Notes on the collision of two masses

Dr Andrew French
March 16, 2011

1 Summary

- In this monograph we derive an equation for the post impact velocities of two masses with known pre-impact velocities \(u_1 \) and \(u_2 \) and masses \(m_1 \) and \(m_2 \). This includes a coefficient of restitution \((C) \) which models the continuum between elastic \((C = 1) \) and inelastic \((C = 0) \) collisions.
- Computes the loss \(\Delta E \) of kinetic energy during a collision.
- Introduces the concept of the Zero Momentum Frame. This is an example of the use of reference frame transformation and also, interestingly, a description of the law of conservation of momentum using a symmetry argument.
- The elastic special case is extended to investigate the limit \(m_2 \gg m_1 \). This yields the marvellous result that \(m_1 \) will rise to a maximum of nine times the original height, if both masses are dropped together in a uniform gravitational field (i.e. typical of a secondary school physics laboratory!), with the smaller mass uppermost.
- Uses vector notation throughout, keeping results general for any coordinate system.

2 Assumptions

- Two ‘point masses’. i.e. purely linear motion, no rotational modes.
- Impact of external forces (e.g. gravity, friction) negligible on timescales of collision.
- The masses actually approach each other. We can therefore choose a frame of reference whereby their momenta are equal in magnitude but opposite in direction. (The Zero Momentum Frame - see below).
- Classical dynamics, speeds \(\ll c \) and therefore no relativistic effects. Therefore Galilean transforms and Newtonian dynamics.
- Micro nature of collision (i.e. degree of elasticity or inelasticity) is wrapped up in the empirical coefficient of restitution.

Figure 1: Collision of masses, prior to impact.

Figure 2: Collision of two masses, post impact.
3 Define the Zero Momentum Frame

Transform generic frame into a Zero Momentum Frame (ZMF), i.e. subtract \(V \) from all velocity vectors such that total momentum \(P_{\text{total}} \) in this frame is zero.

\[
P_{\text{total}} = \sum_i m_i (u_i - V) = 0
\]

(1)

Since there are only two masses in our system

\[
\sum_i m_i (u_i - V) = m_1 (u_1 - V) + m_2 (u_2 - V) = 0
\]

(2)

Therefore

\[
V = \frac{m_1 u_1 + m_2 u_2}{m_1 + m_2}
\]

(3)

4 Coefficient of Restitution

Let \(u_1 \) and \(u_2 \) be the velocity vectors of the masses prior to impact and define \(v_1 \) and \(v_2 \) to be the corresponding vectors after impact. If the collision is perfectly elastic then the masses will part with relative speed \(|v_2 - v_1| \) equal to that of approach \(|u_2 - u_1| \). If the collision is not perfectly elastic then let us generalize by defining a coefficient of restitution \(C \) which defines the ratio of parting speed to approach speed. Note \(C \) takes the same form whether the system is viewed in the ZMF, or any other constant velocity frame.

\[
C = \frac{|v_2 - V - (v_1 - V)|}{|u_2 - V - (u_1 - V)|} = \frac{|v_2 - v_1|}{|u_2 - u_1|}\]

(4)

\(C = 1 \) implies a fully elastic collision,\(^1\) whereas \(C = 0 \) implies the masses stick together following collision. This is called a fully inelastic collision.

5 Use the ZMF to compute the result of collision

As shown in Figure 3, the ZMF allows us to predict the AFTER IMPACT situation using a symmetry argument. If two objects collide with momenta of equal magnitude but opposing direction, the result will be a reversal of the directions of momenta. The coefficient of restitution \(C \) sets the magnitude of the reversal.

\(^1\)It might be possible that \(C > 1 \) if, following collision, extra energy (stored within each of the two masses) is released. For example, two explosive shells colliding.

Figure 3: In the Zero Momentum Frame, *symmetry* is used to predict the AFTER IMPACT result. i.e. a reversal of velocity vectors, scaled by the coefficient of restitution C.

C is the coefficient of restitution
Figure 4: Post collision velocities are computed in terms of pre-impact velocities \(u_1 \) and \(u_2 \), coefficient of restitution \(C \) and Zero Momentum Frame velocity \(V \).

The post collision situation in the generic frame is computed by adding \(V \) to resultant velocities following collision in the ZMF.

\[
\begin{align*}
v_1 &= C(V - u_1) + V \\ v_2 &= C(V - u_2) + V
\end{align*}
\]

which simplifies to

\[
\begin{align*}
v_1 &= (1 + C)V - Cu_1 \\ v_2 &= (1 + C)V - Cu_2
\end{align*}
\]
Substituting for $V = \frac{m_1 u_1 + m_2 u_2}{m_1 + m_2}$ gives the following expressions for the impact velocities in terms of the initial knowns: u_1, u_2, m_1, m_2, C.

\begin{align*}
 v_1 &= u_1 \left\{ \frac{m_1 (1 + C)}{m_1 + m_2} - C \right\} + u_2 \frac{m_2 (1 + C)}{m_1 + m_2} \\
 v_2 &= u_1 \frac{m_1 (1 + C)}{m_1 + m_2} + u_2 \left\{ \frac{m_2 (1 + C)}{m_1 + m_2} - C \right\}
\end{align*}

which simplifies to

\begin{align*}
 v_1 &= u_1 \left\{ \frac{m_1 - C m_2}{m_1 + m_2} \right\} + u_2 \frac{m_2 (1 + C)}{m_1 + m_2} \\
 v_2 &= u_1 \frac{m_1 (1 + C)}{m_1 + m_2} + u_2 \left\{ \frac{m_2 - C m_1}{m_1 + m_2} \right\}
\end{align*}

The kinetic energy pre-impact is

$$T_{pre} = \frac{1}{2} m_1 |u_1|^2 + \frac{1}{2} m_2 |u_2|^2$$

The kinetic energy post-impact is

\begin{align*}
 T_{post} &= \frac{1}{2} m_1 |v_1|^2 + \frac{1}{2} m_2 |v_2|^2 \\
 &= \frac{1}{2} \frac{m_1}{(m_1 + m_2)^2} |u_1 (m_1 - C m_2) + u_2 m_2 (1 + C)|^2 \\
 &\quad + \frac{1}{2} \frac{m_2}{(m_1 + m_2)^2} |u_1 m_1 (1 + C) + u_2 (m_2 - C m_1)|^2 \\
 &= \frac{m_1 m_2}{2 (m_1 + m_2)} \left\{ A |u_1|^2 + B |u_2|^2 + 2 u_1 \cdot u_2 (1 - C^2) \right\}
\end{align*}

where

\begin{align*}
 A &= \frac{(m_1 - C m_2)^2 + m_1 m_2 (1 + C)^2}{(m_1 + m_2) m_2} \\
 B &= \frac{(m_2 - C m_1)^2 + m_1 m_2 (1 + C)^2}{(m_1 + m_2) m_1}
\end{align*}

Note the last step requires a few additional lines of algebra.
6 Special cases

Consider two special cases:

6.1 Special case #1: Inelastic collision. i.e. \(C = 0 \)

Setting \(C = 0 \) in Equation 8:

\[
\begin{align*}
\mathbf{v}_1 &= \mathbf{u}_1 \frac{m_1}{m_1 + m_2} + \mathbf{u}_2 \frac{m_2}{m_1 + m_2} \\
\mathbf{v}_2 &= \mathbf{u}_1 \frac{m_1}{m_1 + m_2} + \mathbf{u}_2 \frac{m_2}{m_1 + m_2}
\end{align*}
\]

i.e. \(\mathbf{v}_1 = \mathbf{v}_2 \) as expected. Masses move together as one with the same impact velocity. The post collision kinetic energy is given by

\[
T_{post} = \frac{1}{2} \left(\frac{m_1}{m_1 + m_2} \right) \mathbf{u}_1 \left(\frac{m_1}{m_1 + m_2} \mathbf{u}_1 + \frac{m_2}{m_1 + m_2} \mathbf{u}_2 \right)^2
\]

\[
= \frac{1}{2} \frac{m_1^2 |\mathbf{u}_1|^2 + 2m_1 m_2 |\mathbf{u}_2|^2 + 2m_1 m_2 \mathbf{u}_1 \cdot \mathbf{u}_2}{m_1 + m_2}
\]

The kinetic energy loss (most likely converted into heat or the work done in deforming the masses as they stick) as a result of the inelastic collision process is therefore

\[
\Delta E = T_{pre} - T_{post} = \frac{1}{2} m_1 |\mathbf{u}_1|^2 + \frac{1}{2} m_2 |\mathbf{u}_2|^2 - \frac{1}{2} \frac{m_1^2 |\mathbf{u}_1|^2 + m_2^2 |\mathbf{u}_2|^2 + 2m_1 m_2 \mathbf{u}_1 \cdot \mathbf{u}_2}{m_1 + m_2}
\]

\[
= \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \left(|\mathbf{u}_1|^2 + |\mathbf{u}_2|^2 - 2 \mathbf{u}_1 \cdot \mathbf{u}_2 \right)
\]

\[
= \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} |\mathbf{u}_1 - \mathbf{u}_2|^2
\]

\[
= \frac{1}{2} m_1 |\mathbf{u}_1 - \mathbf{u}_2|^2
\]

This makes sense in the limit \(m_2 \gg m_1 \). Imagine throwing a 100g ball of plasticine on the ground. \(m_2 \) is the Earth at \(5.97 \times 10^{24} \) kg. If we choose a reference frame fixed to the ground \(\mathbf{u}_2 = 0 \). The loss in kinetic energy is therefore \(\Delta E = \frac{1}{2} m_1 |\mathbf{u}_1|^2 \). i.e. the entire pre-collision amount associated with the plasticine.
6.2 Special case #2: Elastic collision. i.e. $C = 1$

Setting $C = 1$ in Equation 8:

\[
v_1 = u_1 \left\{ \frac{2m_1}{m_1 + m_2} - 1 \right\} + u_2 \frac{2m_2}{m_1 + m_2} + \frac{2m_2}{m_1 + m_2} - 1
\]

The total kinetic energy post-impact is:

\[
T_{\text{post}} = \frac{1}{2}m_1 |v_1|^2 + \frac{1}{2}m_2 |v_2|^2
\]

\[
= \frac{1}{2}m_1 \left| u_1 \left\{ \frac{2m_1}{m_1 + m_2} - 1 \right\} + u_2 \frac{2m_2}{m_1 + m_2} \right|^2 + \frac{1}{2}m_2 \left| u_1 \frac{2m_1}{m_1 + m_2} + u_2 \left\{ \frac{2m_2}{m_1 + m_2} - 1 \right\} \right|^2
\]

\[
= \frac{1}{2}m_1 \left| u_1 \left\{ \frac{m_1 - m_2}{m_1 + m_2} \right\} + u_2 \frac{2m_2}{m_1 + m_2} \right|^2 + \frac{1}{2}m_2 \left| u_1 \frac{2m_1}{m_1 + m_2} + u_2 \left\{ \frac{m_2 - m_1}{m_1 + m_2} \right\} \right|^2
\]

\[
= \frac{1}{2}m_1 \left| u_1 \right|^2 \left\{ \frac{m_1 - m_2}{m_1 + m_2} \right\}^2 + \left| u_2 \right|^2 \frac{4m_2^2}{(m_1 + m_2)^2} + 4u_1 \cdot u_2 \left\{ \frac{m_1 - m_2}{m_1 + m_2} \right\} \frac{m_2}{m_1 + m_2}
\]

\[
+ \frac{1}{2}m_2 \left| u_2 \right|^2 \left\{ \frac{m_1 - m_2}{m_1 + m_2} \right\}^2 + \left| u_1 \right|^2 \frac{4m_1^2}{(m_1 + m_2)^2} - 4u_1 \cdot u_2 \left\{ \frac{m_1 - m_2}{m_1 + m_2} \right\} \frac{m_1}{m_1 + m_2}
\]

\[
= \frac{1}{2}m_1 \left| u_1 \right|^2 \left\{ \frac{m_1 - m_2}{m_1 + m_2} \right\}^2 + \frac{4m_1 m_2}{(m_1 + m_2)^2} + \frac{1}{2}m_2 \left| u_2 \right|^2 \left(\frac{4m_1 m_2}{(m_1 + m_2)^2} + \left\{ \frac{m_1 - m_2}{m_1 + m_2} \right\}^2 \right)
\]

\[
= \frac{1}{2}m_1 \left| u_1 \right|^2 + \frac{1}{2}m_2 \left| u_2 \right|^2
\]

Since \(\left\{ \frac{m_1 - m_2}{m_1 + m_2} \right\}^2 + \frac{4m_1 m_2}{(m_1 + m_2)^2} = \frac{m_1^2 + m_2^2 - 2m_1 m_2 + 4m_1 m_2}{(m_1 + m_2)^2} = \frac{m_1^2 + m_2^2 + 2m_1 m_2}{(m_1 + m_2)^2} = \frac{(m_1 + m_2)^2}{(m_1 + m_2)^2} = 1 \)

Hence in an elastic collision, kinetic energy is conserved. i.e. $\Delta E = T_{\text{pre}} - T_{\text{post}} = 0$
6.3 An interesting result!

Consider an elastic collision where $m_2 \gg m_1$. Using 19:

$$v_1 = 2u_2 - u_1 \quad \text{(21)}$$
$$v_2 = u_2$$

If masses are dropped together from height h in a uniform gravitational field (with field strength g), and the larger mass strikes the ground elastically before meeting the smaller mass

$$u_1 = -u\hat{x} \quad \text{(22)}$$
$$u_2 = u\hat{x}$$

Where \hat{x} is a unit vector in the ‘up’ direction.

Therefore if $v_1 = v_1\hat{x}$ and $v_2 = v_2\hat{x}$

$$v_1 = 3u \quad \text{(23)}$$
$$v_2 = u$$

By conservation of energy we can calculate the height risen by both masses following collision. i.e. the height at which the velocity of each mass becomes zero

$$m_1gH = \frac{1}{2}mv_1^2 \quad \text{(24)}$$
$$m_2gh = \frac{1}{2}m_2u^2 = \frac{1}{2}m_2v_2^2$$

Hence $H = \frac{9u^2}{2g}$ and $h = \frac{u^2}{2g}$, which yields the fascinating result

$$H = 9h \quad \text{(25)}$$

Figure 5: Elastic balls of significantly different mass (e.g. a basket ball and a ping pong ball) are dropped together from height h.

Figure 6: An interesting result! In the limit $m_2 \gg m_1$, two balls dropped together (with the least massive uppermost) will cause the lighter mass to rise up to nine times the original height, if all collisions are perfectly elastic.

Figure 7: Recoil velocity of mass #1 plotted against coefficient of restitution C and mass ratio $\frac{m_2}{m_1}$. Approach speeds of both masses are u. Note for elastic collisions in the limit $m_2 \gg m_1$ the recoil velocity tends to $3u$.

7 Graphical exploration

The variation of $v_1, v_2, \frac{T_{post} - T_{pre}}{T_{pre}}$ with C and $\frac{m_2}{m_1}$ can be explored graphically using plotting software such as MATLAB and the following simplifications:

$$u_1 = -\alpha u \hat{x}$$ (26)
$$u_2 = u \hat{x}$$
$$v_1 = v_1 \hat{x}$$ (27)
$$v_2 = v_2 \hat{x}$$ (28)

where \hat{x} is a unit vector and α is a scalar parameter. For the plots in Figures 7 to 9, $\alpha = 1$. The general results in equations 8, 10 and 9 simplify to

$$v_1 = \frac{u}{m_1 + m_2} (-\alpha (m_1 - C m_2) + m_2 (1 + C))$$ (29)
$$v_2 = \frac{u}{m_1 + m_2} (m_2 - C m_1 - \alpha m_1 (1 + C))$$
$$T_{pre} = \frac{1}{2} u^2 (m_1 \alpha^2 + m_2)$$ (30)
$$T_{post} = \frac{m_1 m_2 u^2}{2 (m_1 + m_2)} \left\{ A \alpha^2 + B - 2 \alpha (1 - C^2) \right\}$$ (31)
Figure 8: Recoil velocity of mass #2 plotted against coefficient of restitution C and mass ratio $\frac{m_2}{m_1}$. Approach speeds of both masses are u.

Figure 9: Fractional loss of total kinetic energy (KE) of two masses following collision. Both masses approach each other with speed u. For an inelastic collision ($C = 0$) the maximum loss (100%) of KE is for $m_1 = m_2$. For elastic ($C = 1$) collisions there is no loss of KE.
8 Extension: ‘The Irish Moon Shot’

The surprising result that the elastic collision of two spheres results in a speed multiplication (of the least massive) by up to three times (in the limit that the heavier sphere is infinitely heavier) can be used to explore the following question:

“N elastic spheres are stacked and dropped as an ensemble from a height h of one metre, reaching a velocity $u = \sqrt{2gh}$. The uppermost sphere has mass m and subsequent spheres increase in mass by a constant factor k. If all spheres collide with coefficient of restitution C and the inter-sphere collisions can be modelled separately2, how many spheres are needed to cause the uppermost mass to escape the Earth’s gravitational field?”

Solution

Consider the collision between mass m_n and m_{n+1}. If \hat{x} is a unit vector pointing up (i.e. in the opposite direction to the local gravitational field g) the pre-collision velocities are:

\[u_n = -u \hat{x} \]
\[u_{n+1} = v_{n+1} \hat{x} \]

The post-collision velocity of mass m_n is $v_n = v_n \hat{x}$. The general result in equation 8 states

\[v_n = u_n \left\{ \frac{m_n - C m_{n+1}}{m_n + m_{n+1}} \right\} + u_{n+1} \frac{m_{n+1}(1 + C)}{m_n + m_{n+1}} \]

Hence:

\[v_n = \frac{-m_n + C m_{n+1}}{m_n + m_{n+1}} u + v_{n+1} \frac{m_{n+1}(1 + C)}{m_n + m_{n+1}} \]

Now $\frac{m_{n+1}}{m_n} = k$, therefore

\[v_n = \frac{kC - 1}{1 + k} u + v_{n+1} \frac{k(1 + C)}{1 + k} \]

Which simplifies to

\[v_{n+1} = \frac{1 + k}{k(1 + C)} v_n - \frac{kC - 1}{k(1 + C)} u \]

Let us consider the first few terms

\[v_2 = av_1 - b \]
\[v_3 = av_2 - b = a(av_1 - b) - b = a^2v_1 - ab - b \]
\[v_4 = av_3 - b = a(a^2v_1 - ab - b) - b = a^3v_1 - a^2b - ab - b \]
\[v_5 = av_4 - b = a^4v_1 - a^3b - a^2b - ab - b \]

By spotting the geometric pattern we can write (for $n > 1$)

\[v_n = a^{n-1}v_1 - b \sum_{y=0}^{n-2} a^y \]

This summation can be evaluated using the standard result

\[S_n = a \sum_{i=0}^{n-1} r^i = a \frac{1 - r^n}{1 - r} \]

2Rather than a multi body collision, which may not have an analytic solution.

Hence

\[\sum_{y=0}^{n-2} a^y = \frac{1 - a^{n-1}}{1 - a} \]

which gives

\[v_n = a^{n-1}v_1 - b \frac{1 - a^{n-1}}{1 - a} \]

Now mass \(v_N \) collides with the Earth with pre-collision velocity \(u_N = -u \hat{x} \) and therefore rebounds with velocity \(v_N = uC \hat{x} \). Therefore

\[uC = a^{N-1}v_1 - b \frac{1 - a^{N-1}}{1 - a} \]

which can be rearranged to yield an expression for the recoil velocity \(v_1 \) of the uppermost mass.

\[v_1 = \frac{uC}{a^{N-1}} + b \frac{1 - a^{N-1}}{(1 - a)a^{N-1}} \]

\[= uCa^{1-N} + b \frac{(a^{1-N} - 1)}{1 - a} \]

Since \(a = \frac{1+k}{k(1+C)} \) and \(b = \frac{kC-1}{k(1+C)}u \) this gives

\[\frac{v_1}{u} = C \left(\frac{1+k}{k(1+C)} \right)^{1-N} + kC - 1 \frac{ \left(\frac{1+k}{k(1+C)} \right)^{1-N} - 1}{1 - \frac{1+k}{k(1+C)}} \]

\[= C \left(\frac{1+k}{k(1+C)} \right)^{1-N} + kC - 1 \frac{ \left(\frac{1+k}{k(1+C)} \right)^{1-N} - 1}{ \frac{k(1+C)-1-k}{k(1+C)}} \]

\[= C \left(\frac{1+k}{k(1+C)} \right)^{1-N} + \left(\frac{1+k}{k(1+C)} \right)^{1-N} - 1 \]

Hence

\[\frac{v_1}{u} = \left(\frac{k(1+C)}{1+k} \right)^{N-1} (C + 1) - 1 \]

Now consider the special case when \(k = 2 \) and \(C = 1 \)

\[\frac{v_1}{u} = 2 \left(\frac{4}{3} \right)^{N-1} - 1 \]

Now for mass \(m_1 \) to escape the Earth’s gravitational field

\[v_1 = \sqrt{\frac{2GM}{R_E}} \]

where \(G = 6.67 \times 10^{-11} \text{m}^3\text{kg}^{-1}\text{s}^{-2} \), \(M = 5.97 \times 10^{24} \text{kg} \) and \(R_E = 6.38 \times 10^6 \text{m} \). Therefore if \(u = \sqrt{2gh} \) where \(h \) is the initial height dropped (\(h = 1 \text{m} \) in our example)

\[\sqrt{\frac{GM}{R_Egh}} = 2 \left(\frac{4}{3} \right)^{N-1} - 1 \]
Which implies

\[N = \text{ceil} \left\{ 1 + \frac{\log \left(\sqrt{\frac{GM}{R_Eg}} + 1 \right) - \log 2}{\log 4^\frac{4}{3}} \right\} = 26 \]

where ‘ceil’ rounds up (25.82) to the nearest integer.

So is this a practical moonshot? If the uppermost mass is 1kg this means the 26th mass is \(2^{25} \approx 33,554\) metric tonnes. This implies some very large elastic balls!

Perhaps more practical example is to consider \(k = 2, N = 4\) and \(C = 1\). This is possibly characteristic of the Irish Moonshot toy available from good science retailers. In this case \(\frac{\text{v}_u}{v} = 2 \left(\frac{4}{3}\right)^3 - 1 = \frac{128}{27} - 1 \approx 3.7\).