.’ The chart is a colour coded

surface plot of dwell time Tdwell, number of guard pulses G and expected target signal to noise ratio

(S/N) as a function of target range R and NCTR waveform PRF fPRF . All other target, Radar,

waveform and environmental parameters are held constant. Combinations of range and PRF which

fail the requirements 6 to 10 above are not plotted, resulting in a series of ‘islands of possibility’ as

indicated in fig 7.4, which is the chart for waveform A assuming a 20m2 target with an inbound range

rate of 200ms−1. Given it is desirable to maximize PRF, fig 7.3 illustrates the highest possible PRF

for each range. If the Radar system is able to dynamically modify PRF prior to transmission of the

NCTR look, an algorithm based upon the waveform design chart will be able to pick the optimum

value.4.

The recipe for construction of the design charts is as follows:

1. Construct vectors of range and PRF. In the examples below, ranges from 0 to 100km and PRF

from 1 to 20kHz are defined in N = 200 steps; i.e. define integer indices n,m = 1...N.

2. Compute time tT relative to the start of the PRI 1/fPRF (m) at which the leading edge of the

target reflection at range R(n) will occur. Since the absolute range of the target is known prior

to NCTR, the PRF need not be constrained to give an unambiguous range c
2fPRF

coverage, at

minimum ∆R beyond R(n). Therefore tT is computed from the formula

tT =
2R(n)

c
− Y

fPRF (m)
(7.1)

where Y is a positive integer to be found such that tT ∈ [0, 1/fPRF (m)] .

3. In a similar manner to the computation of tT and Y , find the pulse number X such that the

receiver samples from pulse X onwards contain clutter from the entire range Rc at which clutter

is defined. In the examples below Rc is set at 100km.

4. Define the number of guard pulses G(n,m) to be the maximum of Y and X; i.e. for any given

burst we ignore the first G pulses, only taking data from the P pulses which follow.

5. Compute dwell time

Tdwell(n,m) =
(P +G(n,m))Q

fPRF (m)
(7.2)

6. Compute target signal to noise ratio via the Radar Equation, having previously defined antenna

area A, antenna effectiveness η, integration efficiency5 Ei , pulse length τ , peak transmitted

power Pt , target RCS σ, carrier frequency6 fTx, propagation loss factor7
¯̄
F 2
¯̄2, system loss

factor L, ambient temperature T0 and receiver noise figure Nf

(S/N)n.m =
A2η2PEi(P )τPtσf

2
Tx

¯̄
F 2
¯̄2

4πc2LkBToNfR(n)4
(7.3)

4Note if the target range rate changes then a given chart will need to be recomputed.
5Typically for coherent (in-phase & quadrature) integration, Ei(P ) = 1. For non-coherent integration Ei(P ) =

1√
P
,

i.e. such that Ei(P )P =
√
P.

6 In a stepped frequency waveform the lowest frequency is used, thereby underestimating the signal to noise ratio.
7This is ignored, (i.e. set at 0dB) in the construction of the example waveform design charts.
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7. Compute Doppler frequency fD = −2
¦
R
c fTx for target and (maximum) clutter range rates for

highest and lowest frequencies used in the stepped frequency waveform. Determine (ambiguous)

Doppler frequency fDa ‘wrapped’ into extent [0, fPRF (m)] via the computation of (positive or

negative) integer Z such that fDa = fD + ZfPRF (m)

8. Invalid test #1 (Eclipsing) : if tT < τ+tswitch+ατ then set (S/N)n.m , Tdwell(n,m) and G(n,m)

to be -1. tswitch is the switching time between transmit and receive modes of the Radar8 and

ατ is set to be the time either side of the target region of the receiver opening window. The

receiver opening window (which must allow for pulse compression and a target extent of ∆R) is

therefore of duration 2∆R
c + (1 + 2α) τ . In the examples below α = 0.25.

9. Invalid test #2 (Duty) : if fPRF (m)τ > Dmax then set (S/N)n.m , Tdwell(n,m) and G(n,m) to

be -2.

10. Invalid test #3 (Dwell) : if Tdwell(n,m) > Tmax then set (S/N)n.m , Tdwell(n,m) and G(n,m) to

be -3. The maximum dwell could be defined (e.g. for a fixed position antenna), or derived from

the rotation rate Ωrot of the antenna and the maximum amount of angular scan ∆φmax, if this

is appropriate to the Radar.9 In the case of the latter Tmax = ∆φmax
Ωrot

.

11. Invalid test #4 (Insufficient PRI) : if tclose + tswitch > 1
fPRF (m)

then set (S/N)n.m , Tdwell(n,m)

and G(n,m) to be -4. Define receiver opening time (relative to start of PRI) as

topen = tT − ατ (7.4)

and receiver closing time as

tclose = topen +
2∆R

c
+ (1 + 2α)τ (7.5)

12. Invalid test #5 (Blind speed) : set (S/N)n.m , Tdwell(n,m) and G(n,m) to be -5 if the following

condition is not satisfied, using values for target (t) and clutter (c); Doppler frequencies f (t,c)D

computed at both the smallest and largest of the carrier frequencies in the stepped frequency

waveform must satisfy:

max

µ
βfPRF
P

, f
(c)
D

¶
< f

(t)
D < min

µ
fPRF −

βfPRF
P

, fPRF − f
(c)
D

¶
(7.6)

13. Unless an ‘invalid region’ graph is explicitly required, plot colour coded graphs of matrices

S/N, Tdwell and G for values of G ≥ 0. For an invalid region graph (e.g. fig 7.2), only plot colour

coded graphs of matrices S/N, Tdwell and G for values of G < 0.10

To illustrate the use of the NCTR waveform design chart let us compare Waveform A with ‘can-

didate’ waveforms for optimized HRR and Doppler waveforms. It is the author’s suggestion11 that

separate range and Doppler waveforms be transmitted by a phased array system which employs stepped

frequency techniques to achieve high range resolution. The parameters for each example are provided

8Which is assumed to be monostatic
9 It is of course possible that a multi-face rotating phased array radar could ‘hand over’ NCTR activities between

faces if the maximum scan angle of one face is exceeded.
10Note we could easily choose the sign of Tdwell for this test, but not S/N since this is expressed in dB and could in

principle be negative. (Although this would not allow for a target detection!)
11Based upon the discussion of Range-Doppler profiles in the previous chapter.
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in table 8.1 below. For the ‘candidate’ waveforms it is assumed a future operational system will

have advanced beyond the capabilities of MESAR2. Hence a larger bandwidth (18MHz) and sample

rate (20MHz) are used. This enables the HRR waveform to offer the same resolution as waveform A

but with a factor of four less frequency steps and consequently lower dwell time. The initial carrier

frequency is fixed at the same value as waveform A. There is nothing special about this frequency,

apart from it should be characteristic of S-band; i.e. 3GHz would be equally acceptable at this level

of analysis. Linear chirp pulses are assumed in order for Hybrid processing to be possible. Note the

extra swept bandwidth will cause a squinting loss. However, as shown in fig 2.24, this should be a

fraction of a dB. In both candidate waveforms, a reduced pulse length to 10μs is used to raise the PRFs

allowable given an assumed maximum duty of 20%. In order to compensate for a possible reduction

in Doppler resolution caused by raising the PRF, the Doppler waveform is now P = 256 pulses, and

a single frequency step. Waveform E used a 2.5kHz PRF with 32 steps. If the PRF is increased to

20kHz, to achieve the same Doppler resolution fPRF
P we must increase P by a factor of 8.

Invalid regions example Waveform A HRR waveform Doppler waveform

τ 25.6μs 25.6μs 10μs 10μs

B 4.5MHz 4.5MHz 18MHz 18MHz

f1 2.705GHz 2.705GHz 2.705GHz 2.705GHz

P 8 8 8 256

Q 128 128 32 1

∆f 3.2MHz 3.2MHz 12.8MHz 0MHz

∆R 200m 200m 200m 200m

α 0.25 0.25 0.25 0.25

β 1 1 1 1

Ωrot 0 0 0 0

∆φmax - - - -

Tmax 300 1000 100 100

Dmax 0.2 0.2 0.2 0.2

fs 5MHz 5MHz 20MHz 20MHz

A 4m2 4m2 4m2 4m2

η 0.5 0.5 0.5 0.5

Ei 1 1 1 1

Pt 12kW 12kW 12kW 12kW

L 10dB 10dB 10dB 10dB

Nf 1.68 1.68 1.68 1.68

tswitch 5μs 5μs 5μs 5μs
¦
R -200ms−1 -200ms−1 -200ms−1 -200ms−1

σ 20m2 20m2 20m2 20m2

Rc 100km 100km 100km 100km
¦
Rc 10ms−1 10ms−1 10ms−1 10ms−1¯̄
F 2
¯̄2

0dB 0dB 0dB 0dB

T0 290K 290K 290K 290K

Table 8.1: input parameters for the creation of an NCTR waveform design chart. Parameters are
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provided for the four examples in figures 7.2 to 7.8.
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Figure 7.2: Example waveform design chart with invalid regions shown. Non-white regions correpond
to invalid PRF and target range combinations due to failure of one (or more) of five tests: Eclipsed
target (-1), Max duty cycle exceeded (-2), Max dwell time exceeded (-3), Required receiver closing
time + switching time exceeds pulse repetition interval (-4), Target Doppler frequency is within clutter
region or is within βfPRF

P of edges of Doppler filter window [0, fPRF ] (-5).

Figures 7.3, 7.7 and 7.5 show the highest valid PRFs for a given target range (and corresponding

dwell times, guard pulses and signal to noise ratio) for, respectively, waveform A, the candidate HRR

waveform and the candidate Doppler waveform. One can immediately see that a reduction in dwell

time is possible for waveform A from the 560-570ms in the experimental examples quoted in earlier

chapters, to between 200 and 280ms depending on target range. PRFs are consequently enhanced to

between 5 and 7.8 kHz. It is assumed the 8 pulse Doppler filter is still able to successfully filter JEM

from the range profile given the effective resolution of the filter is now reduced by up to a factor of

three. The candidate HRR waveform requires a much more reasonable dwell time of between 33 and

43ms owing to PRFs up to the maximum in the scale (20kHz) and the reduction in frequency steps

resulting from the four fold increase in pulse bandwidth and receiver sampling rate. The Doppler

waveform is even more modest with a dwell time of between 13 and 23ms.
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Figure 7.3: Highest valid PRF is plotted against target range for waveform A (see table 8.1). Cor-
responding target signal to noise ratio, number of guard pulses and waveform dwell time are also
plotted.
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Figure 7.4: NCTR waveform design chart for waveform A. Coloured regions denote valid PRF and
target range combinations given fixed target, environmental, waveform and radar parameters described
in table 8.1.
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Figure 7.5: Highest valid PRF is plotted against target range for a candidate NCTR HRR waveform
(see table 8.1). Corresponding target signal to noise ratio, number of guard pulses and waveform dwell
time are also plotted.
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Figure 7.6: NCTR waveform design chart for a candidate HRR waveform. Coloured regions denote
valid PRF and target range combinations given fixed target, environmental, waveform and radar
parameters described in table 8.1.
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Figure 7.7: Highest valid PRF is plotted against target range for a candidate NCTR Doppler waveform
(see table 8.1). Corresponding target signal to noise ratio, number of guard pulses and waveform dwell
time are also plotted.
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Figure 7.8: NCTR waveform design chart for a candidate Doppler waveform. Coloured regions denote
valid PRF and target range combinations given fixed target, environmental, waveform and radar
parameters described in table 8.1.
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7.4 Conclusions

Let us summarize the results presented in this chapter in the form of (additional) answers to the fourth

key question posed in the introductory chapter.

4. Based upon the learning obtained in conducting this research, what are the recommendations

regarding the design of future NCTR modes?

The NCTR waveform design chart methodology described aims to embrace the operational re-

quirements of an NCTR mode. To achieve high quality length and Doppler spectrum features one

desires:

• A high PRF. ≈30kHz is required for unambiguous JEM measurement; 2.5kHz is sufficient to

observe JEM, albeit ambiguously.

• A high number of pulses per burst to yield adequate Doppler resolution to resolve JEM lines

from the skin return and its sidelobes. 32 pulses or higher seem adequate for a 2.5kHz PRF. A

practical Doppler waveform may be a single frequency burst of 256 pulses. To observe propeller

blade flash, a 1024 pulse waveform at 2.5kHz should be adequate based upon the recordings

made with waveform E. If a single frequency burst is used there is the option of a high resolution

Doppler spectrum or a (32 pulse spectrum × 32 time step) frequency-time representation which
could be used to determine the flash rate.

• Frequency step size ∆f and number of frequency steps Q to yield a range resolution fine enough

to enable accurate length measurement. A resolution c
2Q∆f of around 1 metre appears to be

sufficient.

• A lower pulse length (perhaps 10μs) is advisable to allow for higher PRFs given the duty cycle
limitation.

• To enable scheduling in normal operation, practical NCTR waveforms for application in a multi-
function phased array Radar should not have an excessive dwell time. < 100ms is likely to be

acceptable, whereas the 570ms duration of waveform A is likely to be unacceptable. Candidate

HRR and Doppler waveforms proposed in this chapter have respective dwell times of between

33 to 43ms and 13 to 43ms respectively. To investigate propeller modulation or to generate a

range-Doppler profile, one might require a dwell of 172ms. (For P =1024 pulses).

Other practical considerations are:

• The algorithms used to calculate the maximum viable PRF from the NCTR waveform design

chart should be used to adaptively set the PRF of each NCTR look in response to target range

and range rate.

• If two or more Doppler spectra of a target with the same aspect angle are obtained using
PRFs which are in irrational proportion (e.g.

√
2) then it may be possible to resolve the JEM

ambiguities. If this is achieved it may be possible to correct for the range-Doppler coupling effects

and therefore localize engines in range in a range-Doppler profile. Therefore further constrain

the maximum PRF such that both fPRF and
fPRF√

2
are not invalid for a given target range and

range rate.
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• Extra pulses per burst should be provided if clutter filtering is required prior to NCTR signal
processing. For example, a ground clutter filter should have two extra pulses since a typical

filter produces a single output from three consecutive pulses.



Chapter 8

Conclusions & Recommendations

8.1 Revisit scope of thesis

As stated in section 1.4.2, this thesis aims to address two fundamental technical problems which

constrain the ability of a multifunction radar to offer a Non Cooperative Target Recognition (NCTR)

capability. These are: (i) limited transmitted pulse bandwidth and (ii) limited dwell time for a given

look.

The notion of a multifunction Radar used here is that of a system with the capability to auto-

matically schedule waveforms which enable surveillence and tracking of multiple targets. A practical

system typically achieves this via the use of electronic scanning (as oppose to mechanical orientation

of an antenna). A cost effective hardware implementation, which meets the resolution requirements of

surveillence and tracking modes, is a phased array. Unfortunately a phased array operating at S-band

(i.e. characteristic of MESAR2 and Sampson radars) will likely suffer from severe beam squint during

pulse transmission if the pulse bandwidth is increased to meet the (typically sub-metre) range reso-

lution requirements to yield NCTR via the provision of High Range Resolution (HRR) profiles. For

example, the maximum pulse bandwidth of MESAR2 is approximately 5MHz, whereas the bandwidth

required to yield one metre range resolution is 150MHz. A stepped frequency method is a simple

mechanism to achieve sub-metre range resolution with a phased array designed for surveillence and

tracking without expensive hardware modification1 (e.g. via use of a stretch receiver processor, within

pulse phase shifters, use of fibre optic true time delay ... ). The primary challenge of this research is

to investigate whether stepped frequency waveforms can be used for NCTR in such a context. Given

stepped frequency waveforms effectively trade time for bandwidth, attention is paid to the design of a

compromise between resolution and dwell time. A secondary challenge is to investigate the additional

benefits to overall target classification when the number of coherent pulses within an NCTR wavefrom

is expanded to enable the extraction of spectral features which can help to differentiate particular

classes of target. As with increased range resolution, the price for this extra information is a further

increase in dwell time.

8.2 Summary of research achievements

The response to the primary and secondary challenges described above has involved the development

of a number of novel techniques, which are summarized below.

1Although very stable oscillators are required - see the following conclusions summary section.
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1. Design and execution of a series of experiments to further understanding of NCTR
techniques applied using a multifunction phased array Radar

A progression of trials were devised to assess the benefits and limitations of the NCTR method-

ology within the design constraints imposed via the general characteristics of a multifunction

phased array Radar, as exemplified by MESAR2. A trials data set of 1498 recordings of 17

aircraft using 5 waveforms is discussed in this thesis. The (four) trials were:

• Static on-boresight trials used to investigate the feasibility of sub-metre range resolution
using stepped frequency waveforms. Initial investigation of the Hybrid technique (see be-

low).

• Static off-boresight trials used to investigate the effect of electronic scanning upon the HRR
profiles.

• An aircraft trial using a Falcon and a co-moving point target (achieved via a repeater pod
mounted under the wing of the Falcon). NCTR waveforms were automatically scheduled

against the targets and interleaved between surveillance and tracking functions.

• “Targets of opportunity” NCTR recordings of commercial aircraft combined with a positive
type and flight number identification achieved via cooperation with the National Air Traffic

Service (NATS) at Swanwick. Extended jet aircraft (Boeing 747 and 777) and propeller

driven aircraft recordings (Dash8) are added to static, moving point target and small jet

aircraft recordings already captured.

2. Hybrid stepped frequency technique: high resolution HRR profiles of extended
aircraft

A suite of signal processing algorithms has been developed allowing enhanced HRR profile gen-

eration from stepped frequency waveforms. This represents a significant advance on current

techniques. The Hybrid method enables sub-metre range resolution via stepped frequency wave-

forms but without the restricted unambiguous range window associated with ‘Classical’ Inverse

Fourier Transform methods. The length of a Boeing 747 is measured directly using the Hybrid

technique; this cannot be achieved using a Classical method based upon the same Radar wave-

form parameters. Improvements in signal processing are presented relative to the methodologies

described in the open literature. (The most recent example being of Miller, Shephard & Newman

[70], also of BAE Systems). Particular improvements, (the requirements for which were driven

by the severe corruption of the range profiles obtained in the experiments above) focus on the

reduction of range aliases using a combination of frequency domain weighting and signal power

subtraction.

3. Development of an ‘end to end’ NCTR processing and visualization pipeline

An advanced NCTR processing and visualisation software pipeline has been developed. This

captures the ‘end to end’ process of NCTR information capture from raw digital receiver sam-

ples through signal processing, feature extraction and target classification. The pipeline yields

sub-metre range profiles and target Doppler spectra from the receiver samples plus kinematic

information obtained from the Radar track extraction system. Aircraft length measurement and

detection of principal scatterers is enabled using the High Range Resolution (HRR) profiles,

whereas the Doppler spectra allow for a detection of the propulsion mechanism in three broad
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classes. (Jet engine, propeller or no observable rotating blades). The pipeline includes compre-

hensive visualization techniques at all the major stages of processing to enable rapid fault finding

and forensic analysis of derived results. Classification performance (quantified by the confusion

matrix ‘off diagonal extent’ and visualized by the colour coded confusion matrix representation)

can be understood by the distribution of (length and Doppler fraction) features, which in turn

can be understood by the ensemble of range and spectral profiles in the ‘target data sheets’,

which in turn can be understood by the various plots within the ‘target see’ tool. (See section

3.5).

4. Use of ‘Doppler fraction’ spectral features to enable aircraft target classification
via propulsion mechanism. Combination of Doppler fraction and physical length
features to enable broad aircraft type classification.

Doppler fraction (dfrac) is proposed as a characteristic to enable discrimination between ‘Jet en-

gine’, ‘Propeller’ and ‘No-Non-Skin Doppler’ broad classes of propulsion system. The formation

of two dimensional feature vectors from target length and dfrac can enable a simple but effective

form of target classfication without the need to resort to the intensive search of a high fidelity

target database. For example, a classifier which can determine after a small number of looks

that a target is likley to be “a propeller driven aircraft of between twenty and thirty metres

long” may allow one to efficiently home in on a small subset of a high fidelity target feature

database, which then might yield the refined result “Dash8.”

5. Optimization of NCTR method classification performance as a function of feature
and waveform parameters.

Rather than attempt to develop and tune a novel classifier to the trials data recorded, the re-

search focussed on the variation of performance of ‘standard’ classifiers (such as Bayes Gaussian,

Fuzzy logic and k-means) with parameters associated with NCTR waveform design and feature

extraction methods. Classification performance (characterized by the off diagonal extent of the

associated confusion matrices) is computed as a function of pulses per burst, number of frequency

steps, feature measurement thresholds and carrier frequency jitter for six aircraft type classes

(Pod, Falcon, B757, B777, B747, Dash8) using length, dfrac and length & dfrac features. In ad-

dition to aircraft type classification, performance against more general distinctions is computed.

(‘Long or Short’, ‘Four lengths’ and ‘Prop, JEM or NNSD’).

6. Generic waveform design tools to enable delivery of time costly NCTR waveforms
within operational constraints

A novel ‘waveform design chart’ is developed as a tool for suggesting viable parameters which fit

within general ‘operational’ constraints such as a maximum Radar duty cycle, desire to minimize

dwell time, impact of clutter, range and range-rate of target. The tool includes a mechanism

for deducing the highest viable pulse repetition frequency (PRF) for an NCTR waveform to be

delivered upon a target at a given range.

8.3 Summary of results presented in this thesis

Recall the overall aim of the research is “to understand the relationship between characteristics of
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the stepped frequency methods applied using MESAR2 and resulting air target classification per-

formance”. Furthermore, “we shall seek to improve classification performance via optimization of the

signal processing and feature extraction methods used.” The approach to achieving these aims is to

provide answers to the four key questions posed in the introductory chapter. Let us summarize the

research described in this thesis in the form of answers to these questions. Note these are high level

conclusions and therefore a summary of the more detailed conclusions presented at the end of the

preceding chapters.

1. Can MESAR2 (and by inference other S-band multifunction phased array radars) be used to

record robust range (and Doppler) profiles of air targets?

• Radar data captured from MESAR2 of 17 aircraft classes using 5 NCTR waveforms. Out

of 1498 looks, 83% were ‘good,’ i.e. the low resolution pulse compressor output was > 30dB

in peak to median signal level.

• The ‘Hybrid’ technique allows for unambiguous lengths of extended aircraft (such as a
Boeing 747) to be measured directly from range profiles.

• Although subject to 10 to 15dB of signal power variation, the major scatterers were clearly
present within the Pod and Falcon range profiles; i.e. normalized range profiles can be

thought of as ‘robust.’ Experiments suggest this result will be true for the more general

case of ‘targets of opportunity’ following integration of eight to ten profiles.

• JEM, Propeller modulation and ‘No Non Skin Doppler’ (NNSD) spectral characteristics
were observed as expected using the 32 pulse 2.5kHz PRF Doppler waveform E, albeit

ambiguously.

• (Ambiguous) Range-Doppler coupling effects resulting from the use of the stepped frequency
waveforms and relatively modest PRF (relative to the typical modulation bandwidths)

imply separate range and Doppler waveforms may be optimal for an S-band multifunction

Radar, rather than a combined HRR Range-Doppler waveform such as waveform E.

• Propeller modulation appears to result in a diagonal banding structure in the Range-
Doppler profile. Using an iterative algorithm it is possible to guess the value of the product

of number of blades and spool rate from this diagonal band.

2. How robust are feature measurements taken from the trials data set? Do feature measurements

naturally segment into classes? Should certain features be combined, are they correlated?

• Length measurements derived from radially inbound Falcon aircraft range profiles were

subject to errors of ≈ 2m. In the case of the Falcon, the Radar length correlates strongly
with physical (optical) length. Although a study of physical to Radar length correlation

is outside the scope of this thesis, the experiments conducted imply modest classification

performance can be achieved using ‘expert’ classifiers based upon Gaussian length feature

distributions defined using a mean equal to the physical length.

• Strong aliases resulting from propeller modulation are observed in the range profiles of the

Dash8 aircraft. Aliases can cause an erroneous increase in length measurement since the

aliases often exceed the length measurement threshold. Alias positions appear consistent

with theoretical predictions.
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• The Radar Cross Section of aircraft observed using the MESAR2 NCTR waveforms appear
to be highly variable (many tens of dB) and therefore are not used as additional ‘physical’

features.

• Length features visually segment clearly into ‘Long or Short’ classes, and partially into
‘Four Lengths’ classes. Length measurements do not segment naturally into aircraft type,

based on the six class example discussed.

• Doppler fraction (dfrac) feature measurements appear to segment into Propeller, JEM and

NNSD classes.

• Segmentation into aircraft type classes is possible following the combination of length and
dfrac features.

3. Can we achieve acceptable classifier performance based upon the extraction of various target

features? How does the crudeness of class definition affect this result and how does performance

depend upon (i) the proportion of total pulse cycles used to form the target data set (ii) thresholds

used in feature measurement and (iii) the features used (and their possible combination) ?

• ‘Long or Short’ classification performance resulting in a confusion matrix ‘Off diagonal ex-
tent’ ξ of 0.1 is achievable using length features extracted from the six aircraft experiment.

Optimum classification appears to occur within below-max length thresholds 20 to 25dB.

Within this region, classification performance is largely independent of the number of fre-

quency steps within range 20 < Q < 128 which implies a smaller number of frequency steps

could be adequate for such crude length classifications, rather than the 128 steps used in

waveforms A, B and C.

• ξ ≈ 0.3 is achievable using ‘Four lengths’ classes. The impaired result largely results

from a misclassification of the ‘Very Long’ (50m ±10m) aircraft wingspan. For example,

erroneous Dash8 length measurements due to aliases resulting from Propeller Modulation.

The Four Lengths example confirms that the increase of frequency steps does not necessarily

correspond to an increase in classification performance.

• Scattering center Model Comparison classification is very accurate in distinguishing Pod &
Falcon targets. However, performance is poor against the six aircraft data set. Integration of

range profiles may improve upon this method as one would predict the position of scattering

centres to become more stabilized with integration, assuming no change of target aspect

within the integration period.

• Prop, JEM or NNSD classification has a low ξ of 0.2 using the dfrac feature for inbound

targets. As expected, this rises (to 0.5) for outbound aircraft where engine intakes are more

likely to be obscured. Optimum performance is achieved with P > 27pulses per burst and

a 22 to 30dB dfrac threshold.

• Six aircraft type classification performance of ξ ≈ 0.4 is achievable using combined length

and dfrac physical features. It is recommended that length is pre-scaled by 70m (the

maximum expected aircraft length) to yield feature dimensions of roughly the same expected

size, given dfrac is by definition within the range 0...1.
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4. Based upon the learning obtained in conducting this research, what are the recommendations

regarding the design of future NCTR modes?

• The ‘NCTR waveform design chart’ is a proposed mechanism for selecting PRF as a function
of target range.

• Alternate range and Doppler waveforms should be transmitted, rather than the four range
and range-Doppler waveform cycles described in this thesis. (Waveforms A,B,C & D/E).

• A proposed HRR waveform should have smaller pulse length (e.g. 10μs), ideally wider

pulse bandwidth (for example ∆f = 12.8MHz, B = 18MHz), lower frequency steps (e.g.

Q = 32) and higher PRF (e.g. 12 to 20kHz). The example stated in Chapter 7 yields a

more practical dwell time of between 33 and 43ms.

• A proposed Doppler waveform (≈ 200ms dwell) with PRF up to 20kHz should consist of

P =1024 pulses using a single transmit frequency to enable the option of a 1024 bin high

resolution spectra, or a 32 × 32 bin time-varying spectra to record blade flash. These

options could be processed in parallel.

• Transmission of alternate Doppler waveforms with a PRF in an irrational ratio such as
√

2

might enable JEM ambiguity resolution.

• Carrier frequency stability 10 log
³
σfTx
fTx

´
should be < -80dB at S-band (fTx ∼ 3GHz); i.e.

frequency jitter should be limited to a few tens of Hz.

• One might want to consider using the first few pulses of the range and Doppler waveforms
to feed a conventional MTI filter (e.g. a three pulse ground clutter filter) to observe targets

at low elevation which might be obscured by topographic reflections, rain etc. This step

should be implemented prior to the NCTR signal processing discussed in this thesis, in

particular the motion compensation algorithms. The HRR waveform might therefore use 8

+ 3 = 11 pulses plus guards to enable ground clutter, then JEM filtering following motion

compensation.

8.4 Recommendations for further study

The overall philosophy adopted in this thesis is to explore theoretical considerations of NCTR methods

appliable to multifunction phased array radar via analysis of specific experimental results obtained

via MESAR2. Although effort is made to derive generic mathematical statements to support the

experimental analysis, there are clearly areas for further open investigative study (rather than ‘defined

technique validation’) given the constraints imposed by: (i) the extent and content of the trials data

set and (ii) the suite of waveforms offered by MESAR2 at the time of trials. Specifically, the line of

research presented in this thesis might be further pursued via the following investigations:

1. Further experimental trials

(a) In an operational implementation, provision should be made for the gathering of training

length and dfrac feature measurements. These would be used to optimize the classifier em-

ployed. Bayesian and k-means could be implemented, with the latter as a backup if feature

statistics appear to be non-Gaussian following long term data collection. A statistical test

such as Kolmogorov-Smirnoff could be employed to assess this.
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(b) If possible, a greater number of looks upon each aircraft should be recorded to enable a

quantitative study of the improvements upon classification performance which can be made

through integration of range and Doppler profiles. The experiments described in this thesis

suggest seven to ten looks might be an appropriate number. For further analysis one should

therefore aim for upwards of fifty looks for each aircraft class to enable a representative data

set; i.e. to yield several tens of integrated profiles. A practical improvement to an NCTR

schedule (as exemplified with MESAR2 in this thesis) might be to reduce the waveforms

to an optimized set as discussed in Chapters 6 and 7. Waveforms consisting of alternate

Hybrid stepped frequency HRR followed by high resolution Doppler, with PRF optimized

as suggested via the waveform design charts, might offer significantly more2 target looks

which can be directly compared.

2. Feature extraction

(a) With a training data set, compare classification performance using ‘physical features’ such

as length and dfrac with feature vectors derived from a Karhunen Loeve transform. An

example recipe3 might be as follows: (i) Following a range shift invariant transform such

as a DFT or an alignment method, integrate profiles in batches; (ii) Treating the range &

Doppler profiles (separately) as feature vectors, compute the covariance matrices for the

training data for each (known) class; (iii) Determine the eigenvectors of these covariance

matrices and construct ‘dimensionality reduced’ feature vectors from the first Z projections

of the profile feature vectors along the eigenvalue ordered eigenvectors of the covariance

matrices. (To begin with, start with a single scalar derived from range profiles and a single

scalar from the Doppler profiles and combine these into a two dimensional feature vector).

(b) Investigate from jet engine manufacturers whether there is a simple functional relationship

between spool rate, number of blades, altitude and airspeed.

(c) Investigate the causes for variation in target Radar cross section as computed from HRR

profiles. Prior to future trials a series of calibration tests should be performed with all

waveforms using a target of known RCS (e.g. a corner reflector).

(d) Investigate whether kinematic information such as airspeed and/or acceleration could im-

prove classification performance. Airspeed could be a useful discriminator between jet and

propeller driven aircraft. The Dash8 turboprop has a cruising speed of 149ms−1 whereas

commercial jet aircraft typically have cruising speeds between 200ms−1 and 250ms−1. An

airspeed measurement could extend the two dimensional length and dfrac feature space by

a third dimension, which may improve the inter-class distance between aircraft types which

belong to ‘Prop’ and ‘JEM’ broad classes.

3. Signal processing algorithms

(a) Investigate from a theoretical standpoint why the Hybrid method is approximately 5dB

poorer in sidelobe performance than the Classical stepped frequency method.

(b) Investigate the feasibility of computing the JEM ambiguities, thereby providing a mecha-

nism for engine localization in range, using the method described in Chapter 5.
2 i.e. at least a factor of two more than in the MESAR2 setup described, which used three distinct HRR waveforms

and a Doppler waveform.
3 Inspired by the practical methods of Zyweck & Bognor [118]
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4. Operational implementation

(a) Validate the techniques described via real-time (or ‘nearly real time’) implementation in an

operational Radar system.

(b) Conduct an experiment whereby Radar operators are provided with graphical displays

which visualize the target response to NCTR waveforms. The visualization tools developed

for this research could be used as prototypes. (Target data sheets, features vs target range,

length vs dfrac features, confusion matrix checkerboard...) Ideally a real-time processing

chain of signal processing, feature extraction and classification should be implemented in

hardware. Data at all stages should be available to the (experimental) operator to enable an

optimum display to be configured given a realistic operational context. Given that human

pattern recognition is still far in advance of artificial techniques, perhaps one should seek

to optimize the display of NCTR data to take best advantage of the human element in the

target recognition process.

8.5 List of publications arising from this thesis

• French, A., “Improved High Range Resolution Profiling of Aircraft using Stepped-Frequency
Waveforms with an S-Band Phased Array Radar.” 2006 IEEE Radar Conference, Oneida Indian

Reservation, Verona, NY, USA April 2006, pp69 - 75.

The paper “Improved High Range Resolution Profiling of Aircraft using Stepped-Frequency

Waveforms with an S-band Phased Array Radar” was delivered orally at the Radar 2006 confer-

ence at Turning Stone Resort & Casino in the Oneida Indian Reservation, Verona, NY, USA be-

tween 24-27 th April 2006. The paper describes experiments performed using the MESAR2 multi-

function phased array Radar. ‘Classical’ and ‘Hybrid’ processing of NCTR stepped-frequency

waveforms was achieved successfully using static and moving targets.



Bibliography

[1] Anderson, S.J. “Target classification, recognition and identification with HF Radar.” RTO

SET Symposium on “Target Identification and Recognition using RF Systems.” Oslo, Norway

11-13th Oct 2004. pp 25/1- 25/20.

[2] Abbott, D.W., “Comparison of data analysis and classification algorithms for automatic target

recognition.” IEEE International conference on systems, man and cybernetics. 2-5 Oct 1994. Vol.

1. pp902-907.

[3] Atrouz, B., Duazzou, H.A., Kimouche, H., “Features influence on targets classification

performance using the high range resolution profiles (HRR profiles).” Proc. IET International

conference on Radar Systems. 15-18 Oct 2007. pp1-4.

[4] Axelsson, S.R.J. “Analysis of random step frequency Radar and comparison with experi-

ments.” IEEE Trans. on Geoscience and Remote Sensing. Vol. 45. No. 4. April 2007.

[5] Bai Jin Liang, Guo Mei Guo, Xu Cheng Fa. “Method of stepped frequency signal processing

based on fractional fourier transform.” Proc. ICSP 2008. pp2550-2553.

[6] Bakhtari, A., et al. “Autonomous Surveillance of a Dynamic Multi-Subject Environment:

An Implementation for Automatic Facial Recognition.” Measurement Systems for Homeland

Security, Contraband Detection & Personal Safety Workshop. 29-30th March 2005. pp 21-25.

[7] Balanis, C.A. Antenna Theory Analysis and Design. Harper & Row, Publishers Inc. 1982.

[8] Balise, P. (Rear Admiral. Director U.S. Navy Surface Warfare Division) Statement to the

Seapower Subcommittee of the Senate Armed Services Committee on Surface Warfare Systems.

9 April 2002.

[9] Bastiere, A. & Nimier, V., “MILORD, an application of multifeature fusion for Radar

NCTR.” Proceedings of the Third International Conference on Information Fusion (ISIF) 2000.

10-13 July. Vol 2. Wed1/17-Wed1/24.

[10] Bell, M.R. & Grubbs, R.A., “JEM modelling and measurement for target identification.”

IEEE Transactions on Aerospace & Electronic Systems.Vol 29, No. 1.January 1993.

[11] Benitz, G.R., “High Definition Vector Imaging.” MIT Lincoln Laboratory Journal. 10 2 1997.
pp147 -170.

[12] Berizzi, F., Marbrella, M. & Bernabo, M. “A range profiling technique for synthetic

wideband Radar.” IET Radar, Sonar, Navig. 2008. Vol 2. No 5. pp334-350.

206



BIBLIOGRAPHY 207

[13] Borrion, H. “Study of Processing Techniques for Radar Non-Cooperative Target Recognition.”

PhD Thesis. Department of Electronic & Electrical Engineering, University College London.

September 2006.

[14] Bowden, R. “Learning Non-linear Models of Shape and Motion.” PhD thesis. Department of

Systems Engineering, Brunel University. October 1999

[15] Cattin, V., Chaillout, J.J., Blanpain, R., “Detection & localization with a step frequency

Radar.” Detection of abandoned land mines. 12-14th Oct 1998. Conference publication #458.

[16] Cherniakov, M., “Optimal step frequency signal for a ground penetrating Radar.” Electronics

letters. 4 Jan 1996. Vol 32. No. 1. pp62-64.

[17] Ching Tai Lin & Ben H. Cantrell. “Synthesizing a wideband waveform by using a phased

array.” Proc. 1998 IEEE National Radar conference. Dallas, Texas. 12-13 May 1998. pp361-366.

[18] Clark, B.G., “A Efficient Implementation of the Algorithm CLEAN.” J. Astronomy & Astro-

physics. 89 pp377-378. 1980.

[19] Clark, M.E., “High range resolution techniques for ballistic missile targets.” High resolution

Radar & sonar. IEE colloquium. 11 May 1999. pp 6/1 - 6/13.

[20] Cohen, M., “Radar & Multi-Sensor Target Recognition.” Tutorial 3.4. IEEE Radar Conference

2006.

[21] Cohen I and Goldszmidt M, 2004, Properties and benefits of calibrated classifiers, Proc.

15th European Conference on Machine Learning and the 8th European Conference on Prin-

ciples and Practice of Knowledge Discovery in Databases. 20-24 September, Pisa, Italy.

www.hpl.hp.com/techreports/2004/HPL-2004-22R1.pdf

[22] Colin, N., Moruzzis, M., “Radar target recognition by fuzzy logic.” IEEE AES Systems

magazine. July 1998. pp13-19.

[23] Cook, C.E., Paolillo, J., Bernfeld, M. & Palmieri, C.A. “Matched Filtering, Pulse

Compression and Waveform Design.” Microwave Journal. November 1964. pp 81-90.

[24] Cuomo, S., Pellegrini, P.F. & Piazza, E., “Neural system for tracking & classification of

primary Radar echo signals.” IEEE symposium on signals, systems & electronics. 1995.

[25] Cuomo, S., Pellegrini, P.F. & Piazza, E., "Model validation for Jet Engine Modulation."

Electronic Letters. Vol 30, issue 24. pp2073-2074. 24th November 1994.

[26] Das B, 1999, Representing Uncertainties Using Bayesian Networks, Defence Sci-

ence and Technology Organisation (DSTO) Report, DSTO-TR-0918, Australia.

http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-0918.pdf

[27] Duda, R.O., Hart, P.E, Stork, D.G., Pattern Classification. 2nd Edition. John Wiley &

Sons Inc. 2001.

[28] El-Matouat, F., Colot, O., Vannoorenberghe, P., Labiche, J., “Using optimal vari-

ables for Bayesian network classifiers.” Proc. Third International Conference on Information

Fusion (FUSION) 2000. 10-13 July 2000. Vol 1. pp18-23.



BIBLIOGRAPHY 208

[29] Fowler, C.A., “Asymmetric Warfare: A Primer.” http://www.spectrum.ieee.org/print/3091

[30] Freedman, A., Bose, A., Steinberg, B.D. “Thinned stepped frequency waveforms to furnish

existing radars with imaging capability.” IEEE AES systems magazine. Nov 1996. pp39-43.

[31] French, A., “Improved High Range Resolution Profiling of Aircraft using Stepped-Frequency

Waveforms with an S-Band Phased Array Radar.” 2006 IEEE Radar Conference. April 2006,

pp69-75.

[32] Freundorfer, A.P. & Iizuka, K. “A study on the scattering of radio waves from buried

spherical targets using the step frequency Radar.” Proc. IEEE Trans. on Geoscience & Remote

Sensing. Vol. 31. No. 6. Nov 1993. pp1253-1255.

[33] Gerlach, K. “Thinned spectrum ultrawideband waveforms using stepped frequency polyphase

codes.” Proc. IEEE transactions on aerospace & electronic systems. Vol. 34. No. 4. October
1998. pp 1356-1361.

[34] G.S. Gill & Jen-Chih Huang. “The Ambiguity Function of the Step Frequency Radar Signal

Processor.” Proc. CIE International Conference of Radar. 8-10 Oct 1996. pp 375 - 380

[35] Gill, G.S. “Step frequency waveform design & processing for detection of moving targets in

clutter.” Proc. IEEE International Radar Conference. 8-11 May 1995. pp573-578.

[36] Gill, G.S. “Simultaneous pulse compression and Doppler processing with step frequency wave-

form.” Electronics letters. 7 Nov 1996. Vol. 32. No. 23. pp2178-2179.

[37] Irina Gladkova & Dmitry Chebanov, “Suppression of grating lobes in stepped-frequency

train.” 2005 IEEE Radar Conference. 9-12 May 2005, pp 371 — 376c

[38] Irina Gladkova, “A General Class of Stepped Frequency Trains”,’ 2006 IEEE Radar Confer-

ence. April 2006, pp 100 - 105.

[39] Green, H.E. “Electromagnetic backscattering from a helicopter rotor in the decametric wave

band regime.” IEEE trans. on Antennas and Propagation. Vol. 42. No. 4. April 1994. pp501-509.

[40] Hanselman, D. & Littlefield, B., Mastering MATLAB 6. A Comprehensive Tutorial and

Reference. Prentice Hall Inc. 2001.

[41] Haspert, K., Heagy, J., Sulivan, R., “Template-based target identification and confusion

matrices.” IEEE A&E systems magazine. Vol 21. No. 6. June 2006. pp53-67.

[42] Heckerman D, “A tutorial on learning with Bayesian networks.”

Microsoft Research Technical Report MSR-TR-95-06. March 1995.

ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf

[43] Hecht, E., “Optics.” 3rd Edition. Adison Wesley Longman Inc. 1998.

[44] He Sisan, Zhu Yong-Feng, Zhao Hong-Zhong, Zhou Jian-Xiong, Fu Qiang. “Analysis

of rotating structures for stepped frequency Radar.” Proc. IEEE Radar 2008. pp386-390.

[45] Hu, R., Zhu, Z., “Researches on Radar target classification based on high resolution range

profiles.” Proc. IEEE National Aerospace and Electronics Conference. (NAECON). 14-18 July

1997. pp951-955.



BIBLIOGRAPHY 209

[46] Hudson, S. & Psaltis, D., “Correlation filters for aircraft identification from Radar range

profiles.” IEEE Trans. Aerospace & Electronic systems. Vol 29. No. 3. July 1993. pp741-748.

[47] Hwang, J. K., Lin, Kun-Yo, Deng, J.H., “Automatic target recognition based on high

resolution range profiles with unknown circular range shift.” Proc. IEEE Symposium on signal

processing and information technology 2006. pp283-288.

[48] Jahangir, M., Ponting, K.M. & O’Loghlen, J.W., “Robust Doppler classification tech-

nique based on hidden markov models.” IEE Proc. Radar, Sonar & Navigation. Vol. 150. Issue
1. Feb 2003. pp33-36.

[49] Jain, A.K., Duin, R.P.W., Mao, J., “Statistical pattern recognition: A review.” IEE Trans.

on pattern analysis and machine intelligence. Vol 32. No. 1. Jan 2000. pp4-37.

[50] Jin Kai, Wang Wei Dong & Wang Dong Jin. “The Study on a new Radar waveform with

high range resolution.” IEEE ICSP 2004 proceedings. pp 1957 - 1960.

[51] Kahler, B., Blasch, E., “Robust multi-look HRR ATR Investigation through decision level

fusion evaluation.” 11 th International conference on information fusion. 30 June - 3 July 2008.

pp1-8.

[52] Kastella, K. and Zatezalo A. “A Nonlinear Filter for Real-Time Joint Tracking and

Recognition.” Institute for Mathematics and its Applications, University of Minnesota. 1998.

http://www.ima.umn.edu/preprints/APRIL98/1556.pdf

[53] Kerr, D.E. Propagation of Short Radio Waves. McGraw Hill International. 1951.

[54] Kotsiantis, S.B., “Supervised machine learning: A review of classification techniques.” Infor-

matica. Vol 31. 2007. pp249-268.

[55] Krieg M.L., A Tutorial on Bayesian Belief Networks. Defence Science and

Technology Organisation (DSTO) Report, DSTO-TN-0403, Australia. 2001.

http://www.dsto.defence.gov.au/corporate/reports/DSTO-TN-0403.pdf

[56] Kulpa, K., Czekala, Z., Misurewicz, J., Falkiewicz, J. “Parametric detection of the

helicopter hub echo.” Proc. IEEE Radar 2009. pp262-266.

[57] Lanterman A.D, Tracking and recognition of airborne targets via commercial television

and FM radio signals, Coordinated Science Laboratory, Univ. of Illinois. (Abstract only).

http://citeseer.ist.psu.edu/correct/374167

[58] Levanon, N., “Stepped Frequency Pulse Train Radar Signal.” IEE Proceeding of the Radar,

Sonar & Navigation Group. Vol. 149. No 6. December 2002. pp 297-309

[59] Levanon, N. & Mozeson, E. “Nullifying ACF Grating Lobes in Stepped Frequency Train of

LFM Pulses.” IEEE Transactions on Aerospace and Electronic Systems. Vol. 39. No. 2. April
2003. pp 694 - 703.

[60] Leung H and Jiangfeng W. “Bayesian and Dempster-Shafer target iden-

tification for Radar surveillance.” IEEE Transactions on Aerospace and Elec-

tronic Systems. Vol. 36. Issue 2, April 2000, pp 432 — 447. (Abstract only).

http://www.ewh.ieee.org/soc/aes/taes/aes362/3620432.htm



BIBLIOGRAPHY 210

[61] Li Haiying, Yang Ruliang. “Analysis of radial velocity effect on synthetic range profile of

stepped frequency waveform.” IEEE International Geoscience & Remote sensing symposium.

(IGARSS) 2002. Vol 6. 24-28 June 2002. pp3689-3691.

[62] Lord, R.T., Inggs, M.R. “High resolution SAR processing using stepped frequencies.” IEEE

International Geoscience and remote sesning symposium. (IGARSS) 1997. Vol 1. 3rd Aug 1997.
pp490-492.

[63] Loza, A. “Image Processing and Time-Frequency Transform Methods for Radar Characterisa-

tion and Recognition.” PhD Thesis. center for Communications Research, University of Bristol.

UK. March 2006.

[64] Lynn, P.A., “Radar Systems.” Macmillan New Electronics Introductions to Advanced Topics.

Macmillan Education Ltd. 1987.

[65] McGroary, F. & Lindell, K., “A stepped chirp technique for range resolution enhancement.”

Proc. National Telesystems Conference. Vol.1, 26-27 March 1991, pp 121—126

[66] Maron, D.E. “Frequency jumped burst waveforms with stretch processing.” Proc. IEEE In-

ternational Radar conference. 1990. pp274-279.

[67] Martin, J. & Mulgrew, B., “Analysis of the Theoretical Radar Return Signal from Aircraft

Propeller Blades.” Proc. IEEE International Radar Conference 1990. pp569 - 572.

[68] Martin, J. & Mulgrew, B., “Analysis of the Effects of Blade Pitch on the Radar Return

Signal from Rotating Blades.” Proc. IEE RADAR -1992. Brighton, UK. pp446.

[69] Mendel, J.M., “Fuzzy logic systems for engineering: A tutorial.” Proc. IEEE. Vol. 83. No. 3.

March 1995. pp345-377.

[70] Miller, R.J, Shepard, D., Newman, M. “Aspects of NCTR for Near-Future Radar.” RTO

SET Symposium “Target Identification and Recognition using RF Systems” held in Oslo, Nor-

way. 11-13th October 2004. Published in RTO-MP-SET-080 section 5.

[71] Miller, R.J., Wyllie, C.B., Shephard, D.J. “Advances in Radar NCTR using non-Radar

referents”. 2 nd EMRS DTC Technical Conference, Edinburgh 2005.

[72] Misiurewicz, J., Kulpa, K., Czekala, Z. “Analysis of Radar echo from a helicopter rotor

hub.” Proc. 12 th International conference on microwaves and Radar (MIKON). 20-22 May 1998.

Vol. 3. pp866-870.

[73] Misiurewicz, J., Kulpa, K., Czekala, Z. “Analysis of recorded helicopter echo.” Proc.

RADAR 1997. 14-16 Oct 1997. pp449-453.

[74] Mitchell, R.A., Westerkamp, J.J., “Statistical feature based target recognition.” Proc.

IEEE National Conference of Aerospace & Electronics. (NAECON) 1998. pp111-118.

[75] Moruzzis, M & Colin, N., “Radar target recognition by fuzzy logic.” IEEE AES Systems

Magazine. July 1998. pp13-17



BIBLIOGRAPHY 211

[76] Murphy K P. “A Brief Introduction to Graphical Models and Bayesian Networks.”

Departments of computer science and statistics, University of British Columbia. 1998

http://www.cs.ubc.ca/~murphyk/Bayes/bayes_tutorial.pdf

[77] Murphy, K.P. “An introduction to graphical models.” Departments of

computer science and statistics, University of British Columbia. 2001.

http://www.cs.ubc.ca/~murphyk/Papers/intro_gm.pdf

[78] Nieuwoudt, C. & Botha, E.C., “Relative performance of correlation-based and feature-based

classifiers of aircraft using Radar range profiles.” Proc. 14 th International Conference on Pattern

Recognition. 16-20 Aug 1998. Vol 2. pp1828-1832.

[79] Pellegrini, P.F., Cuomo, S. & Piazza, E. “ATC Primary Radar signal analysis for target

characterisation. A model validation.” Proc. IEEE Radar conference 1995.

[80] Pellegrini, P.F., Cuomo, S. & Pardini., “Radar signals analysis oriented to target charac-

terization applied to civilian ATC Radar.” Proc. IEEE Radar 1992. pp 438-445.

[81] Pieraccini, M., Fratini, M., Parnni, F., Macaluso, G., Atzeni, C. “High speed CW step

frequency coherent Radar for dynamic monitoring of civil engineering structures.” Electronics

letters. 8th July 2004. Vol. 40. No. 14.

[82] Pham, D.T. “Applications of unsupervised clustering algorithms to aircraft identification us-

ing high range resolution Radar.” Proc. IEEE National conference of Aerospace & Electronics

(NAECON). 13-17 July 1998. pp228-235.

[83] Piazza, E., “Radar signals analysis & modulation in the presence of JEM: Application to

civillian ATC radars.” IEEE AES Systems magazine. January 1999.

[84] Popstefanija, I., McQueen, D.S., McIntosh, R.E. “A Stepped-Frequency Delta-K Mi-

crowave Radar for Oceanographic Studies.” IEEE Trans. on Geoscience & Remote Sensing. Vol.

31. No. 3. May 1993. pp681-691.”

[85] Pouliguen, P., Lucas, L., Muller, F., Quete, S., Terret, C. “Calculation and analy-

sis of electromagnetic scattering by helicopter rotating blades.” IEEE trans. on Antennas &

Propagation. Vol. 50. No. 10. Oct 2002.

[86] Ra, B.S. & Durrant-Whyte H. “A decentralized Bayesian algorithm for identification of

tracked targets”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, Issue 6, Nov-
Dec 1993. pp 1683 — 1698.

[87] D.J. Rabideau. “Nonlinear synthetic wideband waveforms, Radar Conference.” Proceedings of

the IEEE, 22-25 April 2002. pp 212—219.

[88] Richards, M. A., Fundamentals of Radar Signal Processing. McGraw-Hill Inc. 2005.

[89] Riley, K.F., Hobson, M.P. & Bence, S.J., Mathematical methods for physics and engineer-

ing. Cambridge University Press. 1998.

[90] Rosenbach, K. & Schiller, J., “Non co-operative air target identification using Radar im-

agery: Identification rate as a function of signal bandwidth.” Proc. IEEE Radar conference 2000.

pp305-309.



BIBLIOGRAPHY 212

[91] Rosenbach, K. & Schiller, J., “Identification of aircraft on the basis of 2D Radar images.”

Proc. IEEE Radar conference 1995. pp405-409.

[92] Schimpf, H., Wahlen, A. & Essen, H., “High range resolution by means of synthetic band-

width generated by frequency-stepped chirps.” Electronics Letters, Vol. 39, Issue 18, 4 Sept.
2003, pp 1346 - 1348

[93] Sinha, P., et al, “Face Recognition by Humans: 20 Results all Computer Vision Researchers

Should Know About.” Department of Brain and Cognitive Sciences, Massachusetts Insitute of

Technology.

[94] Titin-Schnaider, C. & Brouard. P., “Full-Polarimetric Analysis of MERIC Air Targets

Data.” RTO SET Symposium “Target Identification and Recognition using RF Systems” held

in Oslo, Norway 11-13th October 2004. Published in RTO-MP-SET-080 section 39.

[95] Skolnik, M.I., Radar Handbook. Second Edition. McGraw-Hill Inc. 1990.

[96] Skolnik, M.I., Introduction to Radar Systems. Third Edition. McGraw-Hill Inc. 2001.

[97] Sorensen, H.B.D., Jakobsen, K.B., Nymann, O. “Identification of mine shaped objects

based on an efficient phase stepped frequency Radar approach.” Proc. International conference

on image processing. 1997. 26-29 Oct 1997. Vol. 3. pp142-145.

[98] Stickley, G.A., Noon, D.A., Cherniakov, H., Longstaff, I.D. “Preliminary field re-

sults of an ultra-wideband (10-620MHz) stepped frequency ground penetrating Radar.” Proc.

International Geoscience and Remote Sensing Symposium (IGARSS) 1997. Vol. 3. 3 Aug 2007.
pp1282-1284.

[99] Storkey A, Tutorial: “Introduction to Belief Networks.” The Institute for Adaptive and Neural

Computation, University of Edinburgh. http://www.anc.ed.ac.uk/~amos/belief.html

[100] Stove, A.G., Sykes, S.R. “A Doppler based automatic target classifier for a battlefield sur-

veillance Radar.” Proc. RADAR 2002. 15-17 Oct 2002. pp419-423.

[101] Stove, A.G., Sykes, S.R. “A Doppler-based target classifier using linear discriminants and

principal components.” Proc. RADAR 2003. pp171-176.

[102] Sutherland, K., “Automatic Face Recognition.” Proc. Conference of Intelligent Systems En-

gineering. 19-21st August 1992. pp 29-24.

[103] Tait, P., Introduction to Radar Target Recognition. Published by the Institution of Electrical

Engineers (IEE). London. 2005.

[104] Temple, M.A., Sitler, K.L., Raines, R.A., Hughes, J.A. “High range resolution (hRR)

improvement using synthetic HRR processing and stepped-frequency polyphase coding.” Proc.

IEE Radar. Sonar. Navig. Vol. 151. No. 1. Feb 2004. pp41-47.

[105] Tong, C. et al, "Studies of modulation mechanism of Jet Engine Modulation effect." Proc

APMC 2005.



BIBLIOGRAPHY 213

[106] Van der Heiden, R., Zwart, J.P., Gelsema, S., Groen, F., “Fast translation invariant

classification of HRR range profiles in a zero phase representation.” IEE Proc. Radar. Sonar

and Navigation. 1 Dec 2003. pp411-418.

[107] Van der Walt, C. & Barnard, E., “Data characteristics that determine classifier perfor-

mance.” 2006.

[108] Vespe, M., "Multi-Perspective Radar Target Classification." PhD thesis. Department of Elec-

tronic & Electrical Engineering, University College London. November 20, 2006.

[109] Walbridge, M.R. & Chadwick, J., “Reduction of range ambiguities by using irregularly

spaced frequencies in a synthetic wideband waveform.” High Resolution Radar and Sonar IEE

Colloquium. 11 May 1999, pp 2/1 - 2/6

[110] Webb. A., Statistical Pattern Recognition. 2nd Edition. John Wiley & Sons Ltd. 2002.

[111] Wehner, D.R., High-Resolution Radar. 2ndEdition. Artech House Inc. 1995.

[112] Woan, G., The Cambridge Handbook of Physics Formulas. Cambridge University Press. 2001.

[113] Ching-Chang Wong, Chia-Chong Chen & Shih-Liang Yeh, “K-Means-Based Fuzzy Clas-

sifier Design.” Ninth IEEE International Conference on Fuzzy Systems, FUZZ IEEE 2000, Vol.

1, 7-10 May 2000, pp 48—52.

[114] Yoon, S.H., Kim, B., Kim, Y.S., “Helicopter classification using time-frequency analysis.”

Electronics letters. 26th Oct 2000. Vol. 36. No. 22. pp1871-1872.

[115] Yuan Haotian, Cheng Zhen, Wen Schuliang, Peng Jun. “Study on Radar target imaging

& velocity measurement simultaneously based on step frequency waveforms.” Proc. 1st Asian &

PAcific conference on Synthetic Aperture Radar. (APSAR) 2007. 5-9 Nov 2007. pp404-407.

[116] Zeng, D., Long, T. “Study on the principle and implementation of a step frequency phased-

array Radar.” 7 th International conference on signal processing. (ICSP’04). Aug 31-4 Sept 2004.

Vol. 3. Beijing. pp2037-2040.

[117] Zhang, Q.T., “Probability of Resolution of the MUSIC Algorithm.” IEEE Transactions on

Signal processing. 43 4. April 1995. pp 978-987.

[118] Zyweck, A. & Bogner, R.E., “Radar Target Classification of Commercial Aircraft.” IEEE

Transactions on Aerospace & Electronic Systems. Vol 32, No 2. April 1996.

[119] Zyweck, A. & Bogner, R.E., “Radar target recognition using range profiles.” Proc. Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP). Vol 2, 19-22ndApril
1994. pp373-376.

[120] Zyweck, A. & Bogner, R.E., “High resolution Radar imagery of the Mirage III aircraft.”

IEEE Trans. Antennas and Propagation. Vol. 42, Issue 9. September 1994. pp1356-1360.

[121] Zyweck, A. & Bogner, R.E., “Coherent averaging of range profiles.” Proc. IEEE Radar

conference 1995. pp456-461.



Appendix A

The radiation pattern of a phased
array Radar

A typical phased array is formed from a line or plane populated by identical radiators (i.e. ones

that generate the same far field antenna pattern), but with controlled inter-element phase steps and

amplitude scaling. Systems such as MESAR2 utilize large numbers of transmit-receive units (TRUs).

These generate power in a distributed sense and thus offer a ‘soft failure’ feature; the loss of a single

element will only marginally degrade the overall output field strength distribution. Other systems

that are based on dipole arrays (e.g. Marconi Martello) or slotted waveguides (e.g. BAE Systems

Commander) use a well designed microwave plumbing system to disperse a single high power source

(such as a magnetron or solid state amplifier) such that the phase at each radiator is what is required.

In essence, the number of array elements (in conjunction with the antenna pattern of each element)

constrains the width of the main beam, whereas the angular position of the beam (relative to the

antenna geometry) is largely set by the phase differences between elements. As an example let us

consider a series of N radiating elements arranged in a line. (fig A.1). Let coordinate x represent the

position of the element along the line, measured from the centre point, i.e. x ∈
£
−12L,

1
2L
¤
where L is

the length of the line. Let us consider a point at range R from the centre point at azimuth φ measured

from the normal to the line. The φ = 0 direction shall be referred to as ‘boresight’ to the array. In

the far-field1 limit we can approximate wavefronts emanating from each element to be planar. Hence

the net electric field strength ψ(R) can be expressed as

ψ(R) =
NX
n=1

ane
− 2πif

c
(R−δRn)+iΩn (A.1)

where f is the radiation frequency and Ωn is some additional phase supplied to element n. Using

the plane-wave approximation we can further simplify by relating the range difference δRn to the

position of the radiating element. Using figure A.1

δRn ≈ xn sinφ (A.2)

If the power output of each element is identical then an = a which gives

ψ(R) ≈ ae−
2πifR

c

NX
n=1

e
2πif
c

xn sinφ+
cΩn
2πf (A.3)

1See Appendix on derivation of the Martin & Mulgrew model of Jet Engine Modulation. In Far-Field “Fraunhofer”
limit, range RÀ L2

λ
, and RÀ L where L is the size of the antenna and λ is the free space wavelength of the radiation

being transmitted and received.
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Let elements, and additional phases, be equally spaced

xn = −L
2

+
n− 1

N − 1
L (A.4)

Ωn = (n− 1)∆Ω (A.5)

Hence

ψ(R) ≈ ae
−2πif

c
R+(L2+

1
N−1L) sinφ+ c∆Ω

2πf

NX
n=1

e
2πifL

c
sinφ
N−1+

c∆Ω
2πfL

n
(A.6)

Using the identity
PN

n=1 e
2iωn
N =

eiω sin((1+N−1)ω)
sin(N−1ω) − 1 this can be further simplified to

ψ(R) ≈ ae
− 2πif

c
R+(L2+

1
N−1L) sinφ+ c∆Ω

2πf

(
eiω sin

¡¡
1 +N−1¢ω¢

sin (N−1ω)
− 1

)
(A.7)

where

ω =
πNfL

c

µ
sinφ

N − 1
+

c∆Ω

2πfL

¶
(A.8)

The peak of power |ψ(R)|2 occurs when ω = πNZ where Z is an integer. (See Appendix C).

Hence the peak angle(s) are at

πNZ =
πNfL

c

µ
sinφpeak
N − 1

+
c∆Ω

2πfL

¶
(A.9)

⇒
∆Ω = −2πf

c

µ
L

N − 1

¶
sinφpeak + 2πZ = −2πf

c

µ
L

N − 1

¶
sinφpeak

since a phase rotation of 2πZ has no effect upon the result.

It can be shown that inter-element spacing of half a wavelength yields the optimal beam. (Dif-

ferences can result in a degradation of the beam pattern and the manifestation of grating lobes),

i.e.
L

N − 1
=

1

2
λ =

c

2f

Using a half wavelength spacing, the angular width of the peak is approximately φBW ≈ c
fL i.e the

ratio of wavelength to length of array (or ‘aperture’). For an example of on-boresight and steered

beamshapes see figures in the Background Theory section in the main thesis.
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Figure A.1: Geometry of a linear phased array. The phase difference between two elements separated
by xn is 2πλ xn sinφ.



Appendix B

The Radar Equation

Many Radar textbooks, for example Richards [88], Tait [103] and Skolnik [95], present slightly different

versions of the Radar Equation, each using their own nomenclature. To avoid any confusion, the Radar

Equation referred to in this thesis is derived below.

Let us assume a Radar which transmit electrical power Pt illuminates a target at range R of Radar

cross section1 σ with n pulses of duration τ and bandwidth B transmitted using a carrier frequency

fTx.The Radar transmits via an antenna of physical area A and therefore will offer a directional gain2

G in the desired look direction (Tait [103] pp40), relative to an isotropic radiator.

G =
4πAη

λ2
=

4πAη

c2
f2Tx (B.1)

Where η is the ‘antenna efficiency’ (≤ 1), λ is the wavelength3 and c is the speed of light. The

electrical power backscatterered by the target in the direction of the Radar is therefore

Ps = G
σ

4πR2
Pt
Lt

=
Aη

c2
f2Tx

σ

R2
Pt
Lt

(B.2)

where Lt is the combined loss factor upon transmission. (i.e. a practical antenna rated at Pt
will not transmit all of this energy as electromagnetic radiation at the desired frequency), i.e. the

backscattered power Ps is the target Radar cross section σ multiplied by the power flux at the target
GPt

4πR2Lt
. The backscattered power Pr received at the Radar is therefore the power flux at the target

Ps
4πR2

multiplied by the effective area of the antenna Aη divided by the receiver losses Lr. We must

also include the effects of propagation such as multipath and atmospheric loss. For single bounce

multipath, the change in electric field strength resulting from the interference of direct and surface

reflected paths is defined as F . The effect upon a Radar to target to Radar propagation (if both

1 In the particular look direction. In general, targets such as an aircraft will not have an isotropic radar cross section
(RCS) with look angle. However, as a first approximation one can use a ‘bulk RCS’ to estimate detection thresholds.
Richards [88] pp65 suggests the following cross sections: Missile (0.5m2), Small aircraft (1m2), Jet airliner (20-40m2),
Jumbo jet (100m2).

2Richards pp13 quotes the following approximate result for the antenna gain in terms of beamwidth:

G ≈ 26, 000

(∆�/deg) (∆φ/deg)

where ∆� and ∆φ are the respective elevation and azimuth beamwidths in degrees. This formula is useful if the
beamwidths, and therefore the gain is fixed. However, if a given antenna is used with a range of frequencies, the overall
frequency dependence of the target signal to noise ratio in the Radar Equation can be misleading if the (inverse) freqenncy
dependence of the beamwidths are not also stated explicitly.

3 In this analysis the change of instantaneous carrier frequency from fTx over the pulse bandwidth B is ignored. The
impact upon antenna gain, captured as a scanning loss, is discussed in section 2.7.3.
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directions are assumed to be equal in propagation terms) is F 2 and the effect upon received power is

therefore
¯̄
F 2
¯̄2
.Hence:

Pr =
Ps

4πR2
Aη

Lr

¯̄
F 2
¯̄2

=
A2η2σf2Tx
4πR4c2

Pt
LtLr

¯̄
F 2
¯̄2

(B.3)

Tait [103] pp 82 defines the receiver noise power to be

Pnoise = kBToBNf (B.4)

where kB is Boltzmann’s constant, To is the ambient temperature in Kelvin, B is the bandwidth

of the waveform being transmitted and Nf is the noise figure4 of the receiver. In signal processing let

us assume n pulses are integrated with efficiency Ei(n) and each pulse is cross-correlated with a copy

of what was transmitted (‘pulse compression’), yielding a gain of Bτ. If additional signal processing

losses Lsp are incorporated into an overall loss product

L = LrLtLsp (B.5)

then the signal to noise ratio S/N of the target signal can be expressed as

S/N =
Pr

Pnoise

nEi(n)Bτ

Lsp
=

A2η2nEi(n)τPtσf
2
Tx

¯̄
F 2
¯̄2

4πc2LkBToNfR4
(B.6)

Let us consider the following typical parameters, corresponding to a system similar to MESAR2

illuminating a modest airliner target with one burst of NCTR waveform A:

A = 4m2, η = 0.5, n = 8, Ei(8) = 1, τ = 25.6μs, Pt = 12kW, σ = 20m2, fTx = 3GHz,
¯̄
F 2
¯̄2

= 0dB,

kB = 1.38× 10−23JK−1, ToNf = 500K, R = 50km, L = 10dB

The Radar Equation above yields S/N = 35.6dB

For a measured S/N, one can estimate the target Radar cross section by using a rearrangement of

the Radar Equation

σ =
4πc2LkBToNfR

4

A2η2nEi(n)τPtf2Tx |F 2|
2 (S/N) (B.7)

4The noise figure, which is greater than unity, arises from the non-absolute zero temeperature of the input terminals
of the receiver amplifier. If the input terminals have temperature TE then the noise power of the receiver + the noise
power associated with the signal input at temperature T0 equates to a total noise power of G(TE + T0)kBB where G is
the gain of the amplifier. The noise figure is thus the ratio of this to the noise power due to the input i.e.

Nf =
G(TE + T0)kBB

GT0kBB
= 1 +

TE
T0



Appendix C

The χ (x, z) function

Define the two parameter function

χ (x, z) =
eix sin

¡¡
1 + z−1

¢
x
¢

sin (z−1x)
− 1 (C.1)

Conjecture: if z ∈ Z+, z ≥ 1 then χ (x, z) is the summation of a geometric series of the form

zX
n=1

e
2ixn
z = χ (x, z) (C.2)

Proof

The sum of a geometric series of common ratio r has a well known closed form solution [112].

N−1X
j=0

rn =
1− rN

1− r
(C.3)

Setting z = N − 1, n = j and taking the j = 0 term outside the summation, this gives

zX
n=1

rn =
1− rz+1

1− r
− 1 (C.4)

The term 1−rz+1
1−r can be re-written as

1− rz+1

1− r
=

r
z
2

³
r−

z+1
2 − r

z+1
2

´
r−

1
2 − r

1
2

=
r
z
2

³
r
z+1
2 − r−

z+1
2

´
r
1
2 − r−

1
2

(C.5)

Now let r = e2ix/z. This gives:

r
z
2

³
r
z+1
2 − r−

z+1
2

´
r
1
2 − r−

1
2

=
eix
³
eix(1+z

−1) − e−ix(1+z
−1)
´

e
ix
z − e−

ix
z

(C.6)

By De Moivre’s theorem [112] we can write sinφ = 1
2i

¡
eiφ − e−iφ

¢
hence the above simplifies to

eix
³
eix(1+z

−1) − e−ix(1+z
−1)
´

e
ix
z − e−

ix
z

=
eix sin

¡¡
1 + z−1

¢
x
¢

sin (z−1x)
(C.7)

Using the form of the geometric progression summation above
Pz

n=1 r
n = 1−rz+1

1−r − 1, therefore

zX
n=1

e
2ixn
z =

eix sin
¡¡

1 + z−1
¢
x
¢

sin (z−1x)
− 1 = χ (x, z) (C.8)
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as required.

Note the first derivative of χ (x, z) is

∂χ (x, z)

∂x
= (1 + χ (x, z))

µ
i+

1 + z−1

tan ((1 + z−1)x)
− z−1

tan(z−1x)

¶
(C.9)

If z ∈ Z+, z ≥ 1 then χ (0, z) can be evaluated using L’Hopital’s rule [89] since sin(0) = 0,

cos(0) = 1 and d
dx sin(kx) = k cos kx

χ (0, z) =
1 + z−1

z−1
− 1 = z (C.10)

Periodicity of this result occurs at x = zπZ where Z is an integer and is a local peak in |χ (x, z)|2

which can be evaluated as

|χ (x, z)|2 =

Ã
eix sin

¡¡
1 + z−1

¢
x
¢

sin (z−1x)
− 1

!Ã
e−ix sin

¡¡
1 + z−1

¢
x
¢

sin (z−1x)
− 1

!
(C.11)

= 1 +
sin2

¡¡
1 + z−1

¢
x
¢

sin2 (z−1x)
−

2 sin
¡¡

1 + z−1
¢
x
¢

sin (z−1x)
cosx (C.12)

So |χ (zπZ, z)|2 = 1+
³
1+z−1

z−1

´2
− 21+z

−1

z−1 = 1+(z + 1)2− 2(1+ z) = 1+ z2+2z+1− 2− 2z = z2.

Secondary periodicity occurs when x = Zπ, which is also approximately the peak width. For a

complete analysis one needs to evaluate the Taylor series near x = zπZ i.e.

|χ (x, z)|2 ≈ |χ (zπZ, z)|2 + (x− zπZ)2
∂2 |χ (x, z)|2

∂2x

¯̄̄̄
¯
x=zπZ

(C.13)

and then compare this to the equation for determining the half width of an inverted parabola

y = 1 − α2

6 ⇒ y
¡
±
√

3
¢

= 1
2 , i.e. y = 1 − α2

6 which has a half width of 2
√

3. The task is to find the

mapping between the above Taylor expansion and α. This is left as an exercise for the reader!
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Figure C.1: Plot of magnitude of χ (x, z) =
eix sin((1+z−1)x)

sin(z−1x) − 1 where z = 4. Note peaks are of
magnitude = 4 and peaks are separated by intervals of 4π.



Appendix D

Fourier transform of a linear chirp
waveform

D.1 Definition of a linear chirp signal

A linear chirp pulse waveform ψ(t) is a rectangular envelope bounded signal with a frequency that

increases in direct proportion to the time since the leading edge of the pulse. Let the chirp begin at

time t0 and have duration τ . Let the frequency range (bandwidth) B extend symmetrically about a

mean c
λ . The chirp instantaneous frequency f (t) can be expressed

f(t) =

(
a+ bt t0 < t < t0 + τ

0 t < t0, t > t0 + τ
(D.1)

Now

f(t0) = a + bt0 = c
λ −

1
2B (D.2)

df

dt
= b =

B

τ
(D.3)

Hence

Figure D.1: Frequency vs time relationship for a linear chirp waveform.
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a =
c

λ
−B

µ
1
2 +

t0
τ

¶
(D.4)

b =
B

τ
(D.5)

Which gives

f(t) =

⎧⎨⎩ c
λ +B

µ
t− t0
τ
− 1

2

¶
t0 < t < t0 + τ

0 t < t0, t > t0 + τ
(D.6)

The chirp signal amplitude ψreal(t) = A cos(φ(t)) = ARe
©
eiφ
ª
where φ is the phase of the wave-

form and A is defined to be a real constant. Let us define ψ(t) to be the unit amplitude complex part

of the real signal. This shall be referred to as the ‘chirp signal’ from now on.

ψ(t) = eiφ(t) (D.7)

ψreal(t) = ARe {ψ(t)} (D.8)

The phase φ is related to instantaneous frequency (in the continuous region of the pulse envelope

t0 < t < t0 + τ) by

f(t) =
1

2π

dφ

dt
(D.9)

Hence

φ(t) = 2π

Z
f(t)dt (D.10)

Conventionally [D.10] is an indefinite integral with constant of integration γ set such that the

phase at the centre of the pulse is zero.

φ
¡
t0 + 1

2τ
¢

= 0 (D.11)

Using [D.6] and the above condition, the chirp phase can be evaluated analytically.

φ(t) = 2π

Z µ
c

λ
+B

µ
t− t0
τ
− 1

2

¶¶
dt (D.12)

= 2π

"
c

λ
t +Bt

Ã
1
2t− t0

τ
− 1

2

!#
+ γ (D.13)

= 2π

∙
1
2

B

τ
t2 −

µ
Bt0
τ

+ 1
2B −

c

λ

¶
t

¸
+ γ (D.14)

Since φ
¡
t0 + 1

2τ
¢

= 0

γ = −2π

∙
1
2

B

τ

¡
t0 + 1

2τ
¢2 −µBt0

τ
+ 1

2B −
c

λ

¶¡
t0 + 1

2τ
¢¸

(D.15)

In summary, the linear chirp is described by the following system of equations
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Figure D.2: Real and imaginary parts of a linear chirp waveform.

ψreal(t) = ARe {ψ(t)}

ψ(t) =

(
eiφ(t) t0 < t < t0 + τ

0 t < t0, t > t0 + τ

φ(t) = αt2 + βt + γ

α = πB
τ

β = −2π
¡
Bt0
τ + 1

2B −
c
λ

¢
γ = −2π

h
1
2
B
τ

¡
t0 + 1

2τ
¢2 − ¡Bt0τ + 1

2B −
c
λ

¢ ¡
t0 + 1

2τ
¢i

(D.16)

Samples of the chirp (following analogue to digital conversion) occur after a mix down by some

frequency fmix. In this case

β −→ β − 2πfmix (D.17)

If fmix = c
λ then the signal is said to be converted down to baseband. In this case

βbaseband = −2π

µ
Bt0
τ

+ 1
2B

¶
(D.18)
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Figure D.3: Magnitude and phase of a linear chirp waveform.
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D.2 Fourier Transform of a linear chirp

The frequency spectrum of a linear chirp signal ψ(t) is defined by its Fourier Transform

eψ(f) =

Z +∞

−∞
ψ(t)e−2πiftdt (D.19)

Using [D.16] this reduces to

eψ(f) =

Z t0+τ

t0

exp
£
i
¡
αt2 + (β − 2πf) t + γ

¢¤
dt (D.20)

Now define a set of dimensionless variables

ω =
f

B
(D.21)

k =
t− t0
τ
− 1

2 (D.22)

Hence

t = kτ + τ
2 + t0 (D.23)

t2 = k2τ2 + 2
¡
τ
2 + t0

¢
kτ +

¡
τ
2 + t0

¢2 (D.24)

k (t0) = −12 (D.25)

k (t0 + τ) = 1
2 (D.26)

The quadratic chirp phase transforms to

αt2 + (β − 2πf) t + γ =

α
n
k2τ2 + 2

¡
τ
2 + t0

¢
kτ +

¡
τ
2 + t0

¢2o
+ (β − 2πBω)

¡
kτ + τ

2 + t0
¢

+ γ

= k2
©
ατ2

ª
+ k

©
2α
¡
τ
2 + t0

¢
τ + (β − 2πBω) τ

ª
+ α

¡
τ
2 + t0

¢2
+ (β − 2πBω)

¡
τ
2 + t0

¢
+ γ

(D.27)

This can be simplified slightly by recalling (using a general mixing down frequency fmix)

α =
πB

τ
(D.28)

β = −2π

µ
Bt0
τ

+ 1
2B −

c

λ
+ fmix

¶
(D.29)

γ = −2π

∙
1
2

B

τ

¡
t0 + 1

2τ
¢2 −µBt0

τ
+ 1

2B −
c

λ

¶¡
t0 + 1

2τ
¢¸

(D.30)

and defining the pure number

n = Bτπ (D.31)

This gives

ατ2 = n (D.32)

2α
¡
τ
2 + t0

¢
τ + (β − 2πBω) τ = 2n

µ
1
2 +

t0
τ

¶
− 2n

µ
t0
τ

+ 1
2 −

c

λB
+

fmix

B
+ ω

¶
= 2n

µ
c

λB
− fmix

B
− ω

¶
(D.33)
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α
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Furthermore, define another dimensionless quantity

η = 1
2 +

t0
τ

(D.35)

Hence

γ = −2π

∙
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α
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¡
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¢
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= nη2 − 2n
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¶
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Therefore

αt2 + (β − 2πf) t + γ = nk2 + 2n

µ
c

λB
− fmix

B
− ω

¶
k − 2nη

µ
ω +

fmix

B

¶
(D.38)

Since any quadratic polynomial P (k) can be written in ‘completed square’ form

Ak2 +Bk + C ≡
µ
k
√
A+

B

2
√
A

¶2
− B2

4A
+ C (D.39)

we can redefine [D.20] to be

eψ(f) = τe
−i c

λB
− fmix

B
−ω

2
+2nη ω+

fmix
B

Z 1
2

−1
2

exp
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¶2
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dk (D.40)

using

A = n (D.41)

B = 2n

µ
c

λB
− fmix

B
− ω

¶
(D.42)

C = −2nη

µ
ω +

fmix

B

¶
(D.43)

This can be simplified further by adopting a change of integration variable

z

r
π

2
=

µ
k +

c

λB
− fmix

B
− ω

¶√
n (D.44)
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eψ(f) = τ

r
π

2n
e
−i n c
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The above result can now be expressed in terms of Fresnel Integrals. These can be easily evaluated

using a numerical computation tool such as MATLAB.

C(x) =

Z x

0
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¡
1
2 iπz

2
¢
dz (D.46)

S(x) =

Z x

0
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¡
1
2iπz

2
¢
dz (D.47)

Splitting the integral into two integrals from z = 0
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We arrive at the readily evaluatable result for the Fourier Transform of a linear chirp. Note both

Fresnel functions are odd i.e. C(−x) = −C(x) and S(−x) = −S(x). This allows the ‘Fresnel term’ to

be written as a sum, which is better for numerical evaluation.
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Appendix E

The Martin & Mulgrew model of Jet
Engine Modulation

E.1 Derivation of the Martin & Mulgrew model of JEM

A jet engine can be described as a series of propellers contained within a housing, with each of the

propellers rotating about a central shaft. Since all parts are likely to be highly reflective at Radar

frequencies, the electric field resulting from re-radiated energy will be extremely difficult to compute,

even at ranges RÀ L2 , where L2 is the radius of the jet engine inlet.

However, it has been observed from experimental Radar studies than certain key features can be

extracted from signals deriving from jet engine reflections. To attempt to explain these major features

we shall consider a grossly simplified model which allows us to compute the received Radar signal

analytically. If the model can be shown to predict the major features experimentally observed, then

we can infer the assumptions upon which the model is based are valid. Hence by finding the various

parameters of the model which reproduce a given signal, one can infer bulk characteristics of the jet

engine. This could be extremely useful in target recognition applications.

Jet engine reflections are known to result in periodic amplitude and phase modulations upon the

carrier signal. Hence the term ‘Jet Engine Modulation’ (JEM). The Martin & Mulgrew model [67],[68]

is used to define these variations. A derivation is presented here and is founded upon the following

assumptions:

Figure E.1: A jet engine is modelled as a rotating “cartwheel” of reflecting blades. These act as line
antennas which re-radiate energy imposed upon them by a Radar.
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Figure E.2: The position vector of length αn along the nth blade is given by rn. This vector has origin
at the rotating shaft. In general the jet engine will not be oriented perpendicular to Radar line-of-sight
along vector R.

• Each engine blade acts as a homogeneous, linear, rigid antenna.

• The jet engine is in the far-field of the Radar, i.e. RÀ L2

• The only significant contributions to the received signal derive from reflections off the equi-spaced
engine blades at the inlet. Hence the analysis is identical to that of a propeller. Reflections from

the housing and rotating shaft are not considered since they will not result in any time varying

effects, assuming the received signal is compensated for the bulk motion of the jet engine (i.e.

the motion of the aircraft that bears it).

• The propeller model assumed is further simplified to a ‘cartwheel’ of radial line antennas. If
parameter αn is used to define the distance from the centre of the rotating shaft along the nth

blade, then the blade shall be modelled as a uniform line antenna within the limits αn = [L1, L2].

L1 is the radius of the rotating shaft and L1−L2 is the length of the blade. Note the (far field)

beamwidth (in radians) associated with an antenna dimension of width a is ≈ λ
awhere λ is the

wavelength employed. If the jet engine blades are long and thin then the radiation pattern will

be broad in the plane of the width dimension and narrow(er) in the plane of the length (radial)

dimension. To resolve any time varying effect due to the jet engine blades the beamwidth of

the blade antennas must be ≤ Radar beamwidth ∆φBW . If the jet engine is observed with an
S-band Radar, the carrier frequency fTx ≈3 GHz and thus the wavelength (strictly in vacuo but
approximately correct in air) λ ≈10cm. A typical Radar beamwidth ∆φBW ≈2.5o. Jet engine
blades can be up to a few meters long and several centimeters wide. For the blades to have a

significant effect upon the received signal then blade dimension aÀ λ
∆φBW

. For our typical S-

band Radar, λ
∆φBW

≈2.2 m. Hence we would expect the jet engine blades to only contribute to
time-varying effects upon the received signal via their length dimension.

• Pitching and twisting of the blades is not considered. Blade pitching is known to have a significant
effect upon JEM and will be considered in the next iteration of this model described in the

following section.

The JEM signal as defined in the Martin & Mulgrew model can be derived using scalar wave theory

and the above approximations. Let us start from some basic physics.

The Huygens-Fresnel Principle [43] states :
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Figure E.3: “Cartwheel” model of a jet engine. The wheel spokes are line antennas.

Figure E.4: Scalar wave-field resulting from superposition of spherical waves radiated by a line antenna.

"Every unobstructed point of a wavefront, at a given instant, serves as a source of spherical sec-

ondary wavelets (with the same frequency as that of the primary wave). The amplitude of the optical

field at any point beyond is the superposition of all these wavelets (considering their amplitudes and

relative phases)."

Using this principle we can express the (time varying) magnitude of the electric field ψ(R, t)

resulting from a radiating line antenna element (extending from radial length α from L1 to L2 ) as1

ψ(R, t) =

Z L2

L1

A(α)

R + δR(α)
e2πifTx−ik(R−δR(α))dα (E.1)

R+δR(α) is the displacement from the antenna (a distance α along its length). We define α = 0 to

correspond to δR(0) = 0. fTx is the carrier frequency of radiation and the corresponding wavenumber

k = 2π
λ . A(α) is an illumination function which specifies the amplitude and phase distribution along

the line antenna.

Using Pythagoras’ theorem and trigonometric definitions one can relate the quantities α,R, δR, ε

described in figure E.4

(R− δR)2 = (R sin ε− α)2 +R2 cos2 ε (E.2)

Expanding the RHS and using the identity sin2 ε + cos2 ε = 1 we find

1− δR

R
=

µ
1 +

α2

R2
− 2α sin ε

R

¶ 1
2

(E.3)

1A more mathematically precise derivation of can be done using the Fresnel-Kirchoff diffraction integral
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If we are in the far-field of the antenna then for all α, R À α. Hence we can binomially expand

the square root and take the first two terms to write

1− δR

R
≈ 1 +

α2

2R2
− α sin ε

R
(E.4)

Hence

δR ≈ α sin ε− α2

2R
(E.5)

The line antenna imposes little significant change upon the wave-field compared to a ‘point antenna’

if phase kδR¿ 2π . Using the above we can write this criterion as

λÀ α sin ε− 1

2
α
³α
R

´
(E.6)

Since the second term is much smaller than the first because RÀ α ; if max(α) = L2, the length

of the line antenna, the antenna will behave like a point radiator if λ À L2. If however λ À α2

2Rbut

not the larger, linear term in α, we can ignore the quadratic term in the phase expression. This is

known as the ‘Fraunhofer limit’ and allows E.1 to be written as

ψ(R, t) ≈ e2πifTxt−ikR

R

Z L2

L1

A(α)eikα sin εdα (E.7)

where RÀ L22
λ and λÀ L2 . 2

Referring to fig E.1 and our JEM model assumptions, (extending ‘far-field’ to mean ‘Fraunhofer

limit’) we may use the above to write down the wavefield resulting from a superposition of spherical

waves radiated from all N line antennas.

Firstly note that (kα sin ε)n = − 2π
Rλrn ·R and sin ε = cos θ . Hence:

ψ(R, t) ≈ e2πifTxt−
2πiR
λ

R

N−1X
n=0

Z L2

L1

An(αn)e
− 2πi

Rλ
rn·Rdαn (E.8)

The Radar illumination of the blades result in a linear phase ramp imposed upon them since, in

our far field approximation, we can regard the wave front approaching (or re-radiated from) the line

antenna/blade as being planar. The R−1 dependence is however still left to reflect the true spherical

nature of the illumination signal (as viewed from the Radar). The wave-front approaching the jet

engine can be thought to have negligible curvature on the length scale of the blades.

i.e.

An(αn) =
ψ0
R
e−

2πi
λ (R+ rn·R

R ) (E.9)

Therefore E.8 becomes

ψ(R, t) ≈ ψ0
e2πifTx−

4πiR
λ

R2

N−1X
n=0

Z L2

L1

e−
4πi
Rλ
rn·Rdαn (E.10)

Using the diagram above we can express rn in terms of Cartesian unit-vectors xE and yE . These

specify the orientation of the jet engine.

rn(α) = αn (yE cosΩn + xE sinΩn) (E.11)

2Note the factor of 2 can be ‘safely’ neglected in the specification of this limit! If R ≈ L22
λ
and ε ≈ 0 then the phase

term in E.1 becomes purely quadratic in α. This is known as the Fresnel regime and is extensively described in [43].
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Figure E.5: Relationship between vector quantities rn,Rn,R and angles ε and θ

If the blades rotate at frequency frot about the central shaft (we will use the convention of a

clockwise rotation being positive) then at time t the nth blade will subtend angle Ωn from the yE axis.

Recall the indexing of blades is n = 0...N − 1

Ωn = 2π
³
frott +

n

N

´
+ φ0 (E.12)

φ0 is the initial angle of rotation corresponding to time origin t = 0.

In summary, the signal return received at the Radar due to a JEM reflection at range R will take

the form (subject to the approximations above)

ψ(R, t) ≈ ψ0
e2πifTx−

4πiR
λ

R2

N−1X
n=0

Z L2

L1

e−
4πi
Rλ
rn·Rdαn (E.13)

where

rn(α) = αn (yE cosΩn + xE sinΩn) (E.14)

Define

ξn = − 4π

Rλ
(yE cosΩn + xE sinΩn) ·R (E.15)

This is a time varying quantity but is invariant with αn. The negative sign is used since R points

towards the jet engine. Hence:

ψ(R, t) ≈ ψ0
e2πifTxt−

4πiR
λ

R2

N−1X
n=0

Z L2

L1

eiαnξndαn (E.16)

The integral can be evaluated analytically and yields a sinc term3 in multiplied by a harmonic

term4 in ξn.Z L2

L1

eiαnξndαn =
1

iξn

h
eiαnξn

iL2
L1

=
1

iξn

³
eiL2ξn − eiL1ξn

´
(E.17)

=
1

2
e
1
2 i(L1+L2)ξn2 (L2 − L1)

1
1
2 (L2 − L1)

1

2i

³
ei

(L2−L1)
2

ξn − e−i
(L2−L1)

2
ξn
´
(E.18)

= (L2 − L1) e
1
2 i(L1+L2)ξnsinc

¡
1
2 (L2 − L1) ξn

¢
(E.19)

3 sinc(x) = sin(x)/x
4 a function of the form f(x, a) = eiax
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A closed form expression for the JEM signal can therefore be written as

ψ(R, t) ≈ ψ0 (L2 − L1)

R2
e2πifTxt−

4πiR
λ

N−1X
n=0

e
1
2 i(L1+L2)ξnsinc

¡
1
2 (L2 − L1) ξn

¢
(E.20)

In the special case where R = −R (zE sin θ + xE cos θ) i.e. the range vector R is in the same plane

as axis of jet engine rotation and the turbine body axis xE.

ξn = − 4π

Rλ
(yE cosΩn + xE sinΩn) ·R =

4π

λ
sinΩn cos θ (E.21)

Hence

ψ(R, t) ≈ ψ0 (L2 − L1)

R2
e2πifTxt−

4πiR
λ

N−1X
n=0

e
2πi
λ
(L1+L2) sin(2π(frott+ n

N )) cos θ... (E.22)

× sinc
µ

2π

λ
(L2 − L1) sin

³
2π
³
frott +

n

N

´´
cos θ

¶
(E.23)

Which is the same (apart from the sign in the harmonic term and a Doppler shift of carrier

frequency) as that stated in [67].

Note we have set the unknown initial blade angle φ0 = 0 . Since we have been precise in our

definition of turbine body axis, this equivalence will not be true in the general case. A non-zero initial

blade angle could be regarded as a constant time shift of ∆t ≈ φ0
2πfrot

.

This unknown blade angle should not pose much of a problem in the application of our JEM model

since one will be utilizing the frequency spectrum of the JEM return rather than processing the signal

in the time domain. The frequency spectrum is given by the magnitude of the Fourier Transform of

signal ψ(R, t). ¯̄̄
ψ̃(R, f)

¯̄̄
= |F [ψ(R, t)]| =

¯̄̄̄Z ∞

−∞
ψ(R, t)e−2πiftdt

¯̄̄̄
(E.24)

Using the Fourier shift theorem [112]

F [ψ(t−∆t)] = e−2πif∆tF [ψ(t)] (E.25)

Hence ¯̄̄
ψ̃(R, f)

¯̄̄
= |F [ψ(R, t)]| = |F [ψ(R, t−∆t)]| (E.26)

since

|F [ψ(R, t−∆t)]|2 = e−2πif∆tF [ψ(R, t)] e2πif∆t (F [ψ(R, t)])∗ = |F [ψ(R, t)]| (E.27)

i.e. the magnitude of the frequency spectrum of a signal is insensitive to any constant time shift

of the signal.
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Figure E.6: A schematic of the nth (out of N) jet engine blade of area a that is pitched by angle φP
from the axis of rotation zE. Let us define the blade vector area an which is the blade area multiplied
by the unit normal to the blade. r̂n is a unit vector parrallel to vector rn defined above.

Figure E.7: Unit vectors defining the position of a rotating jet engine (or propeller) blade.

E.2 A "cartwheel" model of JEM & amplitude modulation due to
blade pitch.

Let us further assume that the JEM signal is amplitude modulated by the projected area of the blades

upon the viewing direction vector R . There will be such a modulation because blades tend to be

pitched at angle φP from the axis of rotation, as shown in figure E.6.

The projected area upon the viewing direction vector R is given by ζn = − an·R/R where the

minus sign is used since R points towards the centre of the jet engine from the Radar.

The vector area of the nth blade can be expressed in terms of pitch angle φP as

an = a (zE cosφP + cn sinφP ) (E.28)

where unit vector cn (orthonormal to rn and zE ) is defined using the diagram below.

Hence:

cn = yE cos
¡
Ωn − π

2

¢
+ xE sin

¡
Ωn − π

2

¢
(E.29)

= yE sinΩn − xE cosΩn (E.30)
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Check: rn = rnr̂n, cn and zE must form a right handed set of basis vectors so r̂n × cn = zE

r̂n × cn = (yE cosΩn + xE sinΩn)× (yE sinΩn − xE cosΩn) (E.31)

= (xE × yE) sinΩn sinΩn − (yE × xE) cosΩn cosΩn (E.32)

=
¡
sin2Ωn + cos2Ωn

¢
zE = zE (E.33)

Therefore:
an
a

= zE cosφP + (yE sinΩn − xE cosΩn) sinφP (E.34)

Hence the projected area is given by:

ζn = − a

R
(zE cosφP + (yE sinΩn − xE cosΩn) sinφP ) ·R (E.35)

Using the special case of

R = −R (zE sin θ + xE cos θ) (E.36)

This gives

ζn = −a (zE cosφP + (yE sinΩn − xE cosΩn) sinφP ) · (zE sin θ + xE cos θ) (E.37)

= a (cosφP sin θ − cosΩn sinφP cos θ) (E.38)

Using trigonometric identities 2 sinA cosB = sin(A + B) + sin(A − B), cos(−A) = cosA and

sin(−A) = − sinA ;

ζn
a

= 1
2 [sin (θ + φP ) + sin (θ − φP )]− 1

2 [sin (θ + φP ) + sin (θ − φP )] cosΩn (E.39)

= 1
2 [sin (θ + φP ) + sin (θ − φP )] (1− cosΩn) (E.40)

This result is very similar to the result stated in [68] which involves the factors α and β

α = sin (|θ|+ φP ) + sin (|θ|− φP ) (E.41)

β = sign (θ) sin (|θ|+ φP )− sin (|θ|− φP ) (E.42)

This perhaps indicates [68] had a slightly different interpretation of the angle θ to that specified

here. However, since the adopted definition results in the same cos θ sinΩn variation of the sinc and

harmonic terms as [68] and, unlike [68] , refers to a properly defined geometry (in the basis xE ,yE, zE)

, we might use E.39 as a sound working hypothesis. To resolve any differences between E.39 and E.41,

both ‘blade pitch correction factors’ should be tested against experimental data.

Incorporating the amplitude modulation due to blade pitch, the signal received resulting from JEM

becomes:

ψ(R, t) ≈ ψ0 (L2 − L1)

R2
e2πifTxt−

4πiR
λ

N−1X
n=0

ζne
1
2 i(L1+L2)ξnsinc

¡
1
2 (L2 − L1) ξn

¢
(E.43)

ζn = − a

R
(zE cosφP + (yE sinΩn − xE cosΩn) sinφP ) ·R (E.44)

ξn = − 4π

Rλ
(yE cosΩn + xE sinΩn) ·R (E.45)

Ωn = 2π
³
frott +

n

N

´
(E.46)
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With the special case of R = −R (zE sin θ + xE cos θ)

ζn = a
2 [sin (θ + φP ) + sin (θ − φP )] (1− cosΩn) (E.47)

ξn =
4π

λ
sinΩn cos θ (E.48)

Since we would expect a target to be at fairly long range (i.e. 10 -100 km), and thus imply a

small and fairly constant elevation, the ‘special case’ above may well be widely applicable. Hence the

employment of this restricted theory in the Martin & Mulgrew model is justified.

The precise Martin & Mulgrew result presented in [68] is, using the same symbology as above

ψM&M(R, t) ∝ e2πifTxt−
4πiR
λ

N−1X
n=0

³
α + β cos

n
2π
³
frott +

n

N

´o´
×

sinc
µ

4π

λ
1
2 (L2 − L1) cos θ sin

n
2π
³
frott +

n

N

´o¶
×

exp

µ
i
4π

λ
1
2 (L1 + L2) cos θ sin

n
2π
³
frott +

n

N

´o¶
which could be written as (to enable visual comparison to the result derived above)

ψM&M(R, t) ∝ e2πifTxt−
4πiR
λ

N−1X
n=0

ζne
1
2 i(L1+L2)ξnsinc

¡
1
2 (L2 − L1) ξn

¢
(E.49)

ζn = α+ β cosΩn (E.50)

ξn =
4π

λ
sinΩn cos θ (E.51)

Ωn = 2π
³
frott +

n

N

´
(E.52)

α = sin (|θ|+ φP ) + sin (|θ|− φP ) (E.53)

β = sign (θ) sin (|θ|+ φP )− sin (|θ|− φP ) (E.54)



Appendix F

The benefits and limitations of stretch
processing

F.1 Overview

An alternative to stepped frequency methods is the use of stretch processing. Rather than sampling

the (mixed down) signal directly, the mixer itself is modified to be a replica of what was transmitted.

The differential time delay (and thus range) between scatterers relative to some central reference point

on the body of a target turns out to be proportional to a frequency modulation of the ‘stretch’ mixer

output, if a linear frequency modulated waveform is used. If samples of this are taken and then

processed using a Discrete Fourier Transform, the result will be a HRR profile of the target.

F.2 The stretch mixer

A linear chirp signal ψ(t) is described by the following system of equations (see Appendix C for

derivation).

ψreal(t) = ARe {ψ(t)}

ψ(t) =

(
eiφ(t) t0 < t < t0 + τ

0 t < t0, t > t0 + τ

φ(t) = αt2 + βt + γ

α = πB
τ

β = −2π
¡
Bt0
τ + 1

2B − fTx
¢

γ = −2π
h
1
2
B
τ

¡
t0 + 1

2τ
¢2 − ¡Bt0τ + 1

2B − fTx
¢ ¡
t0 + 1

2τ
¢i

B is the chirp bandwidth, τ is the pulse length, fTx is the carrier frequency and t0 is the time of the

leading edge of the chirp. For a transmitted chirp ψTx, t0 = 0 and for a received chirp ψRx, t0 = 2R/c

where R is the target range. Let us define the stretch mixer to have the time variation M(t, R0)

where the output is y(t) = ψRx(t)M(t, R0). R0 is the ‘central reference point’ and corresponds to

238
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some position upon the main body of the target. This practically would be the target range provided

by surveillance. Using the general form above

ψRx(t) =

(
eiφ(t) t0 < t < t0 + τ

0 t < t0, t > t0 + τ

φ(t) = αt2 + βt + γ

α = πB
τ

β = −2π
¡
Bt0
τ + 1

2B − fTx
¢

γ = −2π
h
1
2
B
τ

¡
t0 + 1

2τ
¢2 − ¡Bt0τ + 1

2B − fTx
¢ ¡
t0 + 1

2τ
¢i

t0 = 2R/c (F.1)

M(t, R0) = e−iφ(t)

φ(t) = αt2 + βt + γ

α = πB
τ

β = −2π
¡
Bt0
τ + 1

2B − fTx
¢

γ = −2π
h
1
2
B
τ

¡
t0 + 1

2τ
¢2 − ¡Bt0τ + 1

2B − fTx
¢ ¡
t0 + 1

2τ
¢i

t0 = 2R0/c (F.2)

The stretch mixer output is therefore (note the quadratic time variation cancels)

y(t) = ψRx(t)M(t, R0) (F.3)

= eiξ exp

½
i

∙
−2π

µ
2BR

cτ
+ 1

2B − fTx

¶
+ 2π

µ
2BR0
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+ 1
2B − fTx

¶¸
t

¾
(F.4)

= w(t)eiξe
4πiB(R0−R)

cτ
t (F.5)
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ξ(R,R0) = −2π
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¶¡
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¢¸

(F.7)

and

w(t) =

(
1 2R/c < t < 2R/c+ τ

0 t < 2R/c, t > 2R/c+ τ
(F.8)

The output of the stretch mixer has a linear phase variation with time, i.e. a fixed ‘beat’ frequency

proportional to the differential target range R0 − R . This means the magnitude of the Fourier

Transform1 the mixer output will yield a peak at R0 −R.

1For simplicity of illustration let us take the analytical Fourier Transform and assume the sample rate of the (discrete)
practical implementation is a good approximation. i.e. the sample rate is high enough to not produce aliases.
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If a target can be thought of being comprised of a set of point scatterers, the received signal is

actually a (weighted) sum of received chirps, each with a different range Rn. The output of the stretch

mixer is thus

y(t) =
X
n

anwn(t)e
iξ(Rn,R0)e

4πiB(R0−Rn)
cτ

t (F.9)

where the windowing function wn(t) is

wn(t) =

(
1 2Rn/c < t < 2Rn/c+ τ

0 t < 2Rn/c, t > 2Rn/c+ τ
(F.10)

The Fourier Transform of y(t) will thus yield a range profile of the target with (magnitude) peaks

at R0 −Rn.

ỹ(f) =

Z ∞

−∞
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where the last step makes use of the identity

eia − eib ≡ e
i
2
(a+b)

³
e
i
2
(a−b) − e−

i
2
(a−b)

´
≡ 2iei

a+b
2 sin

¡
1
2 (a− b)

¢
(F.15)

One can easily show the range resolution of such a profile (using the assignment of range R = cτ
2Bf

) is δR ≈ c
2B i.e. the same resolution as if the chirp was pulse compressed in the conventional fashion.

F.3 Benefits & limitations of stretch processing

The beat frequency (for target scattering center n) of the output of the stretch mixer is

fsm =
2B(R0 −Rn)

cτ
(F.16)

Let us define the HRR range window to be R0 ± 1
2L. In order for peaks of the Fourier Transform

of the stretch mixer output to appear correctly within this window, by the Shannon-Nyquist criterion

the output must be sampled at a rate greater than or equal to the frequency difference between the

component beats. Hence:

fs ≥
2B(R0 + 1

2L)

cτ
−

2B(R0 − 1
2L)

cτ
(F.17)

≥ 2BL

cτ
(F.18)
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Note also that the stretch mixer must sweep for 2L/c+τ in order to collect the signal contributions

from all scatterers in the HRR window and then compute the Fourier Transform of the mixer output

samples. This means the mixer must be physically able to sweep through a bandwidth of

Bsm =

µ
1 +

2L

cτ

¶
B (F.19)

In summary, stretch processing allows for the production of a HRR target profile without necessar-

ily having to sample at the bandwidth of the transmitted signal, as in conventional pulse compression.

It therefore allows for high range resolution to be obtained from a single burst rather than having to

wait for the transmission of an ensemble of burst stepped in frequency. To achieve δR =1 m range

resolution, the bandwidth B = 149.9MHz. If a maximum sample rate of 5MHz is possible, since

L ≤ cτ
2Bfs this means the HRR window must be less than 100m using a chirp pulse length of 20μs.

Setting L = 100 m gives a mixer sweep of Bsm = 154.9 MHz. The outputs of the stretch mixer begin

at time since transmission

tstart =
2
¡
R0 − L

2

¢
c

(F.20)

and finish at time

tstop =
2
¡
R0 + L

2

¢
c

+ τ (F.21)

The potential limitations of stretch processing are:

1. Require modification to RF hardware to implement mixer. Mixer must be adaptive to changes

in R0 which would vary as the target moves. The mixer must be able to sweep over
¡
1 + 2L

cτ

¢
B.

The time variable in the mixer must be aligned with precision to that of the Radar clock which

starts at the time of transmission, i.e. the mixer is phase locked to the transmitted signal.

2. Given a practical sample rate, to achieve finer range resolution will restrict the size L of the

HRR window.

3. A separate mixer channel must be provided for each target, if separations are greater than L.

4. Since a stretch waveform is intrinsically wide bandwidth, an S-band phased array will sweep

the beam significantly within the pulse. To alleviate this effect (and mitigate resulting losses

of energy on target) true time delay corrections must be applied during pulse transmission and

reception. This could be an expensive modification to the antenna!



Appendix G

Radar Cross Section measurements of
aircraft

G.1 All aircraft Max RCS of Classical HRR profiles
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Figure G.1: Maximum Radar Cross Section (RCS) of Classical High Range Resolution profiles, plotted
for all aircraft observed by MESAR2 during the pod/Falcon and targets of opportunity trials. The blue
upper graphs show the (uncalibrated) maximum power /dB of the HRR profile. The red lower graphs
show the same data following application of the Radar Equation. This has the effect of removing
the negative trend reulting from the R−4 propagation loss. Each set of blue/red graphs represents a
different waveform.
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Figure G.2: Maximum Radar Cross Section (RCS) of Classical High Range Resolution profiles, plotted
for an inbound Falcon aircraft observed by MESAR2 during trials. The blue upper graphs show the
(uncalibrated) maximum power /dB of the HRR profile. The red lower graphs show the same data
following application of the Radar Equation. This has the effect of removing the negative trend
reulting from the R−4 propagation loss. Each set of blue/red graphs represents a different waveform.
Despite the application of the radar equation, the RCS values are variable by the order of 10dBm2.
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Figure G.3: Maximum Radar Cross Section (RCS) of Hybrid High Range Resolution profiles, plotted
for an inbound Pod observed by MESAR2 during trials. The blue upper graphs show the (uncali-
brated) maximum power /dB of the HRR profile. The red lower graphs show the same data following
application of the Radar Equation. This has the effect of removing the negative trend reulting from
the R−4 propagation loss. Each set of blue/red graphs represents a different waveform. Despite the
application of the radar equation, the RCS values are variable by the order of 10dBm2.
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Figure G.4: Maximum Radar Cross Section (RCS) of Hybrid High Range Resolution profiles, plotted
for all aircraft observed by MESAR2 during trials. The blue upper graphs show the (uncalibrated)
maximum power /dB of the HRR profile. The red lower graphs show the same data following applica-
tion of the Radar Equation. This has the effect of removing the negative trend reulting from the R−4

propagation loss. Each set of blue/red graphs represents a different waveform. Despite the application
of the radar equation, the RCS values are variable by the order of 10dBm2.

G.2 All aircraft Max RCS of Hybrid HRR profiles
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Figure G.5: Maximum Radar Cross Section (RCS) of Hybrid High Range Resolution profiles, plotted
for an inbound Falcon aircraft observed by MESAR2 during trials. The blue upper graphs show
the (uncalibrated) maximum power /dB of the HRR profile. The red lower graphs show the same
data following application of the Radar Equation. This has the effect of removing the negative trend
reulting from the R−4 propagation loss. Each set of blue/red graphs represents a different waveform.
Despite the application of the radar equation, the RCS values are variable by the order of 10dBm2.
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Figure G.6: Maximum Radar Cross Section (RCS) of Hybrid High Range Resolution profiles, plotted
for an inbound Pod observed by MESAR2 during trials. The blue upper graphs show the (uncali-
brated) maximum power /dB of the HRR profile. The red lower graphs show the same data following
application of the Radar Equation. This has the effect of removing the negative trend reulting from
the R−4 propagation loss. Each set of blue/red graphs represents a different waveform. Despite the
application of the radar equation, the RCS values are variable by the order of 10dBm2.



G. Radar Cross Section measurements of aircraft 249

Figure G.7: Maximum (Classical) HRR profile RCS plotted against target range for six aircraft using
Waveform A. Plots are colour coded by aircraft type.

G.3 Six aircraft Max RCS Waveform A Classical
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Figure G.8: Maximum (Classical) HRR profile RCS plotted against target range for six aircraft using
Waveform A. Plots are colour coded by Four Lengths classes.

Figure G.9: Maximum (Classical) HRR profile RCS plotted against target range for six aircraft using
Waveform A. Plots are colour coded by Long or Short classes.
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Figure G.10: Maximum (Hybrid) HRR profile RCS plotted against target range for six aircraft using
Waveform A. Plots are colour coded by aircraft type.

G.4 Six aircraft Max RCS Waveform A Hybrid
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Figure G.11: Maximum (Hybrid) HRR profile RCS plotted against target range for six aircraft using
Waveform A. Plots are colour coded by Four Lengths classes.

Figure G.12: Maximum (Hybrid) HRR profile RCS plotted against target range for six aircraft using
Waveform A. Plots are colour coded by Long or Short classes.
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Figure G.13: Maximum (Classical) HRR profile RCS plotted against target range for six aircraft using
Waveform B. Plots are colour coded by aircraft type.

G.5 Six aircraft Max RCS Waveform B Classical
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Figure G.14: Maximum (Classical) HRR profile RCS plotted against target range for six aircraft using
Waveform B. Plots are colour coded by Four Lengths classes.

Figure G.15: Maximum (Classical) HRR profile RCS plotted against target range for six aircraft using
Waveform B. Plots are colour coded by Long or Short classes.
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Figure G.16: Maximum (Classical) HRR profile RCS plotted against target range for six aircraft using
Waveform C. Plots are colour coded by aircraft type.

G.6 Six aircraft Max RCS Waveform C Classical
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Figure G.17: Maximum (Classical) HRR profile RCS plotted against target range for six aircraft using
Waveform C. Plots are colour coded by Four Lengths classes.

Figure G.18: Maximum (Classical) HRR profile RCS plotted against target range for six aircraft using
Waveform C. Plots are colour coded by Long or Short classes.



Appendix H

Importing MESAR2 data: DRAS,
M2DATS & MEROS import_data_gui

Recorded data was stored in the MESAR2 data logger in a proprietary format readable using the

Roke Manor software package DRAS and could be extracted (either via dump to tape or via Ethernet

connection) as a series of ‘acquisitions.’ These were often very large files (several GB) containing all

the receiver samples data, indexed by waveform type, look type (e.g. “NCTR”) and track number.

Once transferred to a standard PC, the data could be filtered by the track number assigned to each

target. Track numbers were captured electronically during the trials and also by hand. The latter

record was useful in overcoming problems of track dropping and seduction which might result in a

change of track number for a given aircraft. For each experiment (most complicated in the Targets of

Opportunity trial), a list of track numbers was noted against each named object, which was effectively

tracked by eye.

For each aircraft (and each inbound run in the case of the Pod & Falcon trial) a set of files

were saved, indexed by look number. This was a somewhat manual process, using DRAS as the

filtering mechanism to extract the wanted data from the large acquisition file. DRAS files were

then converted into human readable form using an in-house BAE Systems software package called

‘M2DATS’ (MESAR2 Data Analysis Toolset)1. Sub-array sum beam data was combined for each

PRI of receiver samples. The resulting ASCII file comprised of a general header followed a header,

receiver samples pairing for each burst of pulses. The header information comprised an extensive set

of parameters defining each burst. From this the following attributes could be obtained:

• Carrier frequency

• Waveform type (from which pulse coding, pulse length, pule bandwidth, frequency step, number
of pulses and number of frequency stepped bursts are known)

• Start range of receiver samples

• Number of guard pulses

• Pulse Repetition Frequency (PRF)

• Timestamp of look

• U,V coordinates used to calculate target azimuth and elevation.
1Written by Graham Biggs.
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Figure H.1: Graphical user interface (GUI) to the MATLAB software import_data_gui.m written by
the author to import ASCII files written out by M2DATS into structured arrays accessible within the
MATLAB environment.

The ASCII files were then automatically sorted by waveform type using a MATLAB function

sort_wav.m2 and placed in a directory structure of hierachy <target name> \ <waveform type>

\ <filename with look number>. This was a useful innovation upon previous analysis as the exact

cycle (and certainly the start type) of waveforms issued as NCTR looks was variable, as one might

expect from the adaptive scheduling character of MESAR2. The ASCII data files were then imported

into the MATLAB environment using the import_data_gui.m software (see figure H.1) created as

part of the ‘Meros’ suite of applications. In the MATLAB environment, imported data is stored in a

structured array imported_data with field names which easily identify the receiver samples and header

entries. Each data type is converted into the most appropriate form for further use. For example,

the receiver samples are stored in a three dimensional array with rows corresponding to pulses within

each burst, columns corresponding to frequency steps and pages corresponding to samples within each

receiver opening window. Hence each row and column index points to a unique vector of receiver

samples, stored as complex numbers I + iQ.

2Written by the author & Mark Scott (2006)
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Figure H.2: MESAR2 Data Analysis Tool Set (M2DATS) written by Graham Biggs of BAE Systems
to help extract easily importable (ASCII) data files from (binary) coded data read and written by the
Roke Manor MESAR2 analysis software DRAS.



Appendix I

k-means classification

The k-means fuzzy classifier is a popular non-parametric method which is based upon the iterative

Generalized Lloyd algorithm (Karayiannis 1995). The version described here is an application of the

methods of Bezdeck, Ehrlich & Full cited in Bowden [14] and Wong [113] and clearly described (in

the context of other clustering and classification techniques) in the textbooks by Webb [110] and

Duda [27]. Unlike Bayesian methods, the k-means technique does not depend upon knowledge of the

underlying likelihood probability distributions of the feature measurements.

I.1 Clustering the training data

The inputs to the k-means classifier are i = 1...N sets of K hyperspheres of radii
n
R
(i)
k

o
and origin

vectors
n
c
(i)
k

o
. These are created from training data via the k-means clustering method:

1. Collect a training data set of z = 1...Zi feature column vectors
n
t
(i)
z

o
(consisting ofM measure-

ments, which are real numbers) known to derive from class wi of a finite alphabet {w1...wN}
of length N. Based on the recommendations of Zyweck & Bogdon [118] 40% of a total data

set allocated to training might be an appropriate division. Otherwise proceed with a synthesis

of training data using random number generators coupled with a probability distribution gen-

erating function and ‘expert’ parameters1. This of course breaks the assumption of no prior

knowledge of the underlying feature statistical distribution.

2. Define a feature membership matrix U of K rows and Zi columns (such that K ¿ Zi) and

initialize its elements based on cluster assignment via permutation of 1 ... K, i.e. if K = 2,

feature vectors {t(i)1 , t
(i)
2 , t

(i)
3 ...} are assigned initial cluster memberships {1,2,1...}. This would

yield, (for even Zi) U =

Ã
1 0 1

0 1 0
...

0

1

!
.

3. Compute a set of K (M -dimensional) hyperspheres of with origin vectors
n
c
(i)
k

o

c
(i)
k =

1

ηk

ZiX
z=1

Ukzt
(i)
z (I.1)

ηk =

ZiX
z=1

Ukz

1 e.g. the class mean and standard deviation, if the underlying feature distribution was Gaussian.
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4. Compute a matrix of distances D from each of the feature vectors to each of the hypersphere

centres. Let [D]kz be the Euclidean distance between the z
th feature vector and the kth cluster

centre.

[D]kz ≡ Dkz =
¯̄̄
t(i)z − c

(i)
k

¯̄̄
(I.2)

5. Compute hypersphere radii which bound the features to their assigned classes

R
(i)
k = max [Dk1Uk1....DkZiUkZi ] (I.3)

6. Compute cost function J which is the sum of the squares of distances between all feature vectors

and their respective cluster centres.

J =
KX
k=1

ZiX
z=1

(DkzUkz)
2 (I.4)

7. Update the feature membership matrix based upon the minimum feature to hypersphere centre

distance, i.e. if hypersphere h satisfies Dhz = min [D1z, ...Dkz]

[U]kz ≡ Ukz →
(

1 k = h

0 k 6= h
(I.5)

An alternative ‘fuzzy’ update (see [110] pp380) is to allow for a non-binary membership of

features with classes.

[U]kz ≡ Ukz →
1

KX
v=1

³
Dkz
Dvz

´ 2
F−1

(I.6)

F is a ‘non linearity’ parameter in the range 1 < F <∞

8. Store membership matrix, cost function, hypersphere centres and radii.

9. Repeat from step 3.

After Q iterations (10 might be sufficient2) determine the hypersphere centres and radii which

correspond to the minimum cost.

I.2 Classifying features

Classification of a feature vector x proceeds via evaluation of scalar discriminant functions gi(x) for

each class wi of a finite alphabet {w1, ...wN} . The assigned class is that which corresponds to the
maximum value of the set of discriminant functions {g1(x), ...gN (x)} . The discriminant function gi(x)

is computed from the clusters formed from the training data set using the following formula:

gi(x) =max
k

⎧⎪⎨⎪⎩exp

⎛⎜⎝−
¯̄̄
x− c(i)k

¯̄̄2
2R

(i)
k R

(i)
k

⎞⎟⎠
⎫⎪⎬⎪⎭ (I.7)

2Alternatively, proceed until fractional change in the smallest two costs J is less than some set fraction e.g 0.01).
If the cost minimum never reaches this stability, set an upper limit to the maximum number of iterations to allow the
algorithm to complete in a timely fashion.
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Figure I.1: An example application of the k-means clustering algorithm. Two dimensional feature
data are clustered using K = 1, 2, 3 & 4 clusters. The examples shown are for the minimum cost
J after 10 iterations. From a visual perspective it is clear that the data separates into two classes.
However, K > 2 actually offers a marginal reduction in cost.
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Figure I.2: Plot of k-means cost function J against iteration, for K = 1, 2, 3 & 4 clusters. Note
convergence in all cases is rapid. 4 iterations would have been sufficient.
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Figure I.3: Plot of minimum k-means cost vs number of clusters K. As one might expect, minimum
cost appears to reduce with increased number of clusters. This is an obvious asymptotic result since if
the number of clusters equals the number of data points, cluster centres at the data points will result
in a zero distance matrix and therefore zero cost. However, this might not be a desirable result since
it gives no information regarding how the data set is grouped.
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Figure I.4: Illustration of fuzzy k-means classification, using three feature dimensions. The training

data set (orange points) are clustered into K = 3 spherical regions. The association exp

Ã
−

x−c(i)k
2

2R
(i)
k R

(i)
k

!
between the test data point z is computed from the distance

¯̄̄
x− c(i)k

¯̄̄
to the centre of cluster k

hypersphere, which has radius R(i)k .

i.e. find the maximum association exp

Ã
−

x−c(i)k
2

2R
(i)
k R

(i)
k

!
of the feature vector with each cluster hyper-

sphere k (of K) defined by radius R(i)k and origin vector c(i)k , as illustrated in fig I.4.

Figures I.1,I.2 & I.3 illustrate the k-means clustering algorithm using two dimensional feature data.

Note that the minimum value of the cost function J can reduce with increased number of clusters.

However, from a visual perspective this is clearly not the ‘natural’ segmentation. A method to ‘opti-

mize’ the value of K could be to to add an additional condition of minimal hypersphere overlap. The

optimum value ofK in the context of the k-means classifier is even less clear. In this implementation we

group training data from a particular class into a set of K hyperspheres and then derive a discriminant

function based upon the maximum association with one of the hyperspheres. From a computational

efficiency perspective, an excess of clusters is less desirable. However, if overlapping clusters map

out a non-spherical training data distribution then the resulting classification performance should be

higher. However, if the hypersphere radii are much smaller than the typical distance between classes,

the discriminant function gi(x) will use small numbers which could lead to unpredictable results given

the finite precision of computational systems. A practical compromise could be to fix K at a relatively

small value (e.g. 3 to 5) for the training data from each class.
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Alternative Bayesian method of
computing the confusion matrix

Define a set of classes defined by a finite alphabet {c1, c2, ...cN} of length N . In the context of

this research the class members correspond to target types such as Falcon, Pod, B747, or perhaps

cruder distinctions such as ‘Long, but no JEM.’ Let each class have a corresponding set of M feature

measurements {m1,m2...mM} . Let these be weighted and normalized such that the numerical values
of typical features are similar and, ideally, clustered around the interval [0,1]. This will remove any

bias of a particular measurement. For example: target length, JEM spacing, maximum Radar Cross

Section could be (respectively) divided by the length of the HRR window, the PRF and the maximum

cross section observed in the target data set. The Bayesian classifier works by computing the posterior

probability P (X| {m1,m2...mM}) of observing a particular class member X, given the entire set of
feature measurements. Using Bayes rule [103], the single feature posterior probability P (X|mj) can

be expressed in terms of the likelihood P (mj |X) of obtaining the feature measurement mj given the

assumption of a particular class, and the prior probability P (X) of choosing a particular class.

P (X|mj) =
P (mj |X)P (X)

NX
n=1

P (mj |cn)P (cn)

(J.1)

Assuming each feature measurement is statistically independent, we can expand the joint proba-

bilities defined by the combined feature posterior in terms of a product of single feature probabilities

defined above. [103] pp 362.

P (X| {m1,m2...mM}) =

MY
j=1

P (X|mj)

XN

n=1

MY
j=1

P (cn|mj)

(J.2)

Tait [103] asserts a uniform prior P (X) = 1/N is often used without further justification. With

this assumption we can therefore express the desired posterior probability in terms of likelihoods for
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the individual features.

P (X| {m1,m2...mM}) =

MY
j=1

P (mj |X)
NX
n=1

P (mj |cn)

XN

n=1

MY
j=1

P (mj |cn)
NX
v=1

P (mj |cv)

(J.3)

If each feature set {m1,m2...mM} derives from measurements from a known class kj , which also

belongs to the same alphabet {c1, c2, ...cN} , one can construct a confusion matrix C with elements

computed from the overall feature posterior defined above.

[C]ij = P
³
ci| {m1,m2...mM}kj

´
=

MY
w=1

P (mwj |ci)
NX
n=1

P (mwj |cn)

XN

n=1

MY
w=1

P (mwj |cn)
NX
v=1

P (mwj |cv)

(J.4)

i.e. the ith row and jth column correspond to the probability of class ci based upon features

{m1j ,m2j ...mMj} sourced from class kj . An ideal classifier will have a very dominant (ideally unity)

diagonal, i.e. when i = j , the class in question matches the source of the data.

The likelihoods can be computed from the probability distributions of the individual feature mea-

surements. This is readily computable if such distributions are Gaussian. If this is the case then

for each class of data, the feature measurements {m1j ,m2j ...mMj} ≡ {m1,m2...mM}kj will have an
associated set of means

©
μ1j , μ2j ...μMj

ª
and standard deviations {σ1j , σ2j ...σMj} . The latter shall

be obtained by prior knowledge of the data set (‘Expert’ prior knowledge) or via statistical calcu-

lation using a ‘training’ proportion of the data set. If there are Z sets of feature measurementsn
m
(1)
wj ,m

(2)
wj , ...m

(Z)
wj

o
contributing to the classification (for example, all the looks in a particular run )

then one can apply a χ2 test [89] to yield the required likelihood.

P (mwj |cn) =

Z ∞

χ2∗

p
¡
χ2, Z

¢
dχ2 = 1− γ

µ
χ2∗
2
,
Z

2

¶
(J.5)

where

χ2∗ = χ2∗ (w, j, n) =
ZX
z=1

¯̄̄
m
(z)
wj − μwn

¯̄̄2
σwn

(J.6)

p
¡
χ2
¢

=
e−

1
2
χ2χZ−2

2
Z
2 Γ
¡
Z
2

¢
γ (x, a) =

1

Γ(a)

Z x

0
ta−1e−tdt

Γ(a) =

Z ∞

0
ta−1e−tdt

i.e. P (mwj |cn) is defined to be the probability of a χ2 ≥ χ2∗. This has the desired properties since

as χ2vj becomes high, 1 − γ
³
χ2∗
2 ,

Z
2

´
→ 0 and as χ2vj −→ 0, 1 − γ

³
χ2∗
2 ,

Z
2

´
→ 1. The key subtlety in

P (mwj |cn) is that the means and standard deviations are taken from data corresponding to class cn
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whereas the w = 1...M sets of feature measurements are taken from class cj . The functions Γ(a) and

γ (x, a) are, respectively, ‘gamma’ and ‘lower incomplete gamma’ special functions, readily evaluatable

using numerical software packages such as MATLAB.
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Target data sheets (Range profiles):
wfc2 ∆f=3.2MHz P=8 Q=128
(Waveform A). Classical method
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Figure K.1: Target data sheet for an inbound Boeing 747 using Waveform A (wfc2 ∆f = 3.2MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure K.2: Target data sheet for an inbound Boeing 757 using Waveform A (wfc2 ∆f = 3.2MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure K.3: Target data sheet for an inbound Boeing 777 using Waveform A (wfc2 ∆f = 3.2MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure K.4: Target data sheet for an inbound Dash8 using Waveform A (wfc2 ∆f = 3.2MHz, P = 8,
Q =128). HRR processing is Classical.
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Figure K.5: Target data sheet for an inbound Falcon using Waveform A (wfc2 ∆f = 3.2MHz, P = 8,
Q =128). HRR processing is Classical.
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Figure K.6: Target data sheet for a repeater Pod (mounted upon the Falcon aircraft illustrated in fig
K.5 using Waveform A (wfc2 ∆f = 3.2MHz, P = 8, Q =128). HRR processing is Classical.
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Target data sheets (Range profiles):
wfc2 ∆f=3.2MHz P=8 Q=128
(Waveform A). Hybrid method
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Figure L.1: Target data sheet for an inbound Boeing 747 using Waveform A (wfc2 ∆f = 3.2MHz, P
= 8, Q =128). HRR processing is Hybrid.
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Figure L.2: Target data sheet for an inbound Boeing 757 using Waveform A (wfc2 ∆f = 3.2MHz, P
= 8, Q =128). HRR processing is Hybrid.



L. Target data sheets (Range profiles): wfc2 ∆f=3.2MHz P=8 Q=128
(Waveform A). Hybrid method 279

Figure L.3: Target data sheet for inbound Boeing 777 using Waveform A (wfc2 ∆f = 3.2MHz, P =
8, Q =128). HRR processing is Hybrid.
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Figure L.4: Target data sheet for an inbound Dash8 using Waveform A (wfc2 ∆f = 3.2MHz, P = 8,
Q =128). HRR processing is Hybrid.
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Figure L.5: Target data sheet for an inbound Falcon using Waveform A (wfc2 ∆f = 3.2MHz, P = 8,
Q =128). HRR processing is Hybrid.



L. Target data sheets (Range profiles): wfc2 ∆f=3.2MHz P=8 Q=128
(Waveform A). Hybrid method 282

Figure L.6: Target data sheet for inbound Pod using Waveform A (wfc2 ∆f = 3.2MHz, P = 8, Q
=128). HRR processing is Hybrid.
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Target data sheets (Range profiles):
wfc3 ∆f=0.8MHz P=8 Q=128
(Waveform B). Classical method
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Figure M.1: Target data sheet for an inbound Boeing 747 using Waveform B (wfc3 ∆f = 0.8MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure M.2: Target data sheet for an inbound Boeing 747 using Waveform B (wfc3 ∆f = 0.8MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure M.3: Target data sheet for an inbound Boeing 747 using Waveform B (wfc3 ∆f = 0.8MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure M.4: Target data sheet for an inbound Boeing 747 using Waveform B (wfc3 ∆f = 0.8MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure M.5: Target data sheet for an inbound Boeing 747 using Waveform B (wfc3 ∆f = 0.8MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure M.6: Target data sheet for an inbound Boeing 747 using Waveform B (wfc3 ∆f = 0.8MHz, P
= 8, Q =128). HRR processing is Classical.
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wfc3 ∆f=3.2MHz P=8 Q=128
(Waveform C). Classical method

290



N. Target data sheets (Range profiles): wfc3 ∆f=3.2MHz P=8 Q=128
(Waveform C). Classical method 291

Figure N.1: Target data sheet for an inbound Boeing 747 using Waveform C (wfc3 ∆f = 3.2MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure N.2: Target data sheet for an inbound Boeing 757 using Waveform C (wfc3 ∆f = 3.2MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure N.3: Target data sheet for an inbound Boeing 777 using Waveform C (wfc3 ∆f = 3.2MHz, P
= 8, Q =128). HRR processing is Classical.
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Figure N.4: Target data sheet for an inbound Dash8 using Waveform C (wfc3 ∆f = 3.2MHz, P = 8,
Q =128). HRR processing is Classical.



N. Target data sheets (Range profiles): wfc3 ∆f=3.2MHz P=8 Q=128
(Waveform C). Classical method 295

Figure N.5: Target data sheet for an inbound Falcon using Waveform C (wfc3 ∆f = 3.2MHz, P = 8,
Q =128). HRR processing is Classical.
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Figure N.6: Target data sheet for an inbound Pod using Waveform C (wfc3 ∆f = 3.2MHz, P = 8, Q
=128). HRR processing is Classical.
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Figure O.1: (Doppler) target data sheet for inbound Boeing 747. Waveform is E (wfc2 ∆f = 3.2MHz,
P = 32, Q = 32)
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Figure O.2: (Doppler) target data sheet for inbound Boeing 757. Waveform is E (wfc2 ∆f = 3.2MHz,
P = 32, Q = 32)



O. Target data sheets (Doppler): 6 aircraft inbound 300

Figure O.3: (Doppler) target data sheet for inbound Boeing 777. Waveform is E (wfc2 ∆f = 3.2MHz,
P = 32, Q = 32)
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Figure O.4: (Doppler) target data sheet for inbound Dash8. Waveform is E (wfc2 ∆f = 3.2MHz, P =
32, Q = 32)
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Figure O.5: (Doppler) target data sheet for inbound Falcon. Waveform is D (wfc2 ∆f = 0MHz, P =
32, Q = 32)
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Figure O.6: (Doppler) target data sheet for inbound Pod. Waveform is D (wfc2 ∆f = 0MHz, P = 32,
Q = 32)



Appendix P

Target data sheets (Doppler): 6
aircraft outbound

304



P. Target data sheets (Doppler): 6 aircraft outbound 305

Figure P.1: (Doppler) target data sheet for outbound Boeing 747. Waveform is E (wfc2 ∆f = 3.2MHz,
P = 32, Q = 32)
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Figure P.2: (Doppler) target data sheet for outbound Boeing 757. Waveform is E (wfc2 ∆f = 3.2MHz,
P = 32, Q = 32)
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Figure P.3: (Doppler) target data sheet for outbound Boeing 777. Waveform is E (wfc2 ∆f = 3.2MHz,
P = 32, Q = 32)
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Figure P.4: (Doppler) target data sheet for inbound Dash8. Waveform is E (wfc2 ∆f = 3.2MHz, P =
32, Q = 32)


