
1 Sketching y = xx

In order to sketch the function y = xx let us first re-write it using the idenity x ≡ elnx

xx =
(
elnx

)x
= ex lnx (1)

A series expansion of xx is therefore the expansion of ex but with x lnx substituted for x. The Maclaurin
Expansion for f(x) is

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + .... =

∞∑

n=0

f (n)(0)

n!
xn (2)

If f(x) = ex

f (n)(x) = ex (3)

Hence
f (n)(0) = 1 (4)

Therefore

ex = 1 + x+ 1
2!x

2 + 1
3!x

3 + .... (5)

ex =
∞∑

n=0

1
n!x

n (6)

Hence we can write xx in terms of an infinite series

xx = ex lnx = 1+ x lnx+ 1
2! (x lnx)

2 + 1
3! (x lnx)

3 + .... (7)

xx =
∞∑

n=0

1
n! (x lnx)

n (8)

This series expansion enables us to clearly show that if g(x) = xx

g(0) = 1 (9)

g(1) = 1 (10)

since ln(1) = 0.

The first derivative of y = xx can proceed directly from xx = ex lnx using the chain and product rules:

dy

dx
= ex lnx

(
x
d

dx
lnx+ lnx

)
(11)

dy

dx
= xx (1 + lnx) (12)

An alternative is to firstly take natural logarithms of y = xx and differentiate implicitly:

y = xx (13)

ln y = x lnx (14)

1

y

dy

dx
= x

d

dx
lnx+ lnx (15)

dy

dx
= xx (1 + lnx) (16)
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Figure 1: Plot of the function y = xx. This function has y values of unity when x = 0 and x = 1. The

minimum is at stationary point
(
1
e
, 1
e
1
e

)
.

Since lnx is negative in the range 0 < x < 1, we expect a minimum of y = xx within 0 < x < 1. A rapid
increase is anticipated for x > 1 since both xx and lnx are positive and increasing. Since xx > 0 in the range
0 < x < 1, the stationary point, when dy

dx
= 0, is for x given by

1 + lnx = 0 (17)

lnx = −1 (18)

x =
1

e
(19)

Hence the stationary point of y = xx is
(
1
e
, 1
e
1
e

)

Note since y = xx is an infinite series involving lnx, this means it is undefined for x < 0, unless one
considers an extension of the meaning of lnx into the complex domain.

A plot of y = xx which illustrates all of these features is provided in Figure 1.
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2 Integrating y = xx

The series expansion of y = xx is useful to enable the evaluation of its anti-differential, and hence definite
integrals of the curve y = xx .

∫ b

a

xxdx =

∫ b

a

ex lnxdx =

∫ b

a

∞∑

n=0

1
n! (x lnx)

n
dx (20)

∫ b

a

xxdx =
∞∑

n=0

1
n!

∫ b

a

(x lnx)n dx (21)

where limits a, b ≥ 0

To evaluate the integral above, let us firstly define a more general definite integral:

Im,n =

∫ b

a

xm (lnx)n dx (22)

where m,n ≥ 0 and are integers. This integral can be evaluated by-parts:

Im,n =

[
xm+1

m+ 1
(lnx)n

]
−

∫ b

a

xm+1

m+ 1

n (lnx)n−1

x
dx (23)

using the results ∫ b

a

uvdx =

[(∫
udx

)
v

]b

a

−

∫ b

a

(∫
udx

)
dv

dx
dx (24)

and
d

dx
(lnx)n =

n (lnx)n−1

x
(25)

Hence

Im,n =

[
xm+1

m+ 1
(lnx)n

]b

a

−
n

m+ 1

∫ b

a

xm (lnx)n−1 dx (26)

Im,n =

[
xm+1

m+ 1
(lnx)n

]b

a

−
n

m+ 1
Im,n−1 (27)

If we take the limits a = 0 and b = 1 (the integral Im,n will assume this from now on)

[
xm+1

m+ 1
(lnx)n

]1

0

= 0 (28)

Hence we can express Im,n via Reduction Formulae in terms of Im,n−1 and ultimately (via repeated iterative
substitution), Im,0.

Im,n = −
n

m+ 1
Im,n−1 (29)

Im,n =

(
−

n

m+ 1

)(
−
n− 1

m+ 1

)(
−
n− 2

m+ 1

)
....

(
−

1

m+ 1

)
Im,0 (30)

Im,n =
(−1)n n!

(m+ 1)n
Im,0 (31)

Now the n = 0 term can be evaluated explicitly:

Im,0 =

∫ 1

0
xm (lnx)0 dx =

∫ 1

0
xmdx =

1

m+ 1
(32)
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Therefore

Im,n =
(−1)n n!

(m+ 1)n+1
(33)

This enables us to write down a closed form expression for the integral of y = xx over the interval [0,1]

∫ 1

0
xxdx =

∞∑

n=0

1
n!

∫ 0

1
(x lnx)n dx (34)

∫ 1

0
xxdx =

∞∑

n=0

1
n!In,n (35)

∫ 1

0
xxdx =

∞∑

n=0

1
n!

(−1)n n!

(n+ 1)n+1
(36)

∫ 1

0
xxdx =

∞∑

n=0

(−1)n

(n+ 1)n+1
(37)

i.e. ∫ 1

0
xxdx = 1−

1

22
+
1

33
−
1

44
+ ... (38)

AF (with inspiration from CHJH) 4/6/2014.
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