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1 Summary

• In this monograph we derive an equation for the post impact velocities of two masses with known pre-
impact velocities u1 and u2 and masses m1 and m2. This includes a coefficient of restitution (C) which
models the continuum between elastic (C = 1) and inelastic (C = 0) collisions.

• Computes the loss ∆E of kinetic energy during a collision.

• Introduces the concept of the Zero Momentum Frame. This is an example of the use of reference frame
transformation and also, interestingly, a description of the law of conservation of momentum using a
symmetry argument.

• The elastic special case is extended to investigate the limit m2 ≫ m1. This yields the marvellous result
that m1 will rise to a maximum of nine times the original height, if both masses are dropped together
in a uniform gravitational field (i.e. typical of a secondary school physics laboratory!), with the smaller
mass uppermost.

• Uses vector notation throughout, keeping results general for any coordinate system.

2 Assumptions

• Two ‘point masses’. i.e. purely linear motion, no rotational modes.

• Impact of external forces (e.g. gravity, friction) negligible on timescales of collision.

• The masses actually approach each other. We can therefore choose a frame of reference whereby their
momenta are equal in magnitude but opposite in direction. (The Zero Momentum Frame - see below).

• Classical dynamics, speeds ≪ c and therefore no relativistic effects. Therefore Galilean transforms and
Newtonian dynamics.

• Micro nature of collision (i.e. degree of elasticity or inelasticity) is wrapped up in the empirical coefficient
of restitution.
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Figure 1: Collision of masses, prior to impact.

Figure 2: Collision of two masses, post impact.
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3 Define the Zero Momentum Frame

Transform generic frame into a Zero Momentum Frame (ZMF). i.e. subtract V from all velocity vectors such
that total momentum Ptotal in this frame is zero.

Ptotal =
∑

i

mi(ui −V) = 0 (1)

Since there are only two masses in our system

∑

i

mi(ui −V) = m1(u1 −V)+m2(u2 −V) = 0 (2)

Therefore

V =
m1u1 +m2u2
m1 +m2

(3)

4 Coefficient of Restitution

Let u1 and u2 be the velocity vectors of the masses prior to impact and define v1 and v2 to be the corresponding
vectors after impact. If the collision is perfectly elastic then the masses will part with relative speed |v2 − v1|
equal to that of approach |u2 − u1|. If the collision is not perfectly elastic then let us generalize by defining a
coefficient of restitution C which defines the ratio of parting speed to approach speed. Note C takes the same
form whether the system is viewed in the ZMF, or any other constant velocity frame.

C =
|v2 −V− (v1 −V)|
|u2 −V− (u1 −V)|

=
|v2 − v1|
|u2 − u1|

(4)

C = 1 implies a fully elastic collision,1 whereas C = 0 implies the masses stick together following collision.
This is called a fully inelastic collision.

5 Use the ZMF to compute the result of collision

As shown in Figure 3, the ZMF allows us to predict the AFTER IMPACT situation using a symmetry argument.
If two objects collide with momenta of equal magnitude but opposing direction, the result will be a reversal of
the directions of momenta. The coefficient of restitution C sets the magnitude of the reversal.

1 It might be possible that C > 1 if, following collision, extra energy (stored within each of the two masses) is released. For
example, two explosive shells colliding.
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Figure 3: In the Zero Momentum Frame, symmetry is used to predict the AFTER IMPACT result. i.e. a
reversal of velocity vectors, scaled by the coefficient of restitution C.
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Figure 4: Post collision velocities are computed in terms of pre-impact velocities u1 and u2, coefficient of
restitution C and Zero Momentum Frame velocity V.

The post collision situation in the generic frame is computed by adding V to resultant velocities following
collision in the ZMF.

v1 = C (V− u1) +V (5)

v2 = C (V− u2) +V

which simplifies to

v1 = (1 +C)V− Cu1 (6)

v2 = (1 +C)V− Cu2
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Substituting for V =m1u1+m2u2

m1+m2
gives the following expressions for the impact velocities in terms of the

initial knowns: u1,u2,m1,m1, C

v1 = u1

{
m1(1 +C)

m1 +m2
−C

}
+ u2

m2(1 +C)

m1 +m2
(7)

v2 = u1
m1(1 +C)

m1 +m2
+ u2

{
m2(1 +C)

m1 +m2
−C

}

which simplifies to

v1 = u1

{
m1 −Cm2
m1 +m2

}
+ u2

m2(1 +C)

m1 +m2
(8)

v2 = u1
m1(1 +C)

m1 +m2
+ u2

{
m2 −Cm1
m1 +m2

}

The kinetic energy pre-impact is

Tpre =
1

2
m1 |u1|2 +

1

2
m2 |u2|2 (9)

The kinetic energy post-impact is

Tpost =
1

2
m1 |v1|2 +

1

2
m2 |v2|2 (10)

=
1

2

m1

(m1 +m2)
2 |u1 (m1 −Cm2) + u2m2(1 +C)|

2

+
1

2

m2

(m1 +m2)
2 |u1m1(1 +C) + u2 (m2 −Cm1)|

2

=
m1m2

2 (m1 +m2)

{
A |u1|2 +B |u2|2 + 2u1 · u2(1−C2)

}
(11)

where

A =
(m1 −Cm2)2 +m1m2(1 +C)2

(m1 +m2)m2
(12)

B =
(m2 −Cm1)2 +m1m2(1 +C)2

(m1 +m2)m1

Note the last step requires a few additional lines of algebra.
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6 Special cases

Consider two special cases:

6.1 Special case #1: Inelastic collision. i.e. C = 0

Setting C = 0 in Equation 8:

v1 = u1
m1

m1 +m2
+ u2

m2

m1 +m2
(13)

v2 = u1
m1

m1 +m2
+ u2

m2

m1 +m2

i.e. v1 = v2 as expected. Masses move together as one with the same impact velocity. The post collision
kinetic energy is given by

Tpost =
1

2
(m1 +m2)

∣∣∣∣u1
m1

m1 +m2
+ u2

m2

m1 +m2

∣∣∣∣
2

(14)

=
1

2

|m1u1 +m2u2|2
m1 +m2

=
1

2

m21 |u1|2 +m22 |u2|2 + 2m1m2u1 · u2
m1 +m2

The kinetic energy loss (most likely converted into heat or the work done in deforming the masses as they
stick) as a result of the inelastic collision process is therefore

∆E = Tpre − Tpost =
1

2
m1 |u1|2 +

1

2
m2 |u2|2 −

1

2

m21 |u1|2 +m22 |u2|2 + 2m1m2u1 · u2
m1 +m2

(15)

=
1

2

m1m2

m1 +m2

(
|u1|2 + |u2|2 − 2u1 · u2

)
(16)

=
1

2

m1m2

m1 +m2
|u1 − u2|2 (17)

=
1
2m1 |u1 − u2|

2

1 + m1

m2

(18)

This makes sense in the limit m2 ≫ m1. Imagine throwing a 100g ball of plasticine on the ground. m2
is the Earth at 5.97×1024 kg. If we choose a reference frame fixed to the ground u2 = 0. The loss in kinetic
energy is therefore ∆E = 1

2m1 |u1|
2. i.e. the entire pre-collision amount associated with the plasticine.
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6.2 Special case #2: Elastic collision. i.e. C = 1

Setting C = 1 in Equation 8:

v1 = u1

{
2m1

m1 +m2
− 1
}
+ u2

2m2
m1 +m2

(19)

v2 = u1
2m1

m1 +m2
+ u2

{
2m2

m1 +m2
− 1
}

The total kinetic energy post-impact is:

Tpost =
1

2
m1 |v1|2 +

1

2
m2 |v2|2 (20)

=
1

2
m1

∣∣∣∣u1
{

2m1
m1 +m2

− 1
}
+ u2

2m2
m1 +m2

∣∣∣∣
2

+
1

2
m2

∣∣∣∣u1
2m1

m1 +m2
+ u2

{
2m2

m1 +m2
− 1
}∣∣∣∣
2

=
1

2
m1

∣∣∣∣u1
{
m1 −m2
m1 +m2

}
+ u2

2m2
m1 +m2

∣∣∣∣
2

+
1

2
m2

∣∣∣∣u1
2m1

m1 +m2
+ u2

{
m2 −m1
m1 +m2

}∣∣∣∣
2

=
1

2
m1

(
|u1|2

{
m1 −m2
m1 +m2

}2
+ |u2|2

4m22
(m1 +m2)

2 + 4u1 · u2
{
m1 −m2
m1 +m2

}
m2

m1 +m2

)

+
1

2
m2

(
|u2|2

{
m1 −m2
m1 +m2

}2
+ |u1|2

4m21
(m1 +m2)

2 − 4u1 · u2
{
m1 −m2
m1 +m2

}
m1

m1 +m2

)

=
1

2
m1 |u1|2

({
m1 −m2
m1 +m2

}2
+

4m1m2

(m1 +m2)
2

)
+
1

2
m2 |u2|2

(
4m1m2

(m1 +m2)
2 +

{
m1 −m2
m1 +m2

}2)

=
1

2
m1 |u1|2 +

1

2
m2 |u2|2

Since
{
m1−m2

m1+m2

}2
+ 4m1m2

(m1+m2)
2 =

m2
1
+m2

2
−2m1m2+4m1m2

(m1+m2)
2 =

m2
1
+m2

2
+2m1m2

(m1+m2)
2 = (m1+m2)

2

(m1+m2)
2 = 1

Hence in an elastic collision, kinetic energy is conserved. i.e. ∆E = Tpre − Tpost = 0
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6.3 An interesting result!

Consider an elastic collision where m2 ≫m1. Using 19:

v1 = 2u2 − u1 (21)

v2 = u2

If masses are dropped together from height h in a uniform gravitational field (with field strength g), and
the larger mass strikes the ground elastically before meeting the smaller mass

u1 = −ux̂ (22)

u2 = ux̂

Where x̂ is a unit vector in the ‘up’ direction.

Therefore if v1 = v1x̂ and v2 = v2x̂

v1 = 3u (23)

v2 = u

By conservation of energy we can calculate the height risen by both masses following collision. i.e. the
height at which the velocity of each mass becomes zero

m1gH =
1

2
mv21 (24)

m2gh =
1

2
m2u

2 =
1

2
m2v

2
2

Hence H = 9u
2

2g and h = u2

2g , which yields the fascinating result

H = 9h (25)
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Figure 5: Elastic balls of significantly different mass (e.g. a basket ball and a ping pong ball) are dropped
together from height h.

Figure 6: An interesting result! In the limit m2 ≫ m1, two balls dropped together (with the least massive
uppermost) will cause the lighter mass to rise up to nine times the original height, if all collisions are perfectly
elastic.
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Figure 7: Recoil velocity of mass #1 plotted against coefficient of restitution C and mass ratio m2

m1
. Approach

speeds of both masses are u. Note for elastic collisions in the limit m2 ≫m1 the recoil velocity tends to 3u.

7 Graphical exploration

The variation of v1,v2,
Tpre−Tpost

Tpre
with C and m2

m1
can be explored graphically using plotting software such as

MATLAB and the following simplifications:

u1 = −αux̂ (26)

u2 = ux̂

v1 = v1x̂ (27)

v2 = v2x̂ (28)

where x̂ is a unit vector and α is a scalar parameter. For the plots in Figures 7 to 9, α = 1. The general
results in equations 8, 10 and 9 simplify to

v1 =
u

m1 +m2
(−α (m1 −Cm2) +m2(1 +C)) (29)

v2 =
u

m1 +m2
(m2 −Cm1 − αm1(1 +C))

Tpre =
1

2
u2
(
m1α

2 +m2
)

(30)

Tpost =
m1m2u

2

2 (m1 +m2)

{
Aα2 +B − 2α(1−C2)

}
(31)
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Figure 8: Recoil velocity of mass #2 plotted against coefficient of restitution C and mass ratio m2

m1
. Approach

speeds of both masses are u.

Figure 9: Fractional loss of total kinetic energy (KE) of two masses following collision. Both masses approach
each other with speed u. For an inelastic collision (C = 0) the maximum loss (100%) of KE is for m1 = m2.
For elastic (C = 1) collisions there is no loss of KE.
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8 Extension: ‘The Irish Moon Shot’

The surprising result that the elastic collision of two spheres results in a speed multiplication (of the least
massive) by up to three times (in the limit that the heavier sphere is infinitely heavier) can be used to explore
the following question:

“N elastic spheres are stacked and dropped as an ensemble from a height h of one metre, reaching a velocity
u =

√
2gh. The uppermost sphere has mass m and subsequent spheres increase in mass by a constant factor k.

If all spheres collide with coefficient of restitution C and the inter-sphere collisions can be modelled seperately2,
how many spheres are needed to cause the uppermost mass to escape the Earth’s gravitational field?”

Solution

Consider the collision between mass mn and mn+1. If x̂ is a unit vector pointing up (i.e. in the opposite
direction to the local gravitational field g) the pre-collision velocities are:

un = −ux̂ (32)

un+1 = vn+1x̂

The post-collision velocity of mass mn is vn = vnx̂. The general result in equation 8 states

vn = un

{
mn −Cmn+1
mn +mn+1

}
+ un+1

mn+1(1 +C)

mn +mn+1
(33)

Hence:

vn =
−mn +Cmn+1
mn +mn+1

u+ vn+1
mn+1(1 +C)

mn +mn+1
(34)

Now mn+1

mn
= k , therefore

vn =
kC − 1
1 + k

u+ vn+1
k(1 +C)

1 + k
(35)

Which simplifies to

vn+1 =
1 + k

k(1 +C)
vn −

kC − 1
k(1 +C)

u (36)

= avn − b

Let us consider the first few terms

v2 = av1 − b (37)

v3 = av2 − b = a (av1 − b)− b = a2v1 − ab− b
v4 = av3 − b = a

(
a2v1 − ab− b

)
− b = a3v1 − a2b− ab− b

v5 = av4 − b = a4v1 − a3b− a2b− ab− b

By spotting the geometric pattern we can write (for n > 1)

vn = a
n−1v1 − b

n−2∑

y=0

ay (38)

This summation can be evaluated using the standard result

Sn = a
n−1∑

i=0

ri = a
1− rn
1− r (39)

2Rather than a multi body collision, which may not have an analytic solution.
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Hence
n−2∑

y=0

ay =
1− an−1
1− a (40)

which gives

vn = a
n−1v1 − b

1− an−1
1− a (41)

Now mass vN collides with the Earth with pre-collision velocity uN = −ux̂ and therefore rebounds with
velocity vN = uCx̂. Therefore

uC = aN−1v1 − b
1− aN−1
1− a (42)

which can be rearranged to yield an expression for the recoil velocity v1 of the uppermost mass.

v1 =
uC

aN−1
+ b

1− aN−1
(1− a)aN−1 (43)

= uCa1−N + b

(
a1−N − 1

)

1− a (44)

Since a = 1+k
k(1+C) and b =

kC−1
k(1+C)u this gives

v1

u
= C

(
1 + k

k(1 +C)

)1−N
+
kC − 1
k(1 +C)

(
1+k

k(1+C)

)1−N
− 1

(
1− 1+k

k(1+C)

)

= C

(
1 + k

k(1 +C)

)1−N
+
kC − 1
k(1 +C)

(
1+k

k(1+C)

)1−N
− 1

k(1+C)−1−k
k(1+C)

= C

(
1 + k

k(1 +C)

)1−N
+

(
1 + k

k(1 +C)

)1−N
− 1

Hence

v1

u
=

(
k(1 +C)

1 + k

)N−1
(C + 1)− 1

Now consider the special case when k = 2 and C = 1

v1

u
= 2

(
4

3

)N−1
− 1

Now for mass m1 to escape the Earth’s gravitational field

v1 =

√
2GM

RE

where G = 6.67 × 10−11m3kg−1s−2, M = 5.97 × 1024kg and RE = 6.38 × 106m. Therefore if u =
√
2gh

where h is the initial height dropped (h =1m in our example)

√
GM

REgh
= 2

(
4

3

)N−1
− 1

14



Two body collisions. A French. March 2011.

Which implies

N = ceil



1 +

log
(√

GM
REgh

+ 1
)
− log 2

log 43



 = 26

where ‘ceil’ rounds up (25.82) to the nearest integer.

So is this a practical moonshot? If the uppermost mass is 1kg this means the 26th mass is 225kg ≈ 33, 554
metric tonnes. This implies some very large elastic balls!

Perhaps more practical example is to consider k = 2, N = 4 and C = 1. This is possibly characteristic of
the Irish Moonshot toy avaliable from good science retailers. In this case v1

u
= 2

(
4
3

)3 − 1 = 128
27 − 1 ≈ 3.7.
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