1 Sketching y = x*

In order to sketch the function y = z* let us first re-write it using the idenity = = e*®

2t = <€1nz)x — exlnx (1)

A series expansion of x* is therefore the expansion of e* but with z Inz substituted for z. The Maclaurin
Expansion for f(z) is
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If f(z) =¢e"
f(z) = e (3)
Hence
M) =1 (4)
Therefore
e’ = l4a+g2°+ 52>+ ... (5)
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Hence we can write % in terms of an infinite series

= ezl”:l—i-xlnx—i-%(mlnx)2+%(xlnx)3+.... (7)
¥ = Z L (zlnz)" (8)
n=0
This series expansion enables us to clearly show that if g(x) = 2
g(0) = 1 (9)
g(1) = 1 (10)

since In(1) = 0.

zlnx

The first derivative of y = x* can proceed directly from x* = e using the chain and product rules:

dy _ zlnz d
7 = ¢ (xdx Inx —|—lnx> (11)
% — 2" (1+n2) (12)

An alternative is to firstly take natural logarithms of y = z* and differentiate implicitly:

y = a* (13)
Iny = zlnz (14)
1dy d
YW e 1
J . nz+lnz (15)
% = z(1+Inx) (16)
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Figure 1: Plot of the function y = z®. This function has y values of unity when z = 0 and x = 1. The
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minimum is at stationary point (%,
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Since In z is negative in the range 0 < x < 1, we expect a minimum of y = 2% within 0 < x < 1. A rapid
increase is anticipated for z > 1 since both x* and Inz are positive and increasing. Since z¥ > 0 in the range
0 < z < 1, the stationary point, when % = (, is for x given by

l1+lnx = 0 (17)
nx = -1 (18)
1
= - 19
= (19)

Hence the stationary point of y = % is (%, L

ee
Note since y = % is an infinite series involving Inx, this means it is undefined for = < 0, unless one
considers an extension of the meaning of Inz into the complex domain.

A plot of y = x* which illustrates all of these features is provided in Figure 1.



2 Integrating y = x*

The series expansion of y = z” is useful to enable the evaluation of its anti-differential, and hence definite

integrals of the curve y = x*

b

/:czd:r = / xlnxdm—/ = (xlnz)" d
b 00

/:czd:r = an/ (xlnz)" dx

where limits a,b > 0

To evaluate the integral above, let us firstly define a more general definite integral:

b
Im,n:/mm (Inx)" dz

where m,n > 0 and are integers. This integral can be evaluated by-parts:

m—+1 b, .m+1 n—1
I, - x (nz)| — x n (Inx) i
’ m+1 o m+1 x
using the results
b b b dv
/ uvdr = [</udm) v] —/ </udm> —dz
a u o dx
and .
d n(Inz)"”
= (lnz)® =
dx (In) T
Hence
m-+1 b b
Ijm = [:ﬁb—i— . (lnx)nL - mj— 1/@ 2™ (Inz)" " da
m—+41 b n
Ipn = Inz)"| — myn
: [m+1(m)L m+ 1 !

If we take the limits a = 0 and b =1 (the integral I,,, ,, will assume this from now on)

m+1 1
[ “ (In x)n} =0
m+1 0

(28)

Hence we can express I, n via Reduction Formulae in terms of I,,, ,—1 and ultimately (via repeated iterative

substitution), I, o.
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Now the n = 0 term can be evaluated explicitly:
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1
Im(]:/ xm(lnx)odm:/xmdac:—
’ 0 0 m+1
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(29)
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Therefore
(—=1)"n!

(m + 1)n+1

This enables us to write down a closed form expression for the integral of y = 2 over the interval [0,1]

1
/xzdm = ni/ (xlnx)” (34)

/ 1 = i%fn,n (35)

0 n=0

(33)

Im,n =
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/0 - nZ:() n! ( + 1)n+1 (36)
! = (="
/0 " - Z < (n+ 1) (37)
i.e. ) )
/ oy =1 — 2*?‘@*"' (38)

AF (with inspiration from CHJH) 4/6/2014.



