
Stirling’s Approximation and Binomial, Poisson and Gaussian distributions
AF 30/7/2014.

These notes describe much of the underpinning mathematics associated with the Binomial, Poisson and
Gaussian probability distributions. Key aspects are:

• The use of the Gamma function Γ(n) =

� ∞

0
xn−1e−xdx to derive the standard integral n! =

� ∞

0
xne−xdx

• A derivation of the result

� ∞

−∞
e−y

2
dy =

√
π

• Use of the the above results and Maclaurin expansion of ln(1 + x) = x − x2

2 +
x3

3 − ... , for |x| < 1, to

derive Stirling’s approximation n! ≈ nne−n
√
2πn, which is valid for large n

• A derivation of the Poisson distribution P (x) = λxe−λ

x! as a limit of the Binomial distribution P (x) =
n!

(n−x)!x!p
x(1− p)n−x , when n is large and p is small, but the expectation λ = np is constant.

• A derivation of the expectation E[x] and variance V [x] of the Binomial and Poisson distributions. This
is done directly (for the Poisson case) and also via Moment Generating Functions (MGFs). The MGF of
a distribution of random variable x is M(x, t) = E[ext]

• An argument which shows the Poission (and Binomial) distributions tend to a Gaussian in overall shape
as, respectively, parameters λ and n become large.

• A derivation of the Central Limit Theorem. i.e. “The distribution of the mean values of a set of inde-
pendent random values tends towards a Gaussian distribution if the number of samples is large enough.”

Reference: The essence of most of the arguments presented here have been adapted from from Riley,
K.F., Hobson, M.P., Bence, S.J., Mathematical Methods for Physics and Engineering. Third Edition,
2006. Cambridge University Press. pp636-640, 1174-1188.

1 The Gamma Function and Stirling’s approximation

1.1 Definition of the gamma function

The gamma function Γ(n) is defined by

Γ(n) =

� ∞

0
xn−1e−xdx (1)

It is undefined for an n of zero or negative integers. (See figure below).

1.1.1 Special case #1: Γ(1) = 1

1.1.2

Γ(1) =

� ∞

0
e−xdx =

�
−e−x

�∞
0
= (0)− (−1) (2)

∴ Γ(1) = 1 (3)

Special case #2: Γ(n+ 1) = nΓ(n)

Γ(n+ 1) =

� ∞

0
xne−xdx (4)

=
�
−e−xxn

�∞
0
−
� ∞

0
n
�
−e−x

�
xn−1dx (5)

= 0+ n

� ∞

0
xn−1e−xdx (6)
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Figure 1: Plot of the gamma function Γ(x) =

� ∞

0
wx−1e−wdw. Note it is undefined for x = 0 and negative

integers.

Therefore
Γ(n+ 1) = nΓ(n) (7)

1.1.3 n! =

� ∞

0
xne−xdx

Using Γ(1) = 1, and taking n to be a positive integer

Γ(2) = Γ(1) = 1 (8)

Γ(3) = 2Γ(2) = 2 (9)

Γ(4) = 3Γ(3) = 3× 2 = 6 (10)

Γ(5) = 4Γ(4) = 4× 3× 2 = 24 (11)

Hence
Γ(n+ 1) = n! (12)

We can therefore write

n! =

� ∞

0
xne−xdx (13)

1.2 Stirling’s approximation

In the previous section we derived the result

n! =

� ∞

0
xne−xdx (14)

Now xn =
�
elnx

�n
= en lnx, hence

n! =

� ∞

0
en lnx−xdx (15)

We can expand this by using the substitution x = n+ y
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n! =

� ∞

−n
exp {n ln(n+ y)− n− y} dy (16)

Now

ln(n+ y) = ln
�
n
�
1 +

y

n

��
= lnn+ ln

�
1 +

y

n

�
(17)

The Maclaurin series for ln(1 + x) is

ln(1 + x) = x− x
2

2
+
x3

3
− x

4

4
+ ... (18)

which converges if |x| < 1. Hence if we can accept the argument that “n is sufficient large such that y
n < 1”

then we can write

ln
�
1 +

y

n

�
≈ y

n
− y2

2n2
+
y3

3n3
− y4

4n4
+ ... (19)

Hence

n! =

� ∞

−n
exp

�
n

	
lnn+

y

n
− y2

2n2
+
y3

3n3
− y4

4n4
+ ...



− n− y

�
dy (20)

=

� ∞

−n
en lnn−n exp

�
y − y2

2n
+
y3

3n2
− y4

4n3
+ ...− y

�
dy (21)

= nne−n
� ∞

−n
exp

�
− y

2

2n
+
y3

3n2
− y4

4n3
+ ...

�
dy (22)

where the last step uses the result en lnn−n =
�
elnn

�n
e−n = nne−n

Now if n →∞

n! ≈ nne−n
� ∞

−∞
e−

y2

2ndy (23)

To evaluate this further consider the integral

I =

� ∞

−∞
e−y

2
dy (24)

I2 can be written as

I2 =

� ∞

−∞
e−y

2
dy

� ∞

−∞
e−x

2
dx (25)

which can be interpreted as a double-integral, or area-finding integral over the x, y plane

I2 =

� ∞

x=−∞

� ∞

y=−∞
e−(x

2+y2)dxdy (26)

Changing to plane-polar coordinates r, θ

x2 + y2 = r2 (27)

dxdy = rdrdθ (28)

Hence

I2 =

� 2π

θ=0
dθ

� ∞

r=0
re−r

2
dr (29)

= 2π

� ∞

r=0
re−r

2
dr (30)
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Now
d

dr

�
e−r

2
�
= −2re−r2 (31)

∴ −1
2

d

dr

�
e−r

2
�
= re−r

2
(32)

∴

�
re−r

2
dr = −1

2
e−r

2
+ c (33)

Hence � ∞

r=0
re−r

2
dr = −1

2

�
e−r

2
∞
0
=
1

2
(34)

Therefore

I2 = 2π

� ∞

r=0
re−r

2
dr = π (35)

Which means � ∞

−∞
e−y

2
dy =

√
π (36)

Hence, using substitution k = y√
2n

� ∞

−∞
e−

y2

2ndy =
√
2n

� ∞

−∞
e−k

2
dk =

√
2πn (37)

Stirling’s approximation is therefore, for large n

n! ≈ nne−n
√
2πn (38)

2 The Poisson Distribution

2.1 Deriving the Poisson distribution as a limit of the Binomial distribution

Let us firstly consider the Binomial Distribution, that is the probability of x successes out of n independent
binary outcomes, (i.e. success or failure) where the probability of success in each ‘trial’ is p

P (x) =
n!

(n− x)!x!p
x(1− p)n−x (39)

The probability of a sequence of x successes followed by n − x failures is px(1 − p)n−x. The number of
permutations of x sucesses and n− x failures is n!

(n−x)!x! , hence the result above.
For a random variable to be Poisson distributed, let us assume success occurs at a average ‘rate’ λ. If there

were n binary trials occuring one after each other within a given time interval then we might expect λ = np
of them to be successful, since E[x] = np is the expectation of the Binomial distribution.1 In this case x is
the number of successes with the time interval, i.e. corresponds to a (random) success rate. For example, the
probability of a goal resulting from any given kick in a soccer game is fairly low. There are probabily thousands
of kicks per game. However, the expected number of goals scored is likely to be something like 2 or 3 per game.
The goals scored per game are therefore likely to obey Poisson statistics.

Let us assert as a condition for Poisson distribution that n→∞ and p→ 0 such that np = λ is constant.

P (x, λ) = lim
p→0,n→∞

n!

(n− x)!x!p
x(1− p)n−x (40)

1 For the Binomial Distribution P (x) = n!
(n−x)!x!p

x(1 − p)n−x the expectation (mean) is E[x] = np and the variance is V [x] =

np(1− p). This result is derived in later sections.
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Now

lim
n→∞

n!

(n− x)! = lim
n→∞

�
n(n− 1)(n− 2)...(n− x+ 1)(n− x)!

(n− x)!

�
(41)

= lim
n→∞

{n(n− 1)(n− 2)....(n− x+ 1)} (42)

→ nx (43)

Now

px(1− p)n−x = px

(1− p)x (1− p)
n (44)

And

(1− p)n =

	
1− λ

n


n
(45)

= 1 + n

	
−λ
n



+
1

2!
n(n− 1)

	
−λ
n


2
+
1

3!
n(n− 1)(n− 2)

	
−λ
n


3
+ ... (46)

= 1− λ+ 1
2
λ2
	
1− 1

n



− 1

3!
λ2
	
1− 3

n
+
2

n2



+ ... (47)

Therefore

lim
n→∞

	
1− λ

n


n
= 1− λ+ 1

2
λ2 − 1

3!
λ2 + ... (48)

which results in the useful result

lim
n→∞

	
1− λ

n


n
= e−λ (49)

Hence

lim
p→0,n→∞

px(1− p)n−x = lim
p→0,n→∞

px

(1− p)x (1− p)
n = lim

p→0,n→∞

px

(1− p)x (1−
λ

n
)n −→ pxe−λ (50)

Putting this all together

P (x, λ) = lim
n→∞

n!

(n− x)! ×
1

x!
× lim
p→0,n→∞

px(1− p)n−x (51)

= nx × 1

x!
× pxe−λ (52)

Since λ = np the Poisson distribution is given by

P (x, λ) =
λxe−λ

x!
(53)

2.2 Deriving the mean of the Poisson distribution

Note this can be done much more elegantly using a Moment Generating Function (MGF).

λ is correctly associated with the mean success rate if it is the expectation E[x] of the Poisson distribution

P (x, λ) = λxe−λ

x! . Note P (x, λ) is a discrete distribution, i.e. random variable x is restricted to being a positive
integer, including zero.

E [x] =
∞�

x=0

xP (x, λ) = e−λ
∞�

x=0

xλx

x!
(54)

∞�

x=0

xλx

x!
=

∞�

x=1

λx

(x− 1)! (55)
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To make further progress, let y = x− 1
∞�

x=1

λx

(x− 1)! =
∞�

y=0

λy+1

y!
= λ

∞�

y=0

λy

y!
(56)

Now

eλ = 1 + λ+
1

2!
λ2 +

1

3!
λ3 + ... =

∞�

y=0

λy

y!
(57)

Hence

E [x] = e−λ
∞�

x=1

xλx

x!
= e−λλeλ = λ (58)

Therefore

P (x, λ) =
λxe−λ

x!
(59)

E[x] = λ (60)

2.3 Deriving the variance of the Poisson distribution

Note this can be done much more elegantly using a Moment Generating Function (MGF).

By definition, the variance V [x] of the Poisson distribution is given by

V [x] =
∞�

x=0

x2P (x, λ)− (E [x])2 (61)

Now

∞�

x=0

x2P (x, λ) = e−λ
∞�

x=0

x2λx

x!
(62)

and

∞�

x=0

x2λx

x!
=

∞�

x=1

xλx

(x− 1)! (63)

Let y = x− 1
∞�

x=1

xλx

(x− 1)! =
∞�

y=0

(y + 1)λy+1

y!
= λ

∞�

y=0

yλy

y!
+ λ

∞�

y=0

λy

y!
(64)

From above
∞�

y=0

λy

y!
= eλ (65)

Now

∞�

y=0

yλy

y!
=

∞�

y=1

λy

(y − 1)! (66)

If z = y − 1
∞�

y=1

λy

(y − 1)! =
∞�

z=0

λz+1

z!
= λ

∞�

z=0

λz

z!
= λeλ (67)
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Hence
∞�

x=1

xλx

(x− 1)! = λ
2eλ + λ2 (68)

Hence using E[x] = λ

V [x] = e−λ
∞�

x=1

xλx

(x− 1)! − λ
2 (69)

= e−λ
�
λ2eλ + λeλ

�
− λ2 (70)

which means
V [x] = λ (71)

In summary:

P (x, λ) =
λxe−λ

x!
(72)

E[x] = λ (73)

V [x] = λ (74)

3 Definition of the Moment Generating Function (MGF)

An elegant way of deriving the expectation and variance of the Binomial distribution (and in-fact any distrib-
ution) is to consider the associated Moment Generating Function (MGF) M(x, t). This is defined as

M(x, t) = E[etx] (75)

where x is a random variable. Using the Maclaurin expansion of etx

etx = 1 + tx+
1

2!
(tx)2 +

1

3!
(tx)3 + ... (76)

Hence

M(x, t) = 1 +E[x]t+E[x2]
t2

2!
+ ... (77)

We can therefore work out expectations of (integer) powers of x by finding derivatives of the form

E[xn] =
∂nM(x, t)

∂tn

����
t=0

(78)

The variance is therefore

V [x] = E[x2]− (E[x])2 (79)

V [x] =
∂2M(x, t)

∂t2

����
t=0

−
	
∂M(x, t)

∂t

����
t=0


2
(80)

Moment generating functions for various common distributions are as follows:

Distribution P (x) M(x, t) E[x] V [x]

Gaussian exp
�
(x−µ)2

2σ2

�
exp

�
µt+ σ2t2

2

�
µ σ2

Binomial
n!

(n− x)!x!p
x(1− p)n−x

�
pet + 1− p

�n
np np(1− p)

Poisson
λxe−λ

x!
eλ(e

t−1) λ λ
(81)
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4 Gaussian approximations and the central limit theorem

4.1 Gaussian approximation of the Binomial Distribution

Stirling’s approximation n! ≈ nne−n
√
2πn can be used to approximate the Binomial Distribution when both

the number of trials n and number of successes x become large.

P (x) =
n!

(n− x)!x!p
x(1− p)n−x (82)

Hence

n! ≈ nne−n
√
2πn (83)

(n− x)! ≈ (n− x)n−xe−(n−x)
�
2π(n− x) (84)

x! = xxe−x
√
2πx (85)

P (x) ≈ nne−n
√
2πn

(n− x)n−xe−(n−x)
�
2π(n− x)xxe−x

√
2πx

px(1− p)n−x (86)

=
e−n

√
2πnn

√
n√

2π
√
2πe−nexe−x(n− x)n−x

�
(n− x)xx√x

px(1− p)n−x (87)

=
nn
√
n√

2π(n− x)n−x
�
(n− x)xx√x

px(1− p)n−x (88)

=
nn+

1
2

√
2π(n− x)n−x+ 1

2xx+
1
2

px(1− p)n−x (89)

=
1

√
2π(1− x

n)
n−x+ 1

2xx+
1
2

px(1− p)n−x (90)

=
1√
2π
(1− x

n
)−n+x−

1
2 × x−x− 1

2 × px(1− p)n−x (91)

Now using the identities xa = ea lnx and eAeBeC = eA+B+C

(1− x
n
)−n+x−

1
2 × x−x−1

2 × px(1− p)n−x (92)

= exp

�
−
	
n− x+ 1

2



ln(1− x

n
)−

	
x+

1

2



lnx+ x ln p+ (n− x) ln(1− p)

�
(93)

Now consider the change of variable y ≫ 1

y = x− np (94)

After lots of tedious algebra2 it can be shown that:

P (x) ≈ 1
�
2πnp(1− p)

exp

�

−1
2

(x− np)2
np(1− p)

�

(95)

i.e. Gaussian in form with mean µ = np and variance σ2 = np(1− p)
2 Riley, Hobson & Bence don’t even attempt it!
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4.2 Gaussian approximation of the Poisson Distribution

P (x, λ) =
λxe−λ

x!
(96)

Consider the limit when mean success rate λ→∞. If this is true then the discrete nature of x has limited
overall bearing on the shape of the curve of P (x), so we can assume it to be continuous. We may also assume
that x→∞.

To find the limiting continuous distribution of P (x) let us first find lnP

lnP = x lnλ− λ− lnx! (97)

Using Stirling’s approximation, valid for x→∞
x! ≈ xxe−x

√
2πx (98)

Hence
lnx! ≈ x lnx− x+ ln

√
2πx (99)

Therefore
lnP = x lnλ− λ− x lnx+ x− ln

√
2πx (100)

Now we assume the Gaussian P (x) ought to fit most accurately around the mean of P (x), which is at
x = λ. Hence define x = λ+ ǫ, where ǫ

λ
≪ 1.

Hence

lnP = (λ+ ǫ) lnλ− λ− (λ+ ǫ) ln (λ+ ǫ) + λ+ ǫ− ln
�
2π (λ+ ǫ) (101)

= ǫ+ (λ+ ǫ) ln
λ

λ+ ǫ
− ln

�
2π (λ+ ǫ) (102)

= ǫ+ (λ+ ǫ) ln
1

1 + ǫ
λ

− ln
�
2πλ

�
1 +

ǫ

λ

�
(103)

= ǫ− (λ+ ǫ) ln
�
1 +

ǫ

λ

�
− ln

√
2πλ− 1

2
ln
�
1 +

ǫ

λ

�
(104)

= ǫ− ln
√
2πλ−

	
λ+ ǫ+

1

2



ln
�
1 +

ǫ

λ

�
(105)

Now since ǫ
λ ≪ 1, hence we can use the Maclaurin expansion for ln

�
1 + ǫ

λ

�
= ǫ

λ − ǫ2

2λ2
+ ...

Hence

lnP = ǫ− ln
√
2πλ−

	
λ+ ǫ+

1

2


	
ǫ

λ
− ǫ2

2λ2
+ ...



(106)

∴ lnP ≈ ǫ− ln
√
2πλ− ǫ− ǫ

2

λ
− ǫ

2λ
+
ǫ2

2λ
+
ǫ2

4λ2
+ ... (107)

lnP ≈ − ǫ
2

2λ
− ln

√
2πλ− ǫ

2λ
+
ǫ2

4λ2
+ .. (108)

Now since ǫ
λ ≪ 1 then we can ignore ǫ2

4λ2
and ǫ

2λ terms relative to ǫ2

2λ
Hence

lnP ≈ − ǫ
2

2λ
− ln

√
2πλ (109)

which implies

P (x) =
1√
2πλ

e−
ǫ2

2λ (110)

Substituting for x = λ+ǫ we arrive at a Gaussian form for the Poisson distribution, with mean and variance
λ

P (x) =
1√
2πλ

e−
(x−λ)2

2λ (111)
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4.3 The Central Limit Theorem

Define x to be a random variable, e.g. a random quantity that can be measured n times. Let us assume

each measurement is independent. Let us also assert that the ith measurement xi derives from a probability
distribution with expectation µi = E[xi] and variance σ2i = V [xi].

Define another random variable

Z =
1

n

n�

i=1

xi (112)

i.e. the mean average of the measurements.
The expectated value of Z is therefore

µZ = E[Z] = E

�
1

n

n�

i=1

xi

�

=
1

n

n�

i=1

E[xi] =
1

n

n�

i=1

µi (113)

The variance is σ2Z = V [x] = E[Z
2]− µ2Z

σ2Z = V [x] = E[Z
2]− µ2Z (114)

E[Z2] = E



 1
n2

�
n�

i=1

xi

�2

 (115)

Since measurements are deemed independent

n�

j=1

n�

i=1

xixj =
n�

i=1

x2i (116)

Therefore �
n�

i=1

xi

�2
=

n�

i=1

x2i (117)

Hence

E[Z2] = E

�
1

n2

n�

i=1

x2i

�

=
1

n2

n�

i=1

E[x2i ] (118)

Now
E[x2i ] = σ

2
i + µ

2
i (119)

Therefore

σ2Z = V [x] = E[Z2]− µ2Z (120)

=
1

n2

n�

i=1

E[x2i ]− µ2Z (121)

=
1

n2

n�

i=1

�
σ2i + µ

2
i

�
− µ2Z (122)

=
1

n2

n�

i=1

σ2i +
1

n2

n�

i=1

µ2i − µ2Z (123)

Again invoking variable independence, hence

1

n2

n�

i=1

µ2i =

�
1

n

n�

i=1

µi

�2
= µ2Z (124)
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Therefore

σ2Z =
1

n2

n�

i=1

σ2i (125)

The Moment Generating Function M(Z, t) is defined to be

M(Z, t) = E[eZt] = E

�

exp

�
t

n

n�

i=1

xi

��

= E

�
n�

i=1

e
txi
n

�

(126)

Now since each measurement xi is independent

E

�
n�

i=1

e
txi
n

�

=
n�

i=1

E[e
txi
n ] (127)

Now

e
txi
n = 1 +

txi

n
+
1

2!

	
txi

n


2
+
1

3!

	
txi

n


3
+ ... (128)

Therefore

E[e
txi
n ] = 1 +

t

n
E[xi] +

1

2!

	
t

n


2
E[x2i ] +

1

3!

	
t

n


3
E[x3i ] + ... (129)

= 1 +
t

n
µi +

1

2

t2

n2

�
σ2i + µ

2
i

�
+ ... (130)

Hence

M(Z, t) =
n�

i=1

E[e
txi
n ] =

n�

i=1

	
1 +

t

n
µi +

1

2

t2

n2

�
σ2i + µ

2
i

�
+ ...



(131)

Now consider the expansion of

exp

	
t

n
µi +

1

2

t2

n2
σ2i



= 1+

t

n
µi +

1

2

t2

n2
σ2i +

1

2!

	
t

n
µi +

1

2

t2

n2
σ2i


2
+ ... (132)

= 1+
t

n
µi +

1

2

t2

n2

�
σ2i + µ

2
i

�
+ ... (133)

Hence if n is large

exp

	
t

n
µi +

1

2

t2

n2
σ2i



≈ 1 + t

n
µi +

1

2

t2

n2

�
σ2i + µ

2
i

�
(134)

Therefore in this limit

M(Z, t) =
n�

i=1

	
1 +

t

n
µi +

1

2

t2

n2

�
σ2i + µ

2
i

�
+ ...



≈

n�

i=1

exp

	
t

n
µi +

1

2

t2

n2
σ2i



(135)

= exp

�
t

n

n�

i=1

µi +
1

2

t2

n2

n�

i=1

σ2i

�

(136)

Using the above results for the expectation and variance of Z

µZ =
1

n

n�

i=1

µi (137)

σ2Z =
1

n2

n�

i=1

σ2i (138)
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This means

M(Z, t) = exp
�
tµZ +

1
2t
2σ2Z

�
(139)

This is the MGF for a Gaussian distribution with mean µZ and variance σ2Z .
The above argument justifies the The Central Limit Theorem, which states:
“The distribution of the mean values of a set of independent random values tends towards a Gaussian

Distribution if the number of samples is large enough.”

5 Expectation and Variance of the Poisson and Binomial distributions via
MGF

5.1 Deriving the expectation and variance of the Poisson Distribution via the MGF

For the Poisson distribution the MGF is

M(x, t) = E[etx] =
∞�

x=0

etx
λxe−λ

x!
= e−λ

∞�

x=0

�
λet
�x

x!
(140)

Now
∞�

x=0

kx

x!
= ek (141)

Therefore
∞�

x=0

�
λet
�x

x!
= eλe

t

(142)

Hence

M(x, t) = eλ(e
t−1) (143)

Therefore

E[x] =
∂M(x, t)

∂t

����
t=0

(144)

=
∂

∂t
eλ(e

t−1)
����
t=0

(145)

= λeteλ(e
t−1))

���
t=0

(146)

= λ (147)

and

V [x] =
∂2M(x, t)

∂t2

����
t=0

−
	
∂M(x, t)

∂t

����
t=0


2
(148)

=
∂

∂t
λeteλ(e

t−1)
����
t=0

− λ2 (149)

= λ
�
eteλ(e

t−1)) + λeteλ(e
t−1)

����
t=0

− λ2 (150)

= λ+ λ2 − λ2 (151)

= λ (152)
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5.2 Deriving the expectation and variance of the Binomial Distribution via the MGF

The Binomial Distribution has the form

P (x) =
n!

(n− x)!x!p
x(1− p)n−x (153)

where x is the number of successes in n independent binary-outcome trials, in which the probability of
sucess is always p.

Let x be the sum of a set of random variables {yi}

x =
n�

i=1

yi (154)

where

yi =

�
1 Success in trial i
0 Failure in trial i

(155)

The Moment Generating Function (MGF) for the Binomial distribution is

M(x, t) = E[etx] = E

�

exp

�

t

n�

i=1

yi

��

= E

�
n�

i=1

etyi

�

(156)

Now if two random variables X and Y are independent

E[xy] = E[x]E[y] (157)

Therefore

M(x, t) = E

�
n�

i=1

etyi

�

=
n�

i=1

E[etyi ] (158)

Now since in trial i the probability of success (yi = 1) is p , and failure (yi = 0) is 1− p

E[etyi ] = pet + 1− p (159)

i.e. it is the same for each trial (as one would intuitively expect given p is trial independent).
Therefore the MGF for the Binomial distribution is

M(x, t) =
n�

i=1

E[etyi ] =
�
pet + 1− p

�n
(160)

The MGF can then be used to efficiently derive the expectation and variance of the Binomial Distribution

∂M(x, t)

∂t

����
t=0

= npet
�
pet + 1− p

�n−1���
t=0

= np (161)

Therefore
E[x] = np (162)

∂2M(x, t)

∂t2
=

∂

∂t

�
npet

�
pet + 1− p

�n−1�
(163)

= npet(n− 1)pet +
�
pet + 1− p

�n−1
npet (164)

∴
∂2M(x, t)

∂t2

����
t=0

= np2(n− 1) + np = n2p2 − np2 + np (165)

The variance of the Binomial distribution is therefore

V [x] =
∂2M(x, t)

∂t2

����
t=0

−
	
∂M(x, t)

∂t

����
t=0


2
(166)

= n2p2 − np2 + np− n2p2 (167)

= np(1− p) (168)
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